Is the Load Capacity Curve Hypothesis Valid for the Top Ten Tourism Destinations?
Abstract
:1. Introduction
2. Literature Review
3. Data, Model, and Methodology
3.1. Data and Model
Variables | Symbol | Method of Calculation | Sources |
---|---|---|---|
Load capacity factor | LCF | Biocapacity/ecological footprint. | Global Footprint Network [42] |
Ecological footprint | EF | Ecological footprint refers to the negative impact of human activities on biologically productive land and water areas (global hectares). | Global Footprint Network [42] |
Carbon dioxide emissions | CO2 | Carbon emissions refer to carbon dioxide from cement production, fossil fuel combustion, and solid, gaseous, and gaseous fuel consumption (metric tons per capita). | World Bank [14] |
Gross domestic product | GDP | Gross domestic product is calculated by subtracting subsidies not included in the production process from the sum of gross value added and all product taxes of all producers located in a country (per capita, constant 2015 USD). | World Bank [14] |
International tourist arrivals | TOUR | International inbound tourists refer to the number of people who have traveled to a country other than their country of residence for a period not exceeding 12 months (billion people) | World Bank [14] |
Financial development | FD | Financial development index, which integrates financial institutions and financial markets in terms of depth, access, and efficiency. (Takes a value between 0 and 1) | IMF [43] |
3.2. Methodology
3.2.1. LM Bootstrap Panel Cointegration Test
3.2.2. Cross-Sectionally Augmented ARDL (CS-ARDL)
4. Empirical Results
5. Conclusions and Policy Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solarin, S.A.; Bello, M.O. Persistence of policy shocks to an environmental degradation index: The case of ecological footprint in 128 developed and developing countries. Ecol. Indic. 2018, 89, 35–44. [Google Scholar] [CrossRef]
- Wu, M.; Wei, Y.; Lam, P.T.; Liu, F.; Li, Y. Is urban development ecologically sustainable? Ecological footprint analysis and prediction based on a modified artificial neural network model: A case study of Tianjin in China. J. Clean. Prod. 2019, 237, 117795. [Google Scholar] [CrossRef]
- Wackernagel, M.; Rees, W. Our Ecological Footprint: Reducing Human İmpact on the Earth; The New Catalyst Bioregional Series; New Society Publishers: Gabriola Island, BC, Canada, 1996; pp. 1–160. [Google Scholar]
- Borucke, M.; Moore, D.; Cranston, G.; Gracey, K.; Iha, K.; Larson, J.; Lazarus, E.; Morales, J.C.; Wackernagel, M.; Galli, A. Accounting for demand and supply of the biosphere’s regenerative capacity: The National Footprint Accounts’ underlying methodology and framework. Ecol. Indic. 2013, 24, 518–533. [Google Scholar] [CrossRef]
- Siche, R.; Pereira, L.; Agostinho, F.; Ortega, E. Convergence of ecological footprint and emergy analysis as a sustainability indicator of countries: Peru as case study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3182–3192. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of a North American free trade agreement. Natl. Bur. Econ. Res. 1991, 3914, 1–39. [Google Scholar] [CrossRef]
- Ahmed, Z.; Zhang, B.; Cary, M. Linking economic globalization, economic growth, financial development, and ecological footprint: Evidence from symmetric and asymmetric ARDL. Ecol. Indic. 2021, 121, 107060. [Google Scholar] [CrossRef]
- Saud, S.; Chen, S.; Haseeb, A. The role of financial development and globalization in the environment: Accounting ecological footprint indicators for selected one-belt-one-road initiative countries. J. Clean. Prod. 2020, 250, 119518. [Google Scholar] [CrossRef]
- Alola, A.A.; Eluwole, K.K.; Lasisi, T.T.; Alola, U.V. Perspectives of globalization and tourism as drivers of ecological footprint in top 10 destination economies. Environ. Sci. Pollut. Res. 2021, 28, 31607–31617. [Google Scholar] [CrossRef]
- Dogru, T.; Bulut, U.; Kocak, E.; Isik, C.; Suess, C.; Sirakaya-Turk, E. The nexus between tourism, economic growth, renewable energy consumption, and carbon dioxide emissions: Contemporary evidence from OECD countries. Environ. Sci. Pollut. Res. 2020, 27, 40930–40948. [Google Scholar] [CrossRef]
- Ozturk, I.; Al-Mulali, U.; Saboori, B. Investigating the environmental Kuznets curve hypothesis: The role of tourism and ecological footprint. Environ. Sci. Pollut. Res. 2016, 23, 1916–1928. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F. The dynamic links among energy consumption, tourism growth, and the ecological footprint: The role of environmental quality in 38 IEA countries. Environ. Sci. Pollut. Res. 2021, 28, 5049–5062. [Google Scholar] [CrossRef] [PubMed]
- Katircioglu, S.; Gokmenoglu, K.K.; Eren, B.M. Testing the role of tourism development in ecological footprint quality: Evidence from top 10 tourist destinations. Environ. Sci. Pollut. Res. 2018, 25, 33611–33619. [Google Scholar] [CrossRef] [PubMed]
- World Bank. World Development Indicators. 2022. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 14 July 2022).
