On the Sustainable Utilization of Geopolymers for Safe Management of Radioactive Waste: A Review
Abstract
:1. Introduction
2. Geopolymers
- Si/Al < 1 noted zeolite crystallization is observed in geopolymers;
- 1 < Si/Al < 2 increased polymerization degree, with reduced porosity;
- 2 < Si/Al the polymerization extent is dependent on the solubility of the Si source.
- Pre-treatment activity: Due to the high buffer capacity of these materials, geopolymers can be used to regulate the pH of the aqueous radioactive waste streams;
- Aqueous effluents treatment activity: Porous geopolymers composites can be used in membrane separation, sorption/ion exchange, filtration, and photocatalytic degradation;
- Immobilization activity: Impermeable geopolymers can be used in the direct immobilization of problematic operational waste streams, e.g., organic liquid wastes, spent ion-exchangers, and evaporated concentrates.
2.1. Base Materials
- Natural minerals: These are the most popular structural elements sources for geopolymer synthesis. Calcined kaolin (CK)/metakaolin (MK) have been extensively tested to prepare sorbents [20,24,26,27,28,100,111] and immobilization matrices [35,45,46,48,49,50,52,53,55,56,57,58,59,60,61,62,101,103]. Limited research investigated other minerals, including feldspar (F), bentonite (B), and mordenite (M), for the same purposes [54,62,98,104,105].
- Industrial wastes: Fly ash (FA) is the most widely used waste in the preparation of geopolymer sorbents [21,22,23,25] and immobilization matrices [47,55,61,98,102,104,106]. Some research used blast furnace slag (BFS) with other materials to prepare sorbents [23,24,25] and geopolymeric immobilization matrices [50,51,55,61]. Manganese slag (MS) was employed to prepare immobilization matrices [45]. Prior to the utilization of these materials, they should be tested using toxicity characteristics leaching test (TCLP) to ensure that their heavy metal content, if any, is in stable form. Additionally, the amount of the natural occurring radioactive materials in these wastes should be quantified, if suspected.
- Synthetic materials: Chemical sodium silicate and aluminum nitrate solutions have been used to prepare sorbent material to test its potential application in radioactive metal removal from aqueous solutions [110]. In addition, Betol 39T was investigated to prepare geopolymer immobilization matrix [59].
2.2. Effect of Radiation on Geopolymers
2.3. GeopolymerStructure Characterization
3. Geopolymers as Sorbents/Ion Exchangers for Radio-Contaminant Removal
3.1. Types of Studied Geopolymers
3.2. Testing Techniques
- In terms of the number of conducted batch experiments, these experiments can provide a basis for evaluating the performance of the studied geopolymers, whereas the column and reusability and regeneration studies are lacking;
- The sorption data follow the pseudo-second-order reaction model, which shows that the reaction has a chemisorption nature that involves electron-sharing between the contaminants and the sorbent;
- For most of the sorption equilibrium batch tests, it was found that the sorption occurs on sites of equal energy, i.e., monolayer sorption, with exceptions for Cs removal using (FA/BFS) geopolymers and I and AsO42−removal by MK/HDTMA and Fa/Fe geopolymers, respectively;
- The conducted thermodynamic studies indicated that the reactions were mainly spontaneous and endothermic, except for the removal of I using MK/HDTMA geopolymers.
4. Geopolymers for the Immobilization of Radioactive Wastes
4.1. MK Based Geopolymer
4.2. Other Geopolymers
4.3. Effect of Alkali Activator and Thermal Treatment
4.4. Geopolymers Performance
4.4.1. Testing Techniques
4.4.2. Leaching Behavior of Geopolymer Wasteforms
5. Perspectives on the Sustainability of Geopolymers
6. Conclusions
- The application of a geopolymer in the pre-treatment of aqueous radioactive waste effluent was not addressed. This application is supported by the chemical stability of these materials in slightly acidic and alkaline solutions and its high buffering capacity, which allow an acceptable pH regulation performance.
- Geopolymer applications in membrane separation were not addressed in radioactive waste management. These applications are supported by the mechanical stability of these materials that are preserved even for porous geopolymers. This allows the application of geopolymer as a substrate or active layer in the membrane. Moreover, advanced trends in the literature were directed to assess this potential application in water and wastewater treatment and have provided knowledge that can be transfered to the radioactive-waste-management field.
- The ability of the amorphous geopolymer matrix to entrap metals and oxides can be used as a basis to test these materials for their potential application in photocatalytic degradation. This application, if proven, can be very useful to treat aqueous radioactive wastes that contain organic decontamination residues.
- As mentioned here, numerous batch studies were dictated to assess the promising application of geopolymers in radio-contaminant removal. These studies covered several types of geopolymer base materials, either single or blends, and targeted the removal of cations and anions of concern. Only a few studies have addressed the column operation and the reusability and regeneration ability of these materials, and there is still a need to investigate these aspects in depth and to have a clear understanding of the factors that affect them.
- The durability tests and standards were developed based on the long-term track record of the vulnerable characteristics of Portland cements. Despite geopolymers have been applied in certain countries for the immobilization of radioactive wastes, there is as yet no similar record to allow the adaptation of specific durability tests and standards for geopolymers.
- The life-cycle assessments for geopolymers used in radioactive waste management either as sorbent or as an immobilization matrix are lacking in the literature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.J.; Kim, J.S.; Kim, K.P.; Kwon, J.H.; Kim, J.C.; Jeong, J.Y.; Kim, Y.K. Radiological impact assessment of radioactive effluents emitted from nuclear power plants in Korea and China under normal operation. Prog. Nucl. Energy 2022, 153, 104464. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; Kozak, M.W.; Hung, Y.-T. Radioactive pollution and control. In Handbook of Environment and Waste Management; Hung, Y.-T., Wang, L.K., Shammas, N.K., Eds.; World Scientific Publishing Co.: Singapore, 2014; pp. 949–1027. [Google Scholar] [CrossRef]
- Ministry of Foreign Affairs, Report on the Discharge Record and the Seawater Monitoring Results at Fukushima Daiichi Nuclear Power Station during January, Information (18:00), March 1. 2022. Available online: https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/pdf/sd202203.pdf (accessed on 2 January 2023).
