Water Erosion Risk Analysis in the Arribes del Duero Natural Park (Spain) Using RUSLE and GIS Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.3. Potential Erosion Risk Cartography
2.3.1. Rain Erosivity Factor (R)
2.3.2. Soil Erodibility Factor (K)
2.3.3. Topographic Factor (LS)
2.4. Real Erosion Risk Cartography
2.4.1. Plant Cover Factor (C)
2.4.2. Soil Conservation Practices Factor (P)
3. Results and Discussions
3.1. RUSLE Factor Analysis
3.2. Potential Erosion Risk Cartography
3.3. Real Erosion Risk Cartography
3.4. Erosion Validation and Mitigation: Land Uses Erosion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimentel, D. Soil erosión: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Parveen, R.; Kumar, U. Integrated Approach of Universal Soil Loss Equation (USLE) and Geographical Information System (GIS) for Soil Loss Risk Assessment in Upper South Koel Basin, Jharkhand. J. Geogr. Inf. Syst. 2012, 4, 26324. [Google Scholar] [CrossRef] [Green Version]
- Bakker, M.M.; Govers, G.; Kosmas, C.; Vanacker, V.; Van Oost, K.; Rounsevell, M. Soil erosión as a driver of land-use change. Agric. Ecosyst. Environ. 2005, 105, 467–481. [Google Scholar] [CrossRef]
- Ighodaro, I.D.; Lategan, F.S.; Yusuf, S.F. The impact of soil erosión on agricultural potential and performance of Sheshegu community farmers in the Eastern Cape of South Africa. J. Agric. Sci. 2013, 5, 140. [Google Scholar] [CrossRef] [Green Version]
- Littleboy, M.; Freebairn, D.M.; Hammer, G.L.; Silburn, D.M. Impact of soil erosión on production in cropping systems, II. Simulation of production and erosión risks for a wheat cropping system. Soil Res. 1992, 30, 775–788. [Google Scholar] [CrossRef]
- Angima, S.D.; Stott, D.E.; O’neill, M.K.; Ong, C.K.; Weesies, G.A. Soil erosión prediction using RUSLE for central Kenyan highland conditions. Agric. Ecosyst. Environ. 2003, 97, 295–308. [Google Scholar] [CrossRef]
- Biesemans, J.; Van Meirvenne, M.; Gabriels, D. Extending the RUSLE with the Monte Carlo error propagation technique to predict long-term average off-site sediment accumulation. J. Soil Water Conserv. 2000, 55, 35–42. [Google Scholar]
- Food and Agriculture Organization of the Unites Nations. 2015 Food and Agriculture Organization of the Unites Nations Soil Change: Impacts and Responses; FAO: Rome, Italy, 2015; ISBN 978-92-5-109004-6. [Google Scholar]
- Hao, H.X.; Wang, J.G.; Guo, Z.L.; Hua, L. Water erosión processes and dynamic changes of sediment size distribution under the combined effects of rainfall and overland flow. Catena 2019, 173, 494–504. [Google Scholar] [CrossRef]
- Nearing, M.A.; Yin, S.Q.; Borrelli, P.; Polyakov, V.O. Rainfall erosivity: An historical review. Catena 2017, 157, 357–362. [Google Scholar] [CrossRef]
- Pereira, T.S.R.; dos Santos, K.A.; da Silva, B.F.; Formiga, K.T.M. Determinação e espacialização da perda de solo da bacia hidrográfica do Córrego Cascavel, Goiás. Rev. Geográfica Acadêmica 2015, 9, 76–93. [Google Scholar] [CrossRef] [Green Version]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosión Losses: A Guide to Conservation Planning (No. 537); Department of Agriculture, Science and Education Administration: Washinton DC, USA, 1978. [Google Scholar]
- Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Prediction of spatial soil loss impacted by long-term land-use/land-cover change in a tropical watershed. Geosci. Front. 2019, 10, 389–403. [Google Scholar] [CrossRef]
- Nascimento, D.T.F.; Romão, P.D.A.; Sales, M.M. Erosividade e Erodibilidade ao Longo de Dutovia Cortando os Estados de Minas Gerais e Goiás–Brasil. 2018. Available online: http://repositorio.bc.ufg.br/handle/ri/17285 (accessed on 22 November 2022).