- World Tourism Organization (UNWTO). World Tourism Barometer Statistical Annex. 2021. Volume 19, pp. 1–28. Available online: https://www.wto.org/english/tratop_e/envir_e/unwto_barom21.pdf (accessed on 13 July 2022).
- Zaman, K.; Shahbaz, M.; Loganathan, N.; Raza, S.A. Tourism development, energy consumption and Environmental Kuznets Curve: Trivariate analysis in the panel of developed and developing countries. Tour. Manag. 2016, 54, 275–283. [Google Scholar] [CrossRef]
- Eyuboglu, K.; Uzar, U. The impact of tourism on CO2 emission in Turkey. Curr. Issues Tour. 2019, 23, 1631–1645. [Google Scholar] [CrossRef]
- Ehigiamusoe, K.U. Tourism, growth and environment: Analysis of non-linear and moderating effects. J. Sustain. Tour. 2020, 28, 1174–1192. [Google Scholar] [CrossRef]
- Kocak, E.; Ulucak, R.; Ulucak, Z.S. The impact of tourism developments on CO2 emissions: An advanced panel data estimation. Tour. Manag. Perspect. 2020, 33, 100611. [Google Scholar] [CrossRef]
- Godil, D.I.; Sharif, A.; Rafique, S.; Jermsittiparsert, K. The asymmetric effect of tourism, financial development, and globalization on ecological footprint in Turkey. Environ. Sci. Pollut. Res. 2020, 27, 40109–40120. [Google Scholar] [CrossRef] [PubMed]
- Nathaniel, S.P.; Barua, S.; Ahmed, Z. What drives ecological footprint in top ten tourist destinations? Evidence from advanced panel techniques. Environ. Sci. Pollut. Res. 2021, 28, 38322–38331. [Google Scholar] [CrossRef] [PubMed]
- Akadiri, S.S.; Adebayo, T.S.; Riti, J.S.; Awosusi, A.A.; Inusa, E.M. The effect of financial globalization and natural resource rent on load capacity factor in India: An analysis using the dual adjustment approach. Environ. Sci. Pollut. Res. 2022, 29, 89045–89062. [Google Scholar] [CrossRef]
- Xu, D.; Salem, S.; Awosusi, A.A.; Abdurakhmanova, G.; Altuntas, M.; Oluwajana, D.; Kirikkaleli, D.; Ojekemi, O. Load Capacity Factor and Financial Globalization in Brazil: The Role of Renewable Energy and Urbanization. Front. Environ. Sci. 2022, 9, 823185. [Google Scholar] [CrossRef]
- Katircioglu, S.T. Testing the tourism-induced EKC hypothesis: The case of Singapore. Econ. Model. 2014, 41, 383–391. [Google Scholar] [CrossRef]
- Danish, A.; Wang, Z. Dynamic relationship between tourism, economic growth and environmental quality. J. Sustain. Tour. 2018, 26, 1928–1943. [Google Scholar] [CrossRef]
- Kongbuamai, N.; Bui, Q.; Yousaf, H.M.A.U.; Liu, Y. The impact of tourism and natural resources on the ecological footprint: A case study of ASEAN countries. Environ. Sci. Pollut. Res. 2020, 27, 19251–19264. [Google Scholar] [CrossRef]
- Isik, C.; Ahmad, M.; Pata, U.K.; Ongan, S.; Radulescu, M.; Adedoyin, F.F.; Bayraktaroglu, E.; Aydin, S.; Ongan, A. An evaluation of the tourism-induced environmental Kuznets curve (T-EKC) hypothesis: Evidence from G7 Countries. Sustainability 2020, 12, 9150. [Google Scholar] [CrossRef]
- Pata, U.K. Do renewable energy and health expenditures improve load capacity factor in the USA and Japan? A new approach to environmental issues. Eur. J. Health Econ. 2021, 22, 1427–1439. [Google Scholar] [CrossRef]
