Robust Nonlinear Adaptive Control for Power Quality Enhancement of PMSG Wind Turbine: Experimental Control Validation
Abstract
:1. Introduction
2. Wind Turbine & PMSG Modeling
2.1. Wind Turbine Modeling
2.2. PMSG Modeling
3. Adaptive Backstepping Model
3.1. Operating Principle
3.1.1. Adaptive Backstepping Control Synthesis
3.1.2. Applying Adaptive Backstepping Control to PMSG
3.2. Non-Adaptive Backstepping Control Applied to PMSG
- -
- Step 1: Mechanical Rotation Speed Controller Design:
- -
- Step 2: Design of the stator current component controller:
- -
- Step 3: Design of the actual control inputs and stability analysis:
3.3. Adaptive Backstepping Control Applied to PMSG
3.4. Parameter Adaptation and Stability Analysis
3.5. Grid Side Converter Control
- -
- : To guarantee the elimination of reactive power, and therefore the transfer of electrical power to the network with a unity power factor.
- -
- : is derived through the regulation of the DC bus voltage to facilitate control of the active power transferred to the electrical network.
4. Experimental Verification
4.1. Description of the Experimental Platform
- ▪
- dSPACE 1104 embedded board enclosed in a computer. This mapping is locked in a computer which ensures the transfer of information between the software and the hardware part.
- ▪
- Host computer containing the Matlab/Simulink environment and ControlDesk.
- ▪
- DS1104 board connection panel.
- ▪
- Voltage level adaptation probe.
- ▪
- Oscilloscope to visualize the different analog signals.
- ▪
- Using the Simulink modeling tool to build the control system.
- ▪
- The simulation of the system to generate the different control results.
- ▪
- Check the algorithm using the TargetLink tool associated with Simulink.
- ▪
- Upload the program in C code to dSPACE embedded Board.
- ▪
- Upload the “file.sdf” in the ControlDesk software to visualize the different signals.
4.2. dSPACE 1104 Digital Processing System
4.3. Results of Verification the Adaptive Backstepping Control
Parameter | Value |
---|---|
DC bus voltage | 5 × 103 V |
DC Bus Capacitor | 20 × 10−3 F |
Filter resistance | 20 × 10−5 Ω |
Filter inductance | 1 × 10−3 H |
Sampling frequency | 10 × 104 Hz |
Grid frequency | 50 Hz |
4.3.1. Performance Test in the Presence of Step Wind
4.3.2. Set Point Tracking Test in the Presence of a Fluctuating Wind
4.3.3. Visualization of Analog Signals on the Oscilloscope
5. Conclusions
- ▪
- The reduced response time attests that the proposed control offers system speed in terms of monitoring electrical and mechanical quantities, even if the machine is of high power and inertia.
- ▪
- Signal ripples are less severe by applying adaptive control, compared to conventional controls for wind conversion system.
- ▪
- Operation with unity power factor is truly ensured through the proposed control. A zero-phase shift between the voltage/current electrical quantities is well-ensured for the electrical energy transmitted to the distribution grid.
- ▪
- An experimental verification by Processor-in-the-loop test of the results obtained through the dSPACE DS1104 embedded board and by the ControlDesk tool are important attributes that confirm the interest and strengths that this control structure can bring to a wind conversion system.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Vw | Wind speed |
Ω | Turbine/Machine rotational speed |
J | Turbine/Machine total moment of inertia |
Friction forces | |
Air power | |
Turbine power captured | |
Air density | |
Turbine rotor surface | |
Cp | Power coefficient |
λ | Tip speed ration |
β | Pitch angle |
Turbine blade radius | |
Generator electromagnetic torque | |
Turbine torque | |
Active generator power | |
Reactive generator power | |
Number of pole pairs | |
Direct/quadrature stator voltage | |
Direct/quadrature stator current | |
Stator resistance | |
Stator cyclic inductors in the d-q plane | |
Rotor flux amplitude | |
Direct/quadrature stator flux amplitude | |
DC link voltage | |
Lyapunov’s candidate function | |
Variable machine error | |
Variable grid error | |
Positif constant | |
System parameter | |
Positive adaptation gain | |
Three-phase current at the inverter output | |
Three-phase grid voltages | |
Filter resistance | |
Filter inductance | |
Active power injected into the grid | |
Reactive power injected into the grid | |
Power factor | |
f | Grid frequency |
Inverter arm switching states |
References
- Yildirir, V.; Rusu, E.; Onea, F. Wind Energy Assessments in the Northern Romanian Coastal Environment Based on 20 Years of Data Coming from Different Sources. Sustainability 2022, 14, 4249. [Google Scholar] [CrossRef]
- Echiheb, F.; Ihedrane, Y.; Bossoufi, B.; Bouderbala, M.; Motahhir, S.; Masud, M.; Aljahdali, S.; ElGhamrasni, M. Robust sliding-Backstepping mode control of a wind system based on the DFIG generator. Sci. Rep. 2022, 12, 11782. [Google Scholar] [CrossRef] [PubMed]
- Rad, N.N.; Bekker, A.; Arashi, M. Enhancing wind direction prediction of South Africa wind energy hotspots with Bayesian mixture modeling. Sci. Rep. 2022, 12, 11442. [Google Scholar] [CrossRef]
- Annual Global Wind Reports 2022. Available online: https://gwec.net/category/annual-global-wind-reports/ (accessed on 12 October 2022).