- IAEA. Status and Trends in Spent Fuel and Radioactive Waste Management, Nuclear Energy Series, NW-T-1.14; International Atomic Energy Agency: Vienna, Austria, 2022. [Google Scholar]
- Gasser, M.S.; Kadry, H.F.; Helal, A.S.; Abdel Rahman, R.O. Optimization and modeling of uranium recovery from acidic aqueous solutions using liquid membrane with Lix-622 as Phenolic-oxime carrier. Chem. Eng. Res. Des. 2022, 180, 25–37. [Google Scholar] [CrossRef]
- Ansari, S.A.; Mohapatra, P.K. Hollow fibre supported liquid membranes for nuclear fuel cycle applications: A review. Clean. Eng. Technol. 2021, 4, 100138. [Google Scholar] [CrossRef]
- Kim, K.W.; Shon, W.J.; Oh, M.K.; Yang, D.; Foster, R.I.; Lee, K.Y. Evaluation of dynamic behavior of coagulation-flocculation using hydrous ferric oxide for removal of radioactive nuclides in wastewater. Nucl. Eng. Technol. 2019, 51, 738–745. [Google Scholar] [CrossRef]
- Zheng, Y.; Qiao, J.; Yuan, J.; Shen, J.; Wang, A.J.; Niu, L. Electrochemical removal of radioactive cesium from nuclear waste using the dendritic copper hexacyanoferrate/carbon nanotube hybrids. Electrochim. Acta 2017, 257, 172–180. [Google Scholar] [CrossRef]
- Chen, R.; Tanaka, H.; Kawamoto, T.; Asai, M.; Fukushima, C.; Kurihara, M.; Watanabe, M.; Arisaka, M.; Nankawa, T. Preparation of afilm of copper hexacyanoferrate nanoparticles for electrochemical removal of cesium from radioactive wastewater. Electrochem. Commun. 2012, 25, 23–25. [Google Scholar] [CrossRef]
- Osmanlioglu, A.E. Decontamination of radioactive wastewater by two-staged chemical precipitation. Nucl. Eng. Technol. 2018, 50, 886–889. [Google Scholar] [CrossRef]
- Su, T.; Han, Z.; Qu, Z.; Chen, Y.; Lin, X.; Zhu, S. Effective recycling of Co and Sr from Co/Sr-bearing wastewater via an integrated Fe coagulation and hematite precipitation approach. Environ. Res. 2020, 187, 109654. [Google Scholar] [CrossRef] [PubMed]
- Garai, M.; Yavuz, C.T. Radioactive strontium removal from seawater by a MOF via two-step ion exchange. Chem 2019, 5, 750–752. [Google Scholar] [CrossRef]
- Gasser, A.M.S.; El Sherif, E.; Mekhamer, H.S.; Abdel Rahman, R.O. Assessment of Cyanex 301 impregnated resin for its potential use to remove cobalt from aqueous solutions. Environ. Res. 2020, 185, 10940. [Google Scholar] [CrossRef]
- Allahkarami, E.; Rezai, B. Removal of cerium from different aqueous solutions using different adsorbents: A review. Process Saf. Environ. Prot. 2019, 124, 345–362. [Google Scholar] [CrossRef]
- Luo, W.; Huang, Q.; Antwi, P.; Guo, B.; Sasaki, K. Synergistic effect of ClO4−and Sr2+ adsorption on alginate-encapsulated organo-montmorillonite beads: Implication for radionuclide immobilization. J. Colloid Interface Sci. 2020, 560, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, K.; Seo, B.K.; Hyun, J.H. Effective removal of radioactive cesium from contaminated water by synthesized composite adsorbent and its thermal treatment for enhanced storage stability. Environ. Res. 2020, 191, 110099. [Google Scholar] [CrossRef] [PubMed]
- Alipour, D.; Keshtkar, A.R.; Moosavian, M.A. Adsorption of thorium(IV) from simulated radioactive solutions using anovel electrospun PVA/TiO2/Zno nanofiber adsorbent functionalized with mercapto groups: Study in single and multi-component systems. Appl. Surf. Sci. 2016, 366, 19–29. [Google Scholar] [CrossRef]
- Hasan, M.N.; Shenashen, M.A.; Hasan, M.M.; Znad, H.; Awual, M.R. Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent. Chemosphere 2020, 270, 128668. [Google Scholar] [CrossRef]
- Iwagami, S.; Tsujimura, M.; Onda, Y.; Konuma, R.; Sato, Y.; Sakakibara, K.; Yoschenko, V. Dissolved 137Cs concentrations in stream water and subsurface water in a forested headwater catchment after the Fukushima Dai-Ichi Nuclear Power Plant accident. J. Hydrol. 2019, 573, 688–696. [Google Scholar] [CrossRef]
- Chen, Y.L.; Tong, Y.Y.; Pan, R.W.; Tang, J. The research on adsorption behaviors and mechanisms of geopolymers on Sr2+, CO2+ and Cs+. Adv. Mater. Res. 2013, 704, 313–318. [Google Scholar] [CrossRef]
- Tian, Q.; Sasaki, K. Application of fly ash-based geopolymer for removal of cesium, strontium and arsenate from aqueous solutions: Kinetic, equilibrium and mechanism analysis. Water Sci. Technol. 2019, 79, 2116–2125. [Google Scholar] [CrossRef]
- Jang, J.G.; Park, S.M.; Lee, H.K. Cesium and strontium retentions governed by aluminosilicate gel in alkali-activated cements. Materials 2017, 10, 447. [Google Scholar] [CrossRef]
- Tian, Q.; Nakama, S.; Sasaki, K. Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios. Sci. Total Environ. 2019, 687, 1127–1137. [Google Scholar] [CrossRef]
- Lei, H.; Muhammad, Y.; Wang, K.; Yi, M.; He, C.; Wei, Y.; Fujita, T. Facile fabrication of metakaolin/slag-based zeolite microspheres (M/Szms) geopolymer for the efficient remediation of Cs+ and Sr2+ from aqueous media. J. Hazard. Mater. 2021, 406, 124292. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Khalid, H.R.; Lee, H.K. Adsorption characteristics of cesium onto mesoporous geopolymers containing nano-crystalline zeolites. Micropor. Mesopor. Mater. 2017, 242, 238–244. [Google Scholar] [CrossRef]
- Chen, S.; Qi, Y.; Cossa, J.J.; Dos, S.I.D.S. Efficient Removal of radioactive iodide anions from simulated wastewater by HDTMA-geopolymer. Prog. Nucl. Energy 2019, 117, 103112. [Google Scholar] [CrossRef]
- El-Naggar, M.R.; Amin, M. Impact of alkali cations on properties of metakaolin and metakaolin/slag geopolymers: Microstructures in relation to sorption of 134Cs radionuclide. J. Hazard. Mater. 2018, 344, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Petlitckaia, S.; Barr, Y.; Piallat, T.; Grauby, O.; Ferry, D.; Poulesquen, A. Functionalized geopolymer foams for cesium removal from liquid nuclear waste. J. Clean. Prod. 2020, 269, 122400. [Google Scholar] [CrossRef]
- IAEA. Treatment and Conditioning of Radioactive Organic Liquids; IAEA-TECDOC-656; IAEA: Vienna, Austria, 1992. [Google Scholar]
- IAEA. Predisposal Management of Organic Radioactive Waste; Technical Reports Series No. 427; IAEA: Vienna, Austria, 2004. [Google Scholar]