- Zhou, W.; Wu, B. Evaluación de la erosión del suelo y la tasa de entrega de sedimentos utilizando sensores remotos y SIG: Un estudio de caso de la cuenca del río Chaobaihe río arriba, en el norte de China. Rev. Int. Investig. Sedimentos 2008, 23, 167–173. [Google Scholar]
- Buttafuoco, G.; Conforti, M.; Aucelli, P.P.C.; Robustelli, G.Y.; Scarciglia, F. Evaluación de la incertidumbre espacial en el mapeo del factor de erosiónabilidad del suelo mediante simulación estocástica geoestadística. Cienc. Ambient. Tierra 2012, 66, 1111–1125. [Google Scholar]
- Prasannakumar, V.; Vijith, H.; Abinod, S.G. NJGF Estimación del riesgo de erosión del suelo dentro de una pequeña subcuenca montañosa en Kerala, India, utilizando la Ecuación Universal Revisada de Pérdida de Suelo (RUSLE) y tecnología de geoinformación. Front. Geocienc. 2012, 3, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.F.; de Oliveira, E.F.; Mioto, C.L.; Paranhos Filho, A.C. Aplicação da Equação Universal de Perda do Solo (USLE) em Softwares Livres e Gratuitos. Anuário Inst. Geociências 2015, 38, 170–179. [Google Scholar] [CrossRef]
- Durães, M.F.; Mello, C.R.D. Distribuição espacial da erosão potencial e atual do solo na Bacia Hidrográfica do Rio Sapucaí, MG. Eng. Sanitária Ambient. 2016, 21, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Amore, E.; Modica, C.; Nearing, M.A.; Santoro, V.C. Scale effect in USLE and WEPP application for soil erosión computation from three Sicilian basins. J. Hydrol. 2004, 293, 100–114. [Google Scholar] [CrossRef]
- Jena, S.K.; Kumar, A.; Brahmanand, P.S.; Mishra, A.; Sahoo, N.; Patil, D.U. Design and development of rubber dams for watersheds in the climate change scenario. In Climate Change Modelling, Planning and Policy for Agriculture; Springer: New Delhi, India, 2015; pp. 93–98. [Google Scholar]
- Singh, G.P. RK Evaluación basada en celdas de cuadrícula del potencial de erosión del suelo para la identificación de áreas críticas propensas a la erosión utilizando USLE, GIS y sensores remotos: Un estudio de caso en la cuenca de Kapgari, India. Investig. Int. Conserv. Suelos Aguas 2017, 5, 202–211. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosión Losses from Cropland East of the Rocky Mountains; Department of Agriculture, Science and Education Administration: Washinton, DC, USA, 1965. [Google Scholar]
- Lufafa, A.; Tenywa, M.M.; Isabirye, M.; Majaliwa, M.J.G.; Woomer, P.L. Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model. Agric. Syst. 2003, 76, 883–894. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.A.A.; Baartman, J.; Ballabio, C.; Panagos, P. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 2021, 780, 146494. [Google Scholar] [CrossRef] [PubMed]
- Bagarello, V.; Di Stefano, C.; Ferro, V.; Pampalone, V. Predicting maximum annual values of event soil loss by USLE-type models. Catena 2017, 155, 10–19. [Google Scholar] [CrossRef]
- Beskow, S.; Mello, C.R.; Norton, L.D.; Curi, N.; Viola, M.R.; Avanzi, J.C. Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 2009, 79, 49–59. [Google Scholar] [CrossRef]
- Yue, T.; Xie, Y.; Yin, S.; Yu, B.; Miao, C.; Wang, W. Effect of time resolution of rainfall measurements on the erosivity factor in the USLE in China. Int. Soil Water Conserv. Res. 2020, 8, 373–382. [Google Scholar] [CrossRef]
- Gericke, A.; Kiesel, J.; Deumlich, D.; Venohr, M. Recent and future changes in rainfall erosivity and implications for the soil erosión risk in brandenburg, ne germany. Water 2019, 11, 904. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Shan, L.; Liu, X.; Yang, Q.; Cruse, R.M.; Liu, B.; Pang, G. Impacts of horizontal resolution and downscaling on the USLE LS factor for different terrains. Int. Soil Water Conserv. Res. 2020, 8, 363–372. [Google Scholar] [CrossRef]