- Hoxha, B.; Shesho, I.K.; Filkoski, R.V. Analysis of Wind Turbine Distances Using a Novel Techno-Spatial Approach in Complex Wind Farm Terrains. Sustainability 2022, 14, 13688. [Google Scholar] [CrossRef]
- El Mourabit, Y.; Derouich, A.; ElGhzizal, A.; El Ouanjli, N.; Zamzoum, O. Nonlinear Backstepping control of variable speed wind turbine based on permanent magnet synchronous generator. In Proceedings of the International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez, Morocco, 3–4 April 2019; IEEE: New York, NY, USA, 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Bodini, N.; Lundquist, J.K.; Moriarty, P. Wind plants can impact long-term local atmospheric conditions. Sci. Rep. 2021, 11, 22939. [Google Scholar] [CrossRef]
- Salime, H.; Bossoufi, B.; Zine Laabidine, N.; Saady, I.; Elalami, H.; Majout, B.; ELMourabit, Y. FOC-DPC Hybrid Structure of a Wind Energy Conversion System Based on PMSG. In Proceedings of the International Conference on Digital Technologies and Applications, Fez, Morocco, 28–30 January 2022; Springer: Cham, Switzerland, 2022; pp. 693–702. [Google Scholar] [CrossRef]
- Gunturu, U.B.; Hallgren, W. Asynchrony of wind and hydropower resources in Australia. Sci. Rep. 2017, 7, 8818. [Google Scholar] [CrossRef] [Green Version]
- Bossoufi, B.; Karim, M.; Lagrioui, A.; Taoussi, M.; Derouich, A. Observer backstepping control of DFIG-Generators for wind turbines variable-speed: FPGA-based implementation. Renew. Energy 2015, 81, 903–917. [Google Scholar] [CrossRef]
- Rodrigues, G.; Valério, D.; Melicio, R. Controller Development and Experimental Validation for a Vertical Axis Wind Turbine. Sustainability 2022, 14, 13498. [Google Scholar] [CrossRef]
- Weber, J.; Reyers, M.; Beck, C.; Timme, M.; Pinto, J.G.; Witthaut, D.; Schäfer, B. Wind Power Persistence Characterized by Superstatistics. Sci. Rep. 2019, 9, 19971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. A Grey Wolf Optimizer for Optimum Parameters of Multiple PI Controllers of a Grid-Connected PMSG Driven by Variable Speed Wind Turbine. IEEE Access 2018, 6, 44120–44128. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W. Wind energy potential assessment based on wind speed, its direction and power data. Sci. Rep. 2021, 11, 16879. [Google Scholar] [CrossRef] [PubMed]
- El Mourabit, Y.; Derouich, A.; Allouhi, A.; El Ghzizal, A.; El Ouanjli, N.; Zamzoumyes, O. Sustainable production of wind energy in the main Morocco’s sites using permanent magnet synchronous generators. Int. Trans. Electr. Energy Syst. 2020, 30, e12390. [Google Scholar] [CrossRef]
- Asgharnia, A.; Shahnazi, R.; Jamali, A. Performance and robustness of optimal fractional fuzzy PID controllers for pitch control of a wind turbine using chaotic optimization algorithms. ISA Trans. 2018, 79, 27–44. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yu, T.; Shu, H.; Zhang, Y.; Chen, J.; Sang, Y.; Jiang, L. Passivity-based sliding-mode control design for optimal power extrac-tion of a PMSG based variable speed wind turbine. Renew. Energy 2018, 119, 577–589. [Google Scholar] [CrossRef]
- Yang, B.; Zhong, L.; Yu, T.; Shu, H.; Cao, P.; An, N.; Sang, Y.; Jiang, L. PCSMC design of permanent magnetic synchronous generator for maximum power point tracking. IET Gener. Transm. Distrib. 2019, 13, 3115–3126. [Google Scholar] [CrossRef]
- Jafarian, M.; Ranjbar, A.M. Fuzzy modeling techniques and artificial neural networks to estimate annual energy output of a wind turbine. Renew. Energy 2010, 35, 2008–2014. [Google Scholar] [CrossRef]
- Siahkali, H.; Vakilian, M. Fuzzy generation scheduling for a generation company (GenCo) with large scale wind farms. Energy Convers. Manag. 2010, 51, 1947–1957. [Google Scholar] [CrossRef]
- Calderaro, V.; Galdi, V.; Piccolo, A.; Siano, P. A fuzzy controller for maximum energy extraction from variable speed wind power generation systems. Electr. Power Syst. Res. 2008, 78, 1109–1118. [Google Scholar] [CrossRef]