- Abdel Rahman, R.O.; Rakhimov, R.Z.; Rakhimova, N.R.; Ojovan, M.I. Cementitious Materials for Nuclear Waste Immobilization; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Varlakov, A.; Zherebtsov, A. Innovative and conventional materials and designs of nuclear cementitious systems in radioactivewaste management. In Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies; Abdel Rahman, R.O., Ojovan, M.I., Eds.; Elsevier-Woodhead Publishing: Chichester, UK, 2021; pp. 297–338. [Google Scholar]
- Abdel Rahman, R.O.; Ojovan, M.I. Toward sustainable cementitious radioactive waste forms: Immobilization of problematic operational wastes. Sustainability 2021, 13, 11992. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; Abdel Moamen, O.A.; El-Masry, E.H. Life cycle of polymer nanocomposites matrices in hazardous waste management. In Handbook of Polymer and Ceramic Nanotechnology; Hussain, C.M., Thomas, S., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 1603–1625. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, W.S.; Um, W. Development of metakaolin-based geopolymer for solidification of sulfate-rich hybrid sludge waste. J. Nucl. Mater. 2019, 518, 247–255. [Google Scholar] [CrossRef]
- Orlova, A.I.; Ojovan, M.I. Ceramic mineral waste-forms for nuclear waste immobilization. Materials 2019, 12, 2638. [Google Scholar] [CrossRef]
- Fereiduni, E.; Ghasemi, A.; Elbestawi, M. Characterization of composite powder feedstock from powder bed fusion additive manufacturing perspective. Materials 2019, 12, 3673. [Google Scholar] [CrossRef] [Green Version]
- Harker, A.B. Tailored ceramics. In Radioactive Waste Forms for the Future; Lutze, W.R.E., Ed.; North-Holland: Amsterdam, The Netherlands, 1988; pp. 335–392. [Google Scholar]
- Frolova, A.V.; Vinokurov, S.E.; Gromyak, I.N.; Danilov, S.S. Medium-temperature phosphate glass composite material as a matrix for the immobilization of high-level waste containing volatile radionuclides. Energies 2022, 15, 7506. [Google Scholar] [CrossRef]
- Farid, O.M.; Ojovan, M.I.; Massoud, A.; Abdel Rahman, R.O. An assessment of initial leaching characteristics of alkali-borosilicate-glasses for nuclear waste immobilization. Materials 2019, 12, 1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lönartz, M.I.; Dohmen, L.; Lenting, C.; Trautmann, C.; Lang, M.; Geisler, T. The effect of heavy ion irradiation on the forward dissolution rate of borosilicate glasses studied in situ and real time by Fluid-Cell Raman Spectroscopy. Materials 2019, 12, 1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. Immobilization of radioactive waste in cement. In An Introduction to Nuclear Waste Immobilization, 3rd ed.; Ojovan, M.I., Lee, W.E., Kalmykov, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 271–303. [Google Scholar]
- Isaacs, M.; Lange, S.; Deissmann, G.; Bosbach, D.; Milodowski, A.E.; Read, D. Retention of technetium-99 by grout and backfill cements: Implications for the safe disposal of radioactive waste. Appl. Geochem. 2020, 116, 104580. [Google Scholar] [CrossRef]
- Bayoumi, T.A.; Saleh, H.M. Characterization of biological waste stabilized by cement during immersion in aqueous media to develop disposal strategies for phytomediated radioactive waste. Prog. Nucl. Energy 2018, 107, 83–89. [Google Scholar] [CrossRef]
- Yu, Q.; Li, S.; Li, H.; Chai, X.; Bi, X.; Liu, J.; Ohnuki, T. Synthesis and characterization of Mn-slag based geopolymer for immobilization of Co. J. Clean. Prod. 2019, 234, 97–104. [Google Scholar] [CrossRef]
- He, P.; Wang, R.; Fu, S.; Wang, M.; Cai, D.; Ma, G.; Wang, M.; Yuan, J.; Yang, Z.; Duan, X.; et al. Safe trapping of cesium into doping-enhanced pollucite structure by geopolymer precursor technique. J. Hazard. Mater. 2019, 367, 577–588. [Google Scholar] [CrossRef]
- Li, Q.; Sun, Z.; Tao, D.; Xu, Y.; Li, P.; Cui, H.; Zhai, J. Immobilization of simulated radionuclide 133Cs+ by fly ash-based geopolymer. Radiat. Phys. Chem. 2013, 262, 325–331. [Google Scholar] [CrossRef]
- Fu, S.; He, P.; Wang, M.; Cui, J.; Wang, M.; Duan, X.; Yang, Z.; Jia, D.; Zhou, Y. Hydrothermal synthesis of pollucite from metakaolin-based geopolymer for hazardous wastes storage. J. Clean. Prod. 2020, 248, 119240. [Google Scholar] [CrossRef]
- He, P.; Cui, J.; Wang, M.; Fu, S.; Yang, H.; Sun, C.; Duan, X.; Yang, Z.; Jia, D.; Zhou, Y. Interplay between storage temperature, medium and leaching kinetics of hazardous wastes in metakaolin-based geopolymer. J. Hazard. Mater. 2020, 384, 121377. [Google Scholar] [CrossRef]
- Lin, W.K.; Chen, H.Y.; Huang, C.P. Performance study of ion exchange resins solidification using metakaolin-based geopolymer binder. Prog. Nucl. Energy 2020, 129, 103508. [Google Scholar] [CrossRef]
- Lee, W.H.; Cheng, T.W.; Ding, Y.C.; Lin, K.L.; Tsao, S.W.; Huang, C.P. Geopolymer technology for the solidification of simulated ion exchange resins with radionuclides. J. Environ. Manag. 2019, 235, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.D.; Neeway, J.J.; Snyder, M.M.V.; Bowden, M.E.; Amonette, J.E.; Arey, B.W.; Pierce, E.M.; Brown, C.F.; Qafoku, N.P. Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation. J. Nucl. Mater. 2016, 473, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Hanzlicek, T.; Steinerova, M.; Straka, P. Radioactive metal isotopes stabilized in a geopolymer matrix: Determination of a leaching extract by a radiotracer method. J. Am. Ceram. Soc. 2006, 89, 3541–3543. [Google Scholar] [CrossRef]
- Chervonnyj, A.D.; Chervonnaya, N.A. Geopolymeric agent for immobilization of radioactive ashes from biomass burning. Radiochemistry 2003, 45, 182–188. [Google Scholar] [CrossRef]
- Liu, X.; Ding, Y.; Lu, X. Immobilization of simulated radionuclide 90Sr by fly ash-slag-metakaolin-based geopolymer. Nucl. Technol. 2017, 198, 64–69. [Google Scholar] [CrossRef]
- Walkley, B.; Ke, X.; Hussein, O.H.; Bernal, S.A.; Provis, J.L. Incorporation of strontium and calcium in geopolymer gels. J. Hazard. Mater. 2020, 382, 121015. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Jiang, Z.; Wu, D.; Peng, X.; Xu, Y.; Li, N.; Qi, Y.; Li, P. Immobilization of strontium-loaded zeolite A by metakaolin-basedgeopolymer. Ceram. Int. 2017, 43, 4434–4439. [Google Scholar] [CrossRef]