- Lee, J.W.; Brahmasrene, T. Investigating the influence of tourism on economic growth and carbon emissions: Evidence from panel analysis of the European Union. Tour. Manag. 2013, 38, 69–76. [Google Scholar] [CrossRef]
- Fareed, Z.; Salem, S.; Adebayo, T.S.; Pata, U.K.; Shahzad, F. Role of export diversification and renewable energy on the load capacity factor in Indonesia: A Fourier quantile causality approach. Front. Environ. Sci. 2021, 9, 770152. [Google Scholar] [CrossRef]
- Pata, U.K.; Isik, C. Determinants of the load capacity factor in China: A novel dynamic ARDL approach for ecological footprint accounting. Resour. Policy 2021, 74, 102313. [Google Scholar] [CrossRef]
- Awosusi, A.A.; Kutlay, K.; Altuntaş, M.; Khodjiev, B.; Agyekum, E.B.; Shouran, M.; Kamel, S. A roadmap toward achieving sustainable environment: Evaluating the impact of technological innovation and globalization on load capacity factor. Int. J. Environ. Res. Public Health 2022, 19, 3288. [Google Scholar] [CrossRef]
- Pata, U.K.; Balsalobre-Lorente, D. Exploring the impact of tourism and energy consumption on the load capacity factor in Turkey: A novel dynamic ARDL approach. Environ. Sci. Pollut. Res. 2022, 29, 13491–13503. [Google Scholar] [CrossRef]
- Pata, U.K.; Samour, A. Do renewable and nuclear energy enhance environmental quality in France? A new EKC approach with the load capacity factor. Prog. Nucl. Energy 2022, 149, 104249. [Google Scholar] [CrossRef]
- Shang, Y.; Razzaq, A.; Chupradit, S.; An, N.B.; Abdul-Samad, Z. The role of renewable energy consumption and health expenditures in improving load capacity factor in ASEAN countries: Exploring new paradigm using advance panel models. Renew. Energy 2022, 191, 715–722. [Google Scholar] [CrossRef]
- Agila, A.B.T.; Khalifa, W.; Saint Akadiri, S.; Adebayo, T.S.; Altuntas, M. Determinants of load capacity factor in South Korea: Does structural change matter? Environ. Sci. Pollut. Res. 2022, 29, 69932–69948. [Google Scholar] [CrossRef] [PubMed]
- Narayan, P.K.; Narayan, S. Carbon dioxide emissions and economic growth: Panel data evidence from developing countries. Energy Policy 2010, 38, 661–666. [Google Scholar] [CrossRef]
- Destek, M.A.; Sarkodie, S.A. Investigation of environmental Kuznets curve for ecological footprint: The role of energy and financial development. Sci. Total Environ. 2019, 650, 2483–2489. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Chen, M.P. Ecological footprint, tourism development, and country risk: International evidence. J. Clean. Prod. 2021, 279, 123671. [Google Scholar] [CrossRef]
- Pata, U.K.; Kartal, M.T. Impact of nuclear and renewable energy sources on environment quality: Testing the EKC and LCC hypotheses for South Korea. Nucl. Eng. Technol. 2022. [Google Scholar] [CrossRef]
- Dogan, A.; Pata, U.K. The role of ICT, R&D spending and renewable energy consumption on environmental quality: Testing the LCC hypothesis for G7 countries. J. Clean. Prod. 2022, 380, 135038. [Google Scholar]
- Global Footprint Network. National Footprint Accounts. Ecological Footprint. 2022. Available online: https://data.footprintnetwork.org/#/ (accessed on 5 September 2022).