- dos Santos Alves, W.; Martins, A.P.; Morais, W.A.; Pôssa, É.M.; Castro, R.M.; de Moura, D.M.B. USLE modelling of soil loss in a Brazilian cerrado catchment. Remote Sens. Appl. Soc. Environ. 2022, 27, 100788. [Google Scholar]
- Qin, W.; Guo, Q.; Cao, W.; Yin, Z.; Yan, Q.; Shan, Z.; Zheng, F. A new RUSLE slope length factor and its application to soil erosión assessment in a Loess Plateau watershed. Soil Tillage Res. 2018, 182, 10–24. [Google Scholar] [CrossRef]
- Graña, A.M.; Goy, J.L.; Forteza, J.; Zazo, C.; Barrera, I.; González, F.M. Riesgo de pérdida de suelo en los espacios naturales de Batuecas-S. Francia y Quilamas (Salamanca, España). In I Simposio Nacional sobre Control dela Erosión y Degradación del Suelo; Bienes, R., Marqués, M.J., Eds.; Aplicación cartográfica mediante SIG. Libro; Universidad Autónoma de: Madrid, Spain, 2003; pp. 593–596. [Google Scholar]
- Martínez-Graña, A.M.; Sánchez Martín, N.; Goy, J.L.; Zazo, C.; Baile, L.; Forteza, J. Cartografía de Riesgo de Erosión del ENP “Las Batuecas-Sierra de Francia y Quilamas (Salamanca, España)” Mediante Técnicas de Teledetección y SIG. 2005. Available online: http://hdl.handle.net/10261/250177 (accessed on 22 November 2022).
- Fistikoglu, O.; Harmancioglu, N.B. Integration of GIS with USLE in assessment of soil erosion. Water Resour. Manag. 2002, 16, 447–467. [Google Scholar] [CrossRef]
- Gunawan, G.; Sutjiningsih, D.; Soeryantono, H.; Sulistioweni, S. Soil erosión estimation based on GIS and remote sensing for supporting integrated water resources conservation management. Int. J. Tecnol. 2013, 4, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Le Hung, T.; Tuyen, V.D. Evaluation of soil erosión risk using remote sensing and GIS data (A case study: Lang Chanh district, Thanh Hoa province, Vietnam). Becmнuк Aгpapнoй Hayкu 2015, 55, 57–64. [Google Scholar]
- Ali, S.A.; Hagos, H. Estimation of soil erosión using USLE and GIS in Awassa Catchment, Rift valley. Cent. Ethiop. Geoderma Reg. 2016, 7, 159–166. [Google Scholar] [CrossRef]
- Belasri, A.; Lakhouili, A. Estimation of soil erosión risk using the universal soil loss equation (USLE) and geo-information technology in Oued El Makhazine Watershed, Morocco. J. Geogr. Inf. Syst. 2016, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Graña, A.; Carrillo, J.; Lombana, L.; Criado, M.; Palacios, C. Mapping the Risk of Water Soil Erosión in Larrodrigo (Salamanca, Spain) Using the RUSLE Model and A-DInSAR Technique. Agronomy 2021, 11, 2120. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Goy, J.L.; Cimarra, C. 2D to 3D geologic map transformation using virtual globes, flight simulators, and their applications in the analysis of geodiversity in natural areas. Environ. Earth Sci. 2015, 73, 8023–8034. [Google Scholar] [CrossRef]
- Martínez-Graña, A.; Goy, J.L.; González-Delgado, J.A.; Cruz, R.; Sanz, J.; Bustamante, I. 3D Virtual itinerary in the Geological Heritage from Natural Parks in Salamanca-Ávila-Cáceres, Spain. Sustainability 2019, 11, 144. [Google Scholar] [CrossRef]
- Marino Alfonso, J.L.; Poblete Piedrabuena, M.A.; Beato Bergua, S. Paisajes de Interés Natural (PIN) en los Arribes del Duero (Zamora, España). Investig. Geográficas 2020, 73, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Graña, A.M.M.; Goy, J.L.G.; Cruz, R.; Bonnin, J.F.; Zazo, C.; Barrera, I. Cartografía del riesgo de erosión hídrica mediante sig en los espacios naturales de candelario–Gredos (Salamanca, Avila). Edafología 2006, 13, 11–20. [Google Scholar]
- de Agricultura, M.; Alimentacion, P. Sistema de Información Geográfica de Datos Agrarios. Consultado el 20 de Octubre del 2022. Disponible en. Available online: https://sig.mapama.gob.es/siga/ (accessed on 22 November 2022).