- Tian, Q.; Guo, B.; Sasaki, K. Immobilization mechanism of Se oxyanions in geopolymer: Effects of alkaline activators and calcined hydrotalcite additive. J. Hazard. Mater. 2020, 387, 121994. [Google Scholar] [CrossRef]
- Cannes, C.; Rodrigues, D.; Barré, N.; Lambertin, D.; Delpech, S. Reactivity of uranium in geopolymers, confinement matrices proposed to encapsulate Mgzr Waste. J. Nucl. Mater. 2019, 518, 370–379. [Google Scholar] [CrossRef]
- Girke, N.A.; Steinmetz, H.J.; Bukaemsky, A.; Bosbach, D.; Hermannand, E.; Griebel, I. Cementation of Nuclear Graphite using Geopolymers. In Proceedings of the NUWCEM 2011, Avignon, France, 11–14 October 2011. [Google Scholar]
- Xu, H.; Gong, W.; Syltebo, L.; Lutze, W.; Pegg, I.L. Duralith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution. J. Hazard. Mater. 2014, 278, 34–39. [Google Scholar] [CrossRef]
- Cuccia, V.; Freire, C.B.; Ladeira, A.C.Q. Radwaste oil immobilization in geopolymer after non-destructive treatment. Prog. Nucl. Energy 2020, 122, 103246. [Google Scholar] [CrossRef]
- Ren, B.; Zhao, Y.; Bai, H.; Kang, S.; Zhang, T.; Song, S. Eco-friendly geopolymer prepared from solid wastes: A critical review. Chemosphere 2021, 267, 128900. [Google Scholar] [CrossRef]
- Sercombe, J.; Gwinner, B.; Tiffreau, C.; Simondi-Teisseire, B.; Adenot, F. Modelling of bituminized radioactive waste leaching. Part I: Constitutive equations. J. Nucl. Mater. 2006, 349, 96–106. [Google Scholar] [CrossRef]
- Zakharova, K.P.; Masanov, O.L. Bituminization of liquid radioactive waste. Safety assessment and operational experience. Atomic Energy 2000, 89, 135–139. [Google Scholar] [CrossRef]
- Ikladious, N.E.; Ghattasv, N.K.; Tawfik, M.E. Some Studies on the incorporation of simulate radioactive waste into polymer matrix. Radioact. Waste Manag. Nucl. Fuel Cycle 1993, 17, 119–137. [Google Scholar]
- Özdemir, T.; Usanmaz, A. Monte Carlo simulations of radioactive waste embedded into polymer. Rad. Phys. Chem. 2009, 78, 800–805. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications, 4th ed.; Geopolymer Institute: Saint-Quentin, France, 2015. [Google Scholar]
- Zakka, W.P.I.; Lim, N.H.A.S.; Khun, M.C. A scientometric review of geopolymer concrete. J. Clean. Prod. 2021, 280, 124353. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Zou, S.; Zhang, G. Experimental research on afeasible rice husk/geopolymer foam building insulation material. Energy Build. 2020, 226, 110358. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, A.; Bao, X.; Ni, T.; Ling, J. A review on geopolymer in potential coating application: Materials, preparation and basic properties. J. Build. Eng. 2020, 32, 101734. [Google Scholar] [CrossRef]
- Villaquirán-Caicedo, M.A.; Mejía de Gutiérrez, R. Synthesis of ceramic materials from ecofriendly geopolymer precursors. Mater. Lett. 2018, 230, 300–304. [Google Scholar] [CrossRef]
- Lahoti, M.; Tan, K.H.; Yang, E.H. A critical review of geopolymer properties for structural fire-resistance applications. Constr. Build. Mater. 2019, 221, 514–526. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Han, Z.C.; He, P.Y.; Chen, H. Geopolymer-based catalysts for cost-effective environmental governance: A review based on source control and end-of-pipe treatment. J. Clean. Prod. 2020, 263, 121556. [Google Scholar] [CrossRef]
- Łach, M.; Mierzwiński, D.; Korniejenko, K.; Mikuła, J.; Hebda, M. Geopolymers as a material suitable for immobilization of fly ash from municipal waste incineration plants. J. Air Waste Manag. Assoc. 2018, 68, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Tochetto, G.A.; Simão, L.; de Oliveira, D.; Hotza, D.; Immich, A.P.S. Porous geopolymers as dye adsorbents: Review and perspectives. J. Clean. Prod. 2022, 374, 133982. [Google Scholar] [CrossRef]
- Freire, A.L.; José, H.J.; Moreira, R.D.F.P.M. Potential applications for geopolymers in carbon capture and storage. Int. J. Greenh. Gas Control. 2022, 118, 103687. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S.; Abdullah, M.M.A.B.; Razak, R.A.; Vizureanu, P.; Sandu, A.V.; Matasaru, P.D. A state-of-the-art review on innovative geopolymer composites designed for water and wastewater treatment. Materials 2021, 14, 7456. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, M.; Naveed, A.; Arif, M.; Hassan, S.; Afridi, S.; Asif, M.; Sultana, S.; Amin, N.; Younas, M.; Khan, M.N.; et al. Geopolymerization: A promising technique for membrane synthesis. Mater. Res. Express 2021, 8, 112002. [Google Scholar] [CrossRef]
- Della Rocca, D.G.; Peralta, R.M.; Peralta, R.A.; Rodríguez-Castellón, E.; de Fatima Peralta Muniz Moreira, R. Adding value to aluminosilicate solid wastes to produce adsorbents, catalysts and filtration membranes for water and wastewater treatment. J. Mater. Sci. 2021, 56, 1039–1063. [Google Scholar] [CrossRef]
- Novais, R.M.; Pullar, R.C.; Labrincha, J.A. Geopolymer foams: An overview of recent advancements. Prog. Mater. Sci. 2020, 109, 100621. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, B.; Bai, T.; Wang, H.; Du, F.; Zhang, Y.; Cai, L.; Jiang, C.; Wang, W. Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr. Build. Mater. 2019, 224, 930–949. [Google Scholar] [CrossRef]
- Ji, Z.; Pei, Y. Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: A review. J. Environ. Manag. 2019, 231, 256–267. [Google Scholar] [CrossRef] [PubMed]
- El-eswed, B.I. Chemical evaluation of immobilization of wastes containing Pb, Cd, Cu and Zn in alkali-activated materials: A critical review. J. Environ. Chem. Eng. 2020, 8, 104194. [Google Scholar] [CrossRef]
- Taki, K.; Mukherjee, S.; Patel, A.K.; Kumar, M. Reappraisal review on geopolymer: A new era of aluminosilicate binder for metal immobilization. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100345. [Google Scholar] [CrossRef]
- Singh, R.; Budarayavalasa, S. Solidification and stabilization of hazardous wastes using geopolymers as sustainable binders. J. Mater. Cycles Waste Manag. 2021, 23, 1699–1725. [Google Scholar] [CrossRef]
