Development of a Portable and Sensitive CO2 Measurement Device with NDIR Sensor Clusters and Minimizing Water Vapor Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Self-Developed CO2 Device
2.2. Data Acquisition
2.3. Interference from Humidity
2.4. Sensors and Reference Instrument Detect in Ambient Air
3. Results and Discussion
3.1. RH Effects
3.2. Correction with RH
3.3. Comparison with Reference Instrument
3.4. Improving Performance by Clustering Sensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ebi, K.L.; Boyer, C.; Ogden, N.; Paz, S.; Berry, P.; Campbell-Lendrum, D.; Hess, J.J.; Woodward, A. Burning embers: Synthesis of the health risks of climate change. Environ. Res. Lett. 2021, 16, 044042. [Google Scholar] [CrossRef]
- Henninger, S.; Kuttler, W. Methodology for mobile measurements of carbon dioxide within the urban canopy layer. Clim. Res. 2007, 34, 161–167. [Google Scholar] [CrossRef]
- Babenhauserheide, A.; Hase, F.; Morino, I. Net CO2 fossil fuel emissions of Tokyo estimated directly from measurements of the Tsukuba TCCON site and radiosondes. Atmos. Meas. Technol. 2020, 13, 2697–2710. [Google Scholar] [CrossRef]
- Gemery, P.A.; Trolier, M.; White, J.W.C. Oxygen isotope exchange between carbon dioxide and water following atmospheric sampling using glass flasks. J. Geophys. Res. Atmos. 1996, 101, 14415–14420. [Google Scholar] [CrossRef]
- Green, O.; Finkelstein, P.; Rivero-Crespo, M.A.; Lutz, M.D.R.; Bogdos, M.K.; Burger, M.; Leroux, J.C.; Morandi, B. Activity-Based Approach for Selective Molecular CO2 Sensing. J. Am. Chem. Soc. 2022, 144, 8717–8724. [Google Scholar] [CrossRef]
- Morozov, O.; Tunakova, Y.; Hussein, S.; Shagidullin, A.; Agliullin, T.; Kuznetsov, A.; Valeev, B.; Lipatnikov, K.; Anfinogentov, V.; Sakhabutdinov, A. Addressed Combined Fiber-Optic Sensors as Key Element of Multisensor Greenhouse Gas Monitoring Systems. Sensors 2022, 22, 4827. [Google Scholar] [CrossRef]
- Buchwitz, M.; Reuter, M.; Noel, S.; Bramstedt, K.; Schneising, O.; Hilker, M.; Andrade, B.F.; Bovensmann, H.; Burrows, J.P.; Di Noia, A.; et al. Can a regional-scale reduction of atmospheric CO2 during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO2 retrievals. Atmos. Meas. Technol. 2021, 14, 2141–2166. [Google Scholar] [CrossRef]
- Miller, S.M.; Michalak, A.M. The impact of improved satellite retrievals on estimates of biospheric carbon balance. Atmos. Chem. Phys. 2020, 20, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Chevallier, F.; Ciais, P.; Broquet, G.; Wang, Y.L.; Lian, J.H.; Zhao, Y.H. Observing carbon dioxide emissions over China’s cities and industrial areas with the Orbiting Carbon Observatory-2. Atmos. Chem. Phys. 2020, 20, 8501–8510. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.O.; Ryoo, S.B.; Lee, J.S.; Lee, G.W. The measurement of atmospheric CO2 at KMA GAW regional stations, its characteristics, and comparisons with other East Asian sites. Atmos. Chem. Phys. 2019, 19, 2149–2163. [Google Scholar] [CrossRef]
- Li, Z.B.; Ma, H.L.; Cao, Z.S.; Sun, M.G.; Huang, Y.B.; Zhu, W.Y.; Liu, Q. High-sensitive off-axis integrated cavity output spectroscopy and its measurement of ambient CO2 at 2 μm. Acta Phys. Sin. 2016, 65, 053301. [Google Scholar]
- Xin, F.X.; Li, J.; Guo, J.J.; Yang, D.W.; Wang, Y.; Tang, Q.H.; Liu, Z.S. Measurement of Atmospheric CO2 Column Concentrations Based on Open-Path TDLAS. Sensors 2021, 21, 1722. [Google Scholar] [CrossRef] [PubMed]
- Chandra, N.; Patra, P.K.; Niwa, Y.; Ito, A.; Iida, Y.; Goto, D.; Morimoto, S.; Kondo, M.; Takigawa, M.; Hajima, T.; et al. Estimated regional CO2 flux and uncertainty based on an ensemale of atmospheric CO2 inversions. Atmos. Chem. Phys. 2022, 22, 9215–9243. [Google Scholar] [CrossRef]
- Huang, B.B.; Lu, F.; Wang, X.K.; Wu, X.; Zhang, L.; Ouyang, Z.Y. Ecological restoration and rising CO2 enhance the carbon sink, counteracting climate change in northeastern China. Environ. Res. Lett. 2022, 17, 014002. [Google Scholar] [CrossRef]