- El Mourabit, Y.; Derouich, A.; El Ghzizal, A.; Zamzoum, O. Dynamic modeling and control of a wind turbine with MPPT control connected to the grid by using PMSG. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Morse, A.S.; Feurer, A. Adaptive control of single-input-single-ouput linear systems. IEEE Trans. Autom. Control 1978, 23, 557–569. [Google Scholar]
- Sussmann, H.J.; Kokotovic, V. A positive real condition for global stabilization of nonlinear systems. Syst. Control Lett. 1989, 13, 125–133. [Google Scholar]
- Tsinias, J. Sufficient lyapunov-like conditions for stabilization. Math. Control Signals Syst. 1989, 2, 343–357. [Google Scholar] [CrossRef]
- KanellaKopoulos, I.; Kokotovic, P.V.; Morse, A.S. Systematic Designof Adaptive Controllers for Feedback Linearizable Systems. IEEE Trans. Onautom. Control 1991, 36, 1241–1253. [Google Scholar] [CrossRef] [Green Version]
- Freeman, R.A.; Kokotovic, P.V. A New Lyapunov Function for the Backstepping Design of ’Softer’ Robust Nonlinear Control Laws; Technical report no. CCEC-92-0520, Center for Control Engineering and Computation; University of California, Santa Barbara: Santa Barbara, CA, USA, 1992. [Google Scholar]
- Bossoufi, B.; Karim, M.; Taoussi, M.; Alami Aroussi, H.; Bouderbala, M.; Motahhir, S.; Camara, M.B. DSPACE-based implementation for observer backstepping power control of DFIG wind turbine. IET Electr. Power Appl. 2020, 14, 2395–2403. [Google Scholar] [CrossRef]
- Youness, E.M.; Aziz, D.; Abdelaziz, E.G.; Jamal, B.; Najib, E.O.; Othmane, Z.; Khalid, M.; Bossoufi, B. Implementation and validation of backstepping control for PMSG wind turbine using dSPACE controller board. Energy Rep. 2019, 5, 807–821. [Google Scholar] [CrossRef]
- Bossoufi, B.; Karim, M.; Lagrioui, A. MATLAB & Simulink simulation with FPGA Based Implementation adaptative and not adaptative backstepping nonlinear control of a permanent magnet synchronous machine drive. WSEAS Trans. Syst. Control 2014, 9, 86–100. [Google Scholar]
- El Mourabit, Y.; Derouich, A.; El Ghzizal, A.; El Ouanjli, N.; Zamzoum, O. Nonlinear backstepping control for PMSG wind turbine used on the real wind profile of the Dakhla-Morocco city. Int. Trans. Electr. Energy Syst. 2020, 30, e12297. [Google Scholar] [CrossRef]
- Card Presentation «DSPACE DS 1104». Available online: www.dSPACE.com (accessed on 4 June 2022).
Generator | Wind Turbine | ||||
---|---|---|---|---|---|
Parameters | Symbol | Values | Parameters | Symbol | Values |
Power Generator | Pnom | 1.5 MW | Radius of the turbine blade | R | 55 m |
Pole number | p | 72 | Turbine and generator Moment | J | 10,000 N.m |
Stator Resistance | Rs | 6.25 × 10−3 Ω | Specific density of air | ρ | 1.22 kg/m3 |
d-axis inductance | Ld | 4.229 × 10−3 H | |||
q-axis inductance | Lq | 4.229 × 10−3 H | |||
Generator rotor flux | ψf | 11.1464 Wb | |||
Coefficient of friction | fc | 0 N.m.s/rad |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salime, H.; Bossoufi, B.; El Mourabit, Y.; Motahhir, S. Robust Nonlinear Adaptive Control for Power Quality Enhancement of PMSG Wind Turbine: Experimental Control Validation. Sustainability 2023, 15, 939. https://doi.org/10.3390/su15020939
Salime H, Bossoufi B, El Mourabit Y, Motahhir S. Robust Nonlinear Adaptive Control for Power Quality Enhancement of PMSG Wind Turbine: Experimental Control Validation. Sustainability. 2023; 15(2):939. https://doi.org/10.3390/su15020939
Chicago/Turabian StyleSalime, Hassna, Badre Bossoufi, Youness El Mourabit, and Saad Motahhir. 2023. "Robust Nonlinear Adaptive Control for Power Quality Enhancement of PMSG Wind Turbine: Experimental Control Validation" Sustainability 15, no. 2: 939. https://doi.org/10.3390/su15020939
APA StyleSalime, H., Bossoufi, B., El Mourabit, Y., & Motahhir, S. (2023). Robust Nonlinear Adaptive Control for Power Quality Enhancement of PMSG Wind Turbine: Experimental Control Validation. Sustainability, 15(2), 939. https://doi.org/10.3390/su15020939