- Tian, Q.; Bai, Y.; Pan, Y.; Chen, C.; Yao, S.; Sasaki, K.; Zhang, H. Application of geopolymer in stabilization/solidification of hazardous pollutants: A review. Molecules 2022, 27, 4570. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.; Wang, X.Q.; Chow, C.L.; Lau, D. A review of geopolymer and its adsorption capacity with molecular insights: A promising adsorbent of heavy metal ions. J. Environ. Manag. 2022, 322, 116066. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Wang, J. Solidification of radioactive wastes by cement-based materials. Prog. Nucl. Energy 2021, 141, 103957. [Google Scholar] [CrossRef]
- Reeb, C.; Pierlot, C.; Davy, C.; Lambertin, D. Incorporation of organic liquids into geopolymer materials—A review of processing, properties and applications. Ceram. Int. 2021, 47, 7369–7385. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem. Eng. Sci. 2007, 62, 2318–2329. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S. A comprehensive review on fly ash-based geopolymer. J. Compos. Sci. 2022, 6, 219. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications; Geopolymer Institute: Saint-Quentin, France, 2008. [Google Scholar]
- Weng, L.; Sagoe-Crentsil, K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part I—Low Si/Al ratio systems. J. Mater. Sci. 2007, 42, 2997–3006. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; El-Kamash, A.M.; Hung, Y.-T. Applications of nano-zeolite in wastewater treatment: An overview. Water 2022, 14, 137. [Google Scholar] [CrossRef]
- Blackford, M.G.; Hanna, J.V.; Pike, K.J.; Vance, E.R.; Perera, D.S. Transmission electron microscopy and nuclear magnetic resonance studies of geopolymers for radioactive waste immobilization. J. Am. Ceram. Soc. 2007, 90, 1193–1199. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; Van Deventer, J.S. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Tian, Q.; Sasaki, K. Application of fly ash-based materials for stabilization/solidification of cesium and strontium. Environ. Sci. Pollut. Res. 2019, 26, 23542–23554. [Google Scholar] [CrossRef] [PubMed]
- Youssef, M.A.; El-Naggar, M.R.; Ahmed, I.M.; Attallah, M.F. Batch kinetics of 134Cs and 152+154Eu radionuclides onto poly-condensed feldspar and perlite based sorbents. J. Hazard. Mater. 2021, 403, 123945. [Google Scholar] [CrossRef]
- Xiang, Y.; Hou, L.; Liu, J.; Li, J.; Lu, Z.; Niu, Y. Adsorption and enrichment of simulated 137Cs in geopolymer foams. J. Environ. Chem. Eng. 2021, 9, 105733. [Google Scholar] [CrossRef]
- Rooses, A.; Steins, P.; Dannoux-Papin, A.; Lambertin, D.; Poulesquen, A.; Frizon, F. Encapsulation of Mg–Zr alloy in metakaolin-based geopolymer. Appl. Clay Sci. 2013, 73, 86–92. [Google Scholar] [CrossRef]
- Leay, L.; Potts, A.; Donoclift, T. Geopolymers from fly ash and their gamma irradiation. Mater. Lett. 2018, 227, 240–242. [Google Scholar] [CrossRef]
- Lambertin, D.; Boher, C.; Dannoux-Papin, A.; Galliez, K.; Rooses, A.; Frizon, F. Influence of gamma ray irradiation on metakaolin based sodium geopolymer. J. Nucl. Mater. 2013, 443, 311–315. [Google Scholar] [CrossRef]
- Chartier, D.; Sanchez-Canet, J.; Bessette, L.; Esnouf, S.; Renault, J.P. Influence of formulation parameters of cement based materials towards gas production under gamma irradiation. J. Nucl. Mater. 2018, 511, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, Y.; Kimura, A.; Taguchi, M.; Nagaishi, R.; Yamagishi, I.; Kimura, T. Hydrogen production in gamma radiolysis of the mixture of mordenite and seawater. J. Nucl. Sci. Technol. 2013, 50, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Deng, N.; An, H.; Cui, H.; Pan, Y.; Wang, B.; Mao, L.; Zhai, J. Effects of gamma-ray irradiation on leaching of simulated 133Cs+ radionuclides from geopolymer wasteforms. J. Nucl. Mater. 2015, 459, 270–275. [Google Scholar] [CrossRef]
- Ojovan, M.I. Radioactive waste characterization and selection of processing technologies. In Handbook of Advanced Radioactive Waste Conditioning Technologies; Woodhead Publishing Limited Chichester: Chichester, UK, 2011; pp. 1–18. [Google Scholar]
- Ojovan, M.I.; Lee, W.E. Introduction to immobilization. In An Introduction to Nuclear Waste Immobilization; Elsevier: Amsterdam, The Netherlands, 1989; pp. 1–8. ISBN 9780080444628. [Google Scholar]
- El-Naggar, M.R. Applicability of alkali activated slag-seeded Egyptian Sinai kaolin for the immobilization of 60Co radionuclide. J. Nucl. Mater. 2014, 447, 15–21. [Google Scholar] [CrossRef]
- Tian, Q.; Sasaki, K. Anovel composite of layered double hydroxide/geopolymer for co-immobilization of Cs+ and SeO42− from aqueous solution. Sci. Total Environ. 2019, 695, 133799. [Google Scholar] [CrossRef]
- Skorina, T. Ion exchange in amorphous alkali-activated aluminosilicates: Potassium based geopolymers. Appl. Clay Sci. 2014, 87, 205–211. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; Ojovan, M.I. (Eds.) Techniques to test cementitious systems through their life cycles. In Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies; Woodhead Publishing: Chichester, UK, 2021; pp. 407–430. [Google Scholar] [CrossRef]
- Varlakov, A.; Zherebtsov, A.; Ojovan, M.I.; Petrov, V. Long-term irradiation effects in cementitious systems. In Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies; Woodhead Publishing: Chichester, UK, 2021; pp. 161–180. [Google Scholar]
- Mast, B.; Gerardy, I.; Pontikes, Y.; Schroeyers, W.; Reniers, B.; Samyn, P.; Gryglewicz, G.; Vandoren, B.; Schreurs, S. The effect of gamma radiation on the mechanical and microstructural properties of Fe-rich inorganic polymers. J. Nucl. Mater. 2019, 521, 126–136. [Google Scholar] [CrossRef]
- Yeoh, M.L.; Ukritnukun, S.; Rawal, A.; Davies, J.; Kang, B.J.; Burrough, K.; Aly, Z.; Dayal, P.; Vance, E.R.; Gregg, D.J. Mechanistic impacts of long-term gamma irradiation on physicochemical, structural, and mechanical stabilities of radiation-responsive geopolymer pastes. J. Hazard. Mater. 2021, 407, 124805. [Google Scholar] [CrossRef] [PubMed]
- ANSI-ANS-16.1; Measurement of the Leachability of Solidified Low-Level Radioactive Waste by a Short-Term Test Procedure. American Nuclear Society: La Grange Park, IL, USA, 2003.