- Paris, J.D.; Riandet, A.; Bourtsoukidis, E.; Delmotte, M.; Berchet, A.; Williams, J.; Ernle, L.; Tadic, I.; Harder, H.; Lelieveld, J. Shipborne measurements of methane and carbon dioxide in the Middle East and Mediterranean areas and the contribution from oil and gas emissions. Atmos. Chem. Phys. 2021, 21, 12443–12462. [Google Scholar] [CrossRef]
- Yue, X.; Liao, H.; Wang, H.J.; Zhang, T.Y.; Unger, N.; Sitch, S.; Feng, Z.Z.; Yang, J. Pathway dependence of ecosystem responses in China to 1.5 degrees C global warming. Atmos. Chem. Phys. 2020, 20, 2353–2366. [Google Scholar] [CrossRef] [Green Version]
- Struzik, M.; Garbayo, I.; Pfenninger, R.; Rupp, J.L.M. A Simple and Fast Electrochemical CO2 Sensor Based on Li7La3Zr2O12 for Environmental Monitoring. Adv. Mater. 2018, 30, 1804098. [Google Scholar] [CrossRef]
- Aono, H.; Sadaoka, Y.; Montanaro, L.; Di Bartolomeo, E.; Traversa, E. Humidity influence on the CO2 response of potentiometric sensors based on NASICON pellets with new compositions, Na3Zr2-(x/4)Si2-xP1+xO12(x=1.333). J. Am. Ceram. Soc. 2002, 85, 585–589. [Google Scholar] [CrossRef]
- Obata, K.; Kumazawa, S.; Shimanoe, K.; Miura, N.; Yamazoe, N. Potentiometric sensor based on NASICON and In2O3 for detection of CO2 at room temperature-modification with foreign substances. Sens. Actuators B 2001, 76, 639–643. [Google Scholar] [CrossRef]
- Vafaei, M.; Amini, A.; Siadatan, A. Breakthrough in CO2 Measurement With a Chamberless NDIR Optical Gas Sensor. IEEE Trans. Instrum. Meas. 2020, 69, 2258–2268. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, H.; Li, J.; Wan, H.; Guo, Q.; Zhu, H.; Liu, H.; Yi, F. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 2020, 11, 5245. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Roels, J.; Baets, R.; Roelkens, G. On-Chip Non-Dispersive Infrared CO2 Sensor Based on an Integrating Cylinder. Sensors 2019, 19, 4260. [Google Scholar] [CrossRef] [Green Version]
- De Azevedo, G.B.H.; Doyle, B.; Fiebrich, C.A.; Schvartzman, D. Low-complexity methods to mitigate the impact of environmental variables on low-cost UAS-based atmospheric carbon dioxide measurements. Atmos. Meas. Technol. 2022, 15, 5599–5618. [Google Scholar] [CrossRef]
- Vincent, T.A.; Gardner, J.W. A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels. Sens. Actuators B 2016, 236, 954–964. [Google Scholar] [CrossRef] [Green Version]
- Han, J.H.; Han, S.W.; Kim, S.M.; Pak, J.J.; Moon, S. High Detection Performance of NDIR CO2 Sensor Using Stair-Tapered Reflector. IEEE Sens. J. 2013, 13, 3090–3097. [Google Scholar] [CrossRef]
- Hussain, H.; Kim, J.; Yi, S. Characteristics and Temperature Compensation of Non-Dispersive Infrared (NDIR) Alcohol Gas Sensors According to Incident Light Intensity. Sensors 2018, 18, 2911. [Google Scholar] [CrossRef] [Green Version]
- Dinh, T.V.; Choi, I.Y.; Son, Y.S.; Kim, J.C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sens. Actuators B 2016, 231, 529–538. [Google Scholar] [CrossRef]
- Jia, X.; Roels, J.; Baets, R.; Roelkens, G. A Miniaturised, Fully Integrated NDIR CO2 Sensor On-Chip. Sensors 2021, 21, 5347. [Google Scholar] [CrossRef] [PubMed]
- Arzoumanian, E.; Vogel, F.R.; Bastos, A.; Gaynullin, B.; Laurent, O.; Ramonet, M.; Ciais, P. Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO2 monitoring in urban areas. Atmos. Meas. Technol. 2019, 12, 2665–2677. [Google Scholar] [CrossRef] [Green Version]
- Joe, H.E.; Yun, H.; Jo, S.H.; Jun, M.B.G.; Min, B.K. A Review on Optical Fiber Sensors for Environmental Monitoring. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 173–191. [Google Scholar] [CrossRef]
- K30 10,000ppm CO2 Sensor. Available online: https://www.co2meter.com/products/k-30-co2-sensor-module (accessed on 14 December 2022).