- Arnoldo, H.M.J. Una Aproximación del Factor de Lluvia en la Ecuación Universal de Pérdida de Suelo. Una Aproximación del Factor de Lluvia en la Ecuación Universal de Pérdida de Suelo; John Wiley and Sons: Madrid, Spain, 1980; pp. 127–132. [Google Scholar]
- Instituto para la Conservación de la Naturaleza (ICONA). Mapas de Estados Erosivos. In Cuenca Hidrográfica del Duero; ICONA: Madrid, Spain, 1990; 96p. [Google Scholar]
- Zhang, H.; Yang, Q.; Li, R.; Liu, Q.; Moore, D.; He, P.; Geissen, V. Ampliación de un procedimiento GIS para calcular el factor LS de la ecuación RUSLE. Inf. Y Geocienc. 2013, 52, 177–188. [Google Scholar]
- Moore, I.D.; Burch, G.J. Base física del factor longitud-pendiente en la ecuación universal de pérdida de suelo. Soil Sci. Soc. Am. J. 1986, 50, 1294–1298. [Google Scholar] [CrossRef]
- Wischmeier, W.H. New developments in estimating water erosión. In Proceedings of the 29th Annual Meeting of the Soil Conservation Society of America, Ankeney, IA, USA, 4–6 May 1974; pp. 179–186. [Google Scholar]
- Merchán, L.; Martínez-Graña, A.M.; Egido, J.A.; Criado, M. Geomorphoedaphic Itinerary of Arribes Del Duero (Spain). Sustainability 2022, 14, 7066. [Google Scholar] [CrossRef]
Types of Erosion | Loss of Soil (Tm/ha/year) |
---|---|
Very low erosion and tolerable soil loss | <5 |
Low erosion and tolerable soil losses | 5.1–10 |
Mild erosion level | 10.1–25 |
Moderate erosion level | 25.1–50 |
Severe erosion level | 50.1–100 |
Very severe erosion level | 100.1–200 |
Extreme erosive level | >200 |
Soil Type | K Value |
---|---|
Gleyc luvisols | 0.12 |
Chromic alisols | 0.17 |
Chromic cambisols | 0.19 |
Dystric gleysols | 0.20 |
Eutric cambisols | 0.22 |
Dystric cambisols | 0.24 |
Eutric regosols | 0.28 |
Dystric regosols | 0.38 |
Dystric leptosols | 0.39 |
Lithic leptosols | 0.49 |
Vegetation Cover Type | C Value |
---|---|
Mixed hardwood forests | 0.003 |
Mediterranean scrub | 0.04 |
Riparian forest | 0.09 |
Poplar and banana plantations in production | 0.09 |
Ash groves | 0.09 |
Wild olive groves | 0.18 |
Juniper groves | 0.18 |
Cork oak groves | 0.19 |
Meadows | 0.19 |
Holm oak groves | 0.19 |
Oak groves | 0.19 |
Chestnut groves | 0.22 |
Non wooded | 0.24 |
Mixed conifers | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merchán, L.; Martínez-Graña, A.M.; Alonso Rojo, P.; Criado, M. Water Erosion Risk Analysis in the Arribes del Duero Natural Park (Spain) Using RUSLE and GIS Techniques. Sustainability 2023, 15, 1627. https://doi.org/10.3390/su15021627
Merchán L, Martínez-Graña AM, Alonso Rojo P, Criado M. Water Erosion Risk Analysis in the Arribes del Duero Natural Park (Spain) Using RUSLE and GIS Techniques. Sustainability. 2023; 15(2):1627. https://doi.org/10.3390/su15021627
Chicago/Turabian StyleMerchán, Leticia, Antonio Miguel Martínez-Graña, Pilar Alonso Rojo, and Marco Criado. 2023. "Water Erosion Risk Analysis in the Arribes del Duero Natural Park (Spain) Using RUSLE and GIS Techniques" Sustainability 15, no. 2: 1627. https://doi.org/10.3390/su15021627
APA StyleMerchán, L., Martínez-Graña, A. M., Alonso Rojo, P., & Criado, M. (2023). Water Erosion Risk Analysis in the Arribes del Duero Natural Park (Spain) Using RUSLE and GIS Techniques. Sustainability, 15(2), 1627. https://doi.org/10.3390/su15021627