- Ji, Z.; Pei, Y. Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO43− and Cr2O72−) in waste-based geopolymer. J. Hazard. Mater. 2020, 384, 121290. [Google Scholar] [CrossRef] [PubMed]
- Melo, L.G.A.; Periera, R.A.; Pires, E.F.C.; Darwish, F.A.I.; Silva, F.J. Physicochemical characterization of pulverized phyllite rock for geopolymer resin synthesis. Mater. Res. 2017, 20, 236–243. [Google Scholar] [CrossRef] [Green Version]
- Farid, O.M.; Abdel Rahman, R.O. Preliminary assessment of modified borosilicate glasses for chromium and ruthenium immobilization. Mater. Chem. Phys. 2017, 186, 462–469. [Google Scholar] [CrossRef]
- Kozai, N.; Sato, J.; Osugi, T.; Shimoyama, I.; Sekine, Y.; Sakamoto, F.; Ohnuki, T. Sewage sludge ash contaminated with radiocesium: Solidification with alkaline-reacted metakaolinite (geopolymer) and Portland cement. J. Hazard. Mater. 2021, 416, 125965. [Google Scholar] [CrossRef] [PubMed]
- Abdel Rahman, R.O.; Metwally, S.S.; El-Kamash, A.M. Life Cycle of Ion Exchangers in Nuclear Industry: Application and Management of Spent Exchangers. In Handbook of Ecomaterials; Martínez, L., Kharissova, O., Kharisov, B., Eds.; Springer: Cham, Switzerland, 2019; Volume 5, pp. 3709–3732. [Google Scholar] [CrossRef]
- Jang, J.G.; Lee, N.K.; Lee, H.K. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Constr. Build. Mater. 2014, 50, 169–176. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.K. Reactivity and reaction products of alkali-activated, fly ash/slag paste. Constr. Build. Mater. 2015, 81, 303–312. [Google Scholar] [CrossRef]
- Phillip, E.; Khoo, K.S.; Yusof, M.A.W.; Rahman, R.A. Mechanistic insights into the dynamics of radionuclides retention in evolved POFA-OPC and OPC barriers in radioactive waste disposal. Chem. Eng. J. 2022, 437, 135423. [Google Scholar] [CrossRef]
- Pan, Y.; Bai, Y.; Chen, C.; Yao, S.; Tian, Q.; Zhang, H. Effect of calcination temperature on geopolymer for the adsorption of cesium. Mater. Lett. 2023, 330, 133355. [Google Scholar] [CrossRef]
- Ma, S.; Yang, H.; Fu, S.; He, P.; Duan, X.; Yang, Z.; Jia, D.; Colombo, P.; Zhou, Y. Additive manufacturing of geopolymers with hierarchical porosity for highly efficient removal of Cs+. J. Hazard. Mater. 2023, 443, 130161. [Google Scholar] [CrossRef] [PubMed]
- El-Eswed, B.I. Solidification Versus Adsorption for Immobilization of Pollutants in Geopolymeric Materials: A Review; Intechopen: London, UK, 2018. [Google Scholar]
- Abdel Rahman, R.O.; Zaki, A.A. Comparative analysis of nuclear waste solidification performance models: Spent ion exchanger-cement based wasteforms. Process Saf. Environ. Prot. 2020, 136, 115–125. [Google Scholar] [CrossRef]
- Shi, C.; Fernández-Jiménez, A. Stabilization/solidification of hazardous and radioactive waste with alkali-activated cements. J. Hazard. Mater. 2006, 137, 1656–1663. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.Y.; Merz, E. Immobilization of intermediate-level wastes in geopolymers. J. Nucl. Mater. 1994, 211, 141–148. [Google Scholar] [CrossRef]
- El-Eswed, B.I.; Aldagag, O.M.; Khalili, F.I. Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers. Appl. Clay Sci. 2017, 140, 148–156. [Google Scholar] [CrossRef]
- Perera, D.S.; Blackford, M.G.; Vance, E.R.; Hanna, J.V.; Finnie, K.S.; Nicholson, C.L. Geopolymers for the immobilization of radioactive waste. Mat. Res. Soc. Symp. Proc. 2004, 824, 432–437. [Google Scholar] [CrossRef]
- Jia, L.; He, P.; Jia, D.; Fu, S.; Wang, M.; Wang, M.; Duan, X.; Yang, Z.; Zhou, Y. Immobilization behavior of Sr in geopolymer and its ceramic product. J. Am. Ceram. Soc. 2019, 103, 1372–1384. [Google Scholar] [CrossRef]
- Ke, X.; Bernal, S.A.; Sato, T.; Provis, J.L. Alkali aluminosilicate geopolymers as binders to encapsulate strontium-selective titanate ion-exchangers. Dalton Trans. 2019, 48, 12116–12126. [Google Scholar] [CrossRef] [Green Version]
- Kuenzel, C.; Cisneros, J.F.; Neville, T.P.; Vandeperre, L.J.; Simons, S.J.R.; Bensted, J.; Cheeseman, C.R. Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin. J. Nucl. Mater. 2015, 466, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Xu, Y.; Xu, Z.; Wu, D.; Li, D. Effect of simulated radionuclide strontium on geopolymerization process. Procedia Environ. Sci. 2016, 31, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Ofer-Rozovsky, E.; Arbel Haddad, M.; Bar-Nes, G.; Borojovitz, E.J.C.; Binyamini, A.; Nikolski, A.; Katz, A. Cesium immobilization in nitrate-bearing metakaolin-based geopolymers. J. Nucl. Mater. 2019, 514, 247–254. [Google Scholar] [CrossRef]
- Cantarel, V.; Motooka, T.; Yamagishi, I. Geopolymers and their potential applications in the nuclear waste management field—A bibliographical study. JAEA Rev. 2017, 14. [Google Scholar]
- Jing, Z.; Hao, W.; He, X.; Fan, J.; Zhang, Y.; Miao, J.; Jin, F. A novel hydrothermal method to convert incineration ash into pollucite for the immobilization of asimulant radioactive cesium. J. Hazard Mater. 2016, 306, 220–229. [Google Scholar] [CrossRef]
- Al-Mashqbeh, A.; Abuali, S.; El-Eswed, B.; Khalili, F.I. Immobilization of toxic inorganic anions (Cr2O72−, MnO4− and Fe(CN)63−) in metakaolin based geopolymers: A preliminary study. Ceram. Int. 2018, 44, 5613–5620. [Google Scholar] [CrossRef]
- Lichvar, P.; Rozloznik, M.; Sekely, S. Behaviour of aluminosilicate inorganic matrix SIAL during and after solidification of radioactive sludge and radioactive spent resins and their mixtures. Amec Nucl. Slovak. 2010. Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/TE-1701_add-CD/PDF/Slovakia.pdf (accessed on 3 January 2022).