- Pang, X.; Shaw, M.D.; Gillot, S.; Lewis, A.C. The impacts of water vapour and co-pollutants on the performance of electrochemical gas sensors used for air quality monitoring. Sens. Actuators B 2018, 266, 674–684. [Google Scholar] [CrossRef]
- Chaterjee, S.; Krupadam, R.J. Amino acid-imprinted polymers as highly selective CO2 capture materials. Environ. Chem. Lett. 2019, 17, 465–472. [Google Scholar] [CrossRef]
- Vafaei, M.; Amini, A. Chamberless NDIR CO2 Sensor Robust against Environmental Fluctuations. ACS Sens. 2021, 6, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.R.; Edwards, P.M.; Evans, M.J.; Lee, J.D.; Shaw, M.D.; Squires, F.; Wilde, S.; Lewis, A.C. Clustering approaches to improve the performance of low cost air pollution sensors. Faraday Discuss. 2017, 200, 621–637. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.R.; Edwards, P.M.; Ivatt, P.D.; Lee, J.D.; Squires, F.; Dai, C.L.; Peltier, R.E.; Evans, M.J.; Sun, Y.L.; Lewis, A.C. An improved low-power measurement of ambient NO2 and O3 combining electrochemical sensor clusters and machine learning. Atmos. Meas. Technol. 2019, 12, 1325–1336. [Google Scholar] [CrossRef]
RH | 0% | 35% | 50% | 65% | 80% |
---|---|---|---|---|---|
Flow (mL/min) | 4000 | 4000 | 4600 | 4500 | 5500 |
Water volume (mL) | 0 | 10 | 10 | 27 | 125 |
Number of Sensors | 1# | 2# | 3# | 4# | 5# | 6# |
---|---|---|---|---|---|---|
Relative deviation (before correction) | 6.12% | 6.38% | 6.91% | 5.11% | 4.84% | 4.25% |
Relative deviation (after correction) | 2.01% | 3.37% | 2.46% | 1.89% | 3.27% | 3.45% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Pang, X.; Xing, B.; Shang, Q.; Wu, H.; Lu, Y.; Wu, H.; Lyu, Y.; Li, J.; Wang, B.; et al. Development of a Portable and Sensitive CO2 Measurement Device with NDIR Sensor Clusters and Minimizing Water Vapor Impact. Sustainability 2023, 15, 1533. https://doi.org/10.3390/su15021533
Wu Z, Pang X, Xing B, Shang Q, Wu H, Lu Y, Wu H, Lyu Y, Li J, Wang B, et al. Development of a Portable and Sensitive CO2 Measurement Device with NDIR Sensor Clusters and Minimizing Water Vapor Impact. Sustainability. 2023; 15(2):1533. https://doi.org/10.3390/su15021533
Chicago/Turabian StyleWu, Zhentao, Xiaobing Pang, Bo Xing, Qianqian Shang, Hai Wu, Yu Lu, Haonan Wu, Yan Lyu, Jingjing Li, Baozhen Wang, and et al. 2023. "Development of a Portable and Sensitive CO2 Measurement Device with NDIR Sensor Clusters and Minimizing Water Vapor Impact" Sustainability 15, no. 2: 1533. https://doi.org/10.3390/su15021533
APA StyleWu, Z., Pang, X., Xing, B., Shang, Q., Wu, H., Lu, Y., Wu, H., Lyu, Y., Li, J., Wang, B., Ding, S., Chen, D., & Chen, J. (2023). Development of a Portable and Sensitive CO2 Measurement Device with NDIR Sensor Clusters and Minimizing Water Vapor Impact. Sustainability, 15(2), 1533. https://doi.org/10.3390/su15021533