- Jang, J.G.; Park, S.M.; Lee, H.K. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. J. Hazard. Mater. 2016, 318, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, X.; Chai, X.; Liu, J.; Deng, N. Adsorption of Uranium (VI) from aqueous solution on calcined and acid-activated kaolin. J. Appl. Clay Sci. 2010, 47, 448–451. [Google Scholar] [CrossRef]
- Künzel, C. Metakaolin Based Geopolymers to Encapsulate Nuclear Waste. Ph.D. Thesis, Imperial College, London, UK, 2013. [Google Scholar]
- Jiang, Z.; Xu, Z.H.; Shuai, Q.; Li, P.; Xu, Y.H. Thermal stability of geopolymer—Sr contaminated zeolite A blends. Key Eng. Mater. 2017, 727, 1089–1097. [Google Scholar] [CrossRef]
- Boškovi, I.V.; Nenadovi, S.S.; Kljajevi, L.M.; Vukanac, I.S.; Stankovi, N.G.; Lukovi, J.M.; Vukčević, M. Radiological and physicochemical properties of red mud based geopolymers. Nucl. Technol. Rad. Prot. 2018, 33, 188–194. [Google Scholar] [CrossRef]
- Abdel Rahman, R.O.; Ojovan, M.I. (Eds.) Sustainability of cementitious structures, systems, and components (SSC’s): Long-term environmental stressors. In Sustainability of Life Cycle Management for Nuclear Cementation-Based Technologies; Elsevier-Woodhead Publishing: Chichester, UK, 2021; pp. 181–232. [Google Scholar]
- De Oliveira, L.B.; de Azevedo, A.R.; Marvila, M.T.; Pereira, E.C.; Fediuk, R.; Vieira, C.M.F. Durability of geopolymers with industrial waste. Case Stud. Constr. Mater. 2022, 16, e00839. [Google Scholar] [CrossRef]
- Kishore, Y.S.N.; Nadimpalli, S.G.D.; Potnuru, A.K.; Vemuri, J.; Khan, M.A. Statistical analysis of sustainable geopolymer concrete. Mater. Today Proc. 2022, 61, 212–223. [Google Scholar] [CrossRef]
- Oyebisi, S.; Olutoge, F.; Kathirvel, P.; Oyaotuderekumor, I.; Lawanson, D.; Nwani, J.; Ede, A.; Kaze, R. Sustainability assessment of geopolymer concrete synthesized by slag and corncob ash. Case Stud. Constr. Mater. 2022, 17, e01665. [Google Scholar] [CrossRef]
- Mishra, J.; Nanda, B.; Patro, S.K.; Krishna, R.S. Sustainable Fly Ash Based Geopolymer Binders: A Review on Compressive Strength and Microstructure Properties. Sustainability 2022, 14, 15062. [Google Scholar] [CrossRef]
Geopolymer | Dose, kGy | Property | Effect | Ref. |
---|---|---|---|---|
GGBFS */Wollastonite | 1000 | Compressive strength | Δσ increased by 35% | [51] |
MK | 50 | Hydrogen radiolytic | G = 6.1 × 10−3 μmol/J | [101] |
FA | 700 | Hydrogen radiolytic | G = 2.1 × 10−3 μmol/J | [102] |
MK | 750 | Hydrogen radiolytic | G = 9.0 × 10−3 μmol/J | [103] |
50–1000 | Compressive strength | Δσ~10% | ||
FA | 100 | Compressive strength | Δσ 7.8% | [106] |
Radionuclide leaching | ΔCLF 5, 22.3 and 47.3%, in DIW **, GW *** & SW **** |
Base Material | Studied Experimental Conditions | SSA, m2/g | Main Findings | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cont. | Co, ppm | T,°C | m/V, g/L | teq, min | pHOpt | Capacity, mg/g | Comments | |||
Chemical | Cs | 100 | - | 1 | 121 | 60 | 8 | - | 2nd order kinetics Monolayer sorption | [110] |
SeO42− | 100 | - | 30 | 8 | - | |||||
F/perlite | Cs | 50 | 24.85–49.85 | 10 | - | 60 | 8 | 4.28** | 2nd order kinetics | [99] |
Eu | 50 | 24.85–49.85 | 60 | 4 | 1.45** | |||||
MK | Cs | 100–1000 | 24.85–59.85 | 10 | 18.72 | - | - | 74.95* | Spontaneous endothermic reaction | [27] |
Cs | 20–1000 | 24.85 | 1 | 37.77 | 120 | 7 | 216.1* | 2nd order kinetics Monolayer sorption Spontaneous endothermic reaction Reused for 2 cycles | [100] | |
FA | Cs | 85–150 | RT | 1 | - | 10 | >7 | 281.74* | 2nd order kinetics Monolayer sorption | [98] |
Sr | 60 | 169.07* | ||||||||
Cs | 100 | RT | 1 | 215 | 10 | 7 | 92.63 | 2nd order kinetics Low Si/Al ratio result in better sorption of Cs+ | [23] | |
MK/Slag | Cs | 1000 | - | 1 | 77.6 | 10 | - | 59.56** | 2nd order kinetics Mixture of fly ash and slag reduces the removal performance | [22] |
Sr | 1000 | - | 30 | - | 54.52** | |||||
Cs | 10–170 | 25 | 1.2 | 23.22 | 30 | >4 | 103.74* | 2nd order kinetics Monolayer sorption Regeneration for 4 and 2 cycles for Cs and Sr, respectively without significant loss*** | [24] | |
Sr | 10–170 | 25 | 1.23 | 60 | >4 | 54.91* | ||||
FA& BFS | Cs | 1000 | - | 1 | 12.72 | 30 | - | 29.22** | 2nd order kinetics Mixture of fly ash and slag reduces the removal performance | [22] |
Sr | 1000 | - | 30 | - | 44.64** | |||||
Cs | 10–150 | - | 10 | 114.16 | 40 | 4 | 15.24* | Multilayer sorption | [25] |
Base Material | Studied Experimental Conditions | SSA, m2/g | Main Findings | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Cont. | Co, ppm | T,°C | m/V, g/L | teq, min | pHOpt | Capacity, mg/g | Comments | |||
Chemical/LDH | Cs | 100 | - | 1 | 134.1 | 120 | 8 | 84.14 | 2nd order kinetics Monolayer sorption | [110] |
SeO42− | 100 | - | 5 | 8 | 71.3 | |||||
MK/K2CuFe(CN)6] | Cs | 3–1000 | RT | 1 | 35 | 4–5 | - | 250–175*** | The material is very selective for Cs. | [28] |
MK/HDTMA | I | 250 | 24.85 | 1 | 180 | >7 | 36.1** | 2nd order kinetics Multilayer spontaneous and exothermic process | [26] | |
FA/Fe | Cs | 100 | RT | 1 | 107.9 | 10 | 7 | 111.9* | 2nd order kinetics Cs+& Sr2+ monolayer sorption AsO4 is multilayer sorption. | [21] |
Sr | 100 | 30 | 7 | 14.19* | ||||||
AsO42− | 50 | 150 | 5 | 21.51* | ||||||
MK-FA | Cs | 27 | 25 | 2 | - | 120–240 | 7–7.5 | 113.3 | The adsorption of geopolymer on Sr2+, Co2+,and Cs+ is mainly chemical adsorption. | [20] |
Sr | 18 | - | 85.7 | |||||||
Co | 12 | - | 58.8 |
Studied Immobilization Matrix | Matrix Leaching Studies and Results | Ref. | |||||
---|---|---|---|---|---|---|---|
Base Material | Activators | Radionuclides Simulant/Waste | Waste Loading,% | Leach Test | Leaching Measure | Findings | |
MK | SiO2, NaOH, or KOH, or LiOH | CsOH·H2O | 14–20 | ANSI/ANS 16.1 | Li = 8.93–12.66 a NLR = 2.51 × 10−4 gm−2/d | Cs effectively immobilized in pollucite at ≤1000 °C. | [46] |
Na2SiO3, SiO2 and NaOH | 2–18 | Li = 8.93–12.66 a | |||||
Silica sol gel and NaOH | Cs OH | 6–30 | ANSI/ANS-16.1 | NLR = 1.14 × 10−3 gm−2/d | Hydrothermal treatment increases the performance and compressive strength. | [48] | |
Sol gel NaOH | CsNO3 | 3.52 | Leaching for 42 d | CLR < 1% | The Na-based geopolymer showed a lower leaching rate than the K-based geopolymer. | [49] | |
Sr(NO3)2 | 5.82 | CLR < 1% | |||||
KOH | 152Eu | - | Leaching for 24 d | I = 98.9% | The radionuclides were not leached in water, even after the fine pulverization of samples, but remained in the geopolymer matrices. | [53] | |
134Cs | - | I = 97.7% | |||||
60Co | - | I = 99.0% | |||||
59Fe | - | I = 99.0% | |||||
Water glass & H2O 17.6 | Zeolite-loaded Sr | 29.4 | Leaching for 42 | CLF = 1.8 × 10−3 cm−1 | Has better leaching resistance than those of cement in different leaching solutions | [57] | |
NaOH, KOH, Fumed silica, DIW | Sulfate ions in sludge | 0–40% | - | CFL < 1.0% | - | [35] | |
Sodium silicate NaOH | Heavy metals (Th(IV), U(VI), Pb(II), Cd(II), Cu(II)) | - | Leaching for 24 h | LC: Deionized water = 11% 1 M HCl = 8% 0.1 M NaCl = 4.6% 1.0 M NaCl = 3.4% 0.1 M NaOH = 5.7% | The MK-based geopolymer is very effective in the stabilization of heavy metal ions. | [132] | |
Na silicate | Sr | - | TCLP | Leaching rate: Deionized water at 1200 °C = 5.82 × 10−7 gm−2/d Simulated seawater at 1200 °C = 4.64 × 10−6 gm−2/d | Low leaching is achieved at higher temperature (1200 °C) due to the immobilization of Sr in nepheline structures. | [134] | |
MK/MS | Water glass & NaOH | CoCl2 | 5.56 | TCLP | LC = 0.20% | Has higher acid-leaching resistance compared to the MK geopolymer | [45] |
MK/Hydrotalcite/SF | Sodium silicate NaOH | SeO32– | 2 | TCLP | LC = 10% | Na2SiO3-activated geopolymers have better leaching performance than those of NaOH-activated geopolymers. | [58] |
SeO42– | - | ||||||
FA/BFS/MK/Sand/SF | The waste and NaOH KOH | Re | - | TCLP | LC = 0.65 mg/L | - | [61] |
MK/B | Sodium silicate NaOH | Oil contaminated by Co | 15.5–25 | ASTM C130A for 12 day | LR = 8.5 × 10−5 cm/day | Leaching rate complied with the Brazilian regulations | [62] |
Studied Immobilization Matrix | Matrix Leaching Studies and Results | Ref. | |||||
---|---|---|---|---|---|---|---|
Base Material | Activators | Radionuclides Simulant/Waste | Waste Loading,% | Leach Test | Leaching Measure | Findings | |
FA | Sodium silicate and NaOH | CsNO3 | 1.46 | Leaching for 42 d | CFL = ~9 × 10−3 cm−1 | - | [47] |
GGBFS/Wollastonite | NaOH | Cs* | 32% | Leaching for 5 days | CFL = 0.152 cm−1 | - | [51] |
Sr* | CFL = 9.72 × 10−4 cm−1 | ||||||
B/wood ash | NaOH | Sr | - | Leaching for 28 Day | NLR = 10−6 gm−2/d | The clay-based geopolymer shows better Sr immobilization than that of OPC. | [54] |
FA/Slag/MK | - | Sr | - | - | CFL = 1.1 × 10−3 cm−1 | FA/slag/MK has improved immobilization performance over that of OPC. | [55] |
FA | Sodium silicate and aOH | CsNO3 | 2 | ANSI/ANS 16 for 40 days | Li = 8.7–10.7 | - | [105] |
Geopolymer | Curing Conditions | Type of Simulant/Waste | Waste Loading (wt%) | σ (MPa) | Ref. | |
---|---|---|---|---|---|---|
Temp. (°C) | Duration (Day) | |||||
MK | 25 | 7 | Ba-loaded sludge waste | 40.0 | 49.6 | [35] |
60 | 2 | Cs(OH) solution | 47.7 | 65.8 | [46] | |
25 | 28 | Sr-loaded zeolite | 29.4 | 37.6 | [57] | |
25 | 28 | Na2SeO3powder | 2.45 | 30.0 | [58] | |
20 | 30 | Nuclear graphite | 10.0 | 22.0 | [60] | |
RT | 28 | Co-loaded bentonite | 15.5–25 | 9.5 ± 0.9 | [62] | |
Clay-based | RT | 28 | Sr-loaded wood ash | 57.0 | 12.7 | [54] |
BFS | RT | 28 | Cs,Sr-loaded ion-exchange resins | 5–45 | 10.2–22 | [51] |
FA/SF | 60 | 28 | 133Cs+solution | 2.0 | 57.2 | [47] |
MK/BFS | RT | 28 | Cs,Sr-loaded ion-exchange resins | 12.0 | 13.6 | [50] |
25 | 28 | Sr(NO3)2 powder | 9.0 | 24.5 | [55] | |
FA/slag/Mk | RT | 28 | Re-loaded waste solution | 26.8 | 57.5–121.7 | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillip, E.; Choo, T.F.; Khairuddin, N.W.A.; Abdel Rahman, R.O. On the Sustainable Utilization of Geopolymers for Safe Management of Radioactive Waste: A Review. Sustainability 2023, 15, 1117. https://doi.org/10.3390/su15021117
Phillip E, Choo TF, Khairuddin NWA, Abdel Rahman RO. On the Sustainable Utilization of Geopolymers for Safe Management of Radioactive Waste: A Review. Sustainability. 2023; 15(2):1117. https://doi.org/10.3390/su15021117
Chicago/Turabian StylePhillip, Esther, Thye Foo Choo, Nurul Wahida Ahmad Khairuddin, and Rehab O. Abdel Rahman. 2023. "On the Sustainable Utilization of Geopolymers for Safe Management of Radioactive Waste: A Review" Sustainability 15, no. 2: 1117. https://doi.org/10.3390/su15021117
APA StylePhillip, E., Choo, T. F., Khairuddin, N. W. A., & Abdel Rahman, R. O. (2023). On the Sustainable Utilization of Geopolymers for Safe Management of Radioactive Waste: A Review. Sustainability, 15(2), 1117. https://doi.org/10.3390/su15021117