- International Monetary Fund (IMF). Access to Macroeconomic and Financial Data. 2022. Available online: https://data.imf.org/?sk=F8032E80-B36C-43B1-AC26-493C5B1CD33B (accessed on 5 September 2022).
- Yaylaci, M.; Eyuboglu, A.; Adıyaman, G.; Yaylaci, E.U.; Oner, E.; Birinci, A. Assessment of different solution methods for receding contact problems in functionally graded layered mediums. Mech. Mater. 2021, 154, 103730. [Google Scholar] [CrossRef]
- Kartal, M.T.; Adebayo, T.S.; Kavaz, D. Role of energy consumption and trade openness towards environmental sustainability in Turkey. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Guvercin, Y.; Abdioglu, A.A.; Dizdar, A.; Yaylacı, E.U.; Yaylacı, M. Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method. Injury 2022, 53, 2437–2445. [Google Scholar] [CrossRef]
- Oner, E.; Sengul Sabano, B.; Uzun Yaylacı, E.; Adıyaman, G.; Yaylacı, M.; Birinci, A. On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods. ZAMM J. Appl. Math. Mech. 2022, 102, e202100287. [Google Scholar] [CrossRef]
- Ali, U.; Guo, Q.; Kartal, M.T.; Nurgazina, Z.; Khan, Z.A.; Sharif, A. The impact of renewable and non-renewable energy consumption on carbon emission intensity in China: Fresh evidence from novel dynamic ARDL simulations. J. Environ. Manag. 2022, 320, 115782. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels. CESifo Working Paper Series No. 1229; IZA Discussion Paper No. 1240. 2004. Available online: http://ssrn.com/abstract=572504 (accessed on 5 September 2022).
- Pesaran, M.H.; Ullah, A.; Yamagata, T. A bias-adjusted LM test of error cross-section independence. Econom. J. 2008, 11, 105–127. [Google Scholar] [CrossRef]
- Pesaran, M.H. Testing weak cross-sectional dependence in large panels. Econom. Rev. 2015, 34, 1089–1117. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econom. 2008, 142, 50–93. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Kao, C.; Ng, S. Panel cointegration with global stochastic trends. J. Econom. 2009, 149, 82–99. [Google Scholar] [CrossRef] [Green Version]
- Westerlund, J.; Edgerton, D.L. A panel bootstrap cointegration test. Econ. Lett. 2007, 97, 185–190. [Google Scholar] [CrossRef]
- Chudik, A.; Mohaddes, K.; Pesaran, M.H.; Raissi, M. Debt, Inflation and Growth-Robust Estimation of Long-Run Effects in Dynamic Panel Data Models. 2013. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2371243 (accessed on 10 September 2022).
- Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef]
Work | Time Interval | Sample | Method | Related Findings |
---|---|---|---|---|
Panel (a) Tourism-environment nexus | ||||
Lee and Brahmasrene [29] | 1988–2009 | 27 EU countries | Fisher-type cointegration | The increase in TR reduces CO2 |
Katircioglu [24] | 1971–2010 | Singapore | Maki cointegration, DOLS | The increase in TOUR reduces CO2, |
Zaman et al. [16] | 2005–2013 | 34 developed countries | Panel data estimators | A rise in TOUR, TR, and TE increase CO2. Existence of the EKC. |
Danish and Wang [25] | 1995–2014 | BRICS | Westerlund panel cointegration | The increase in TR increases CO2. Existence of the EKC. |
Katircioglu et al. [13] | 1995–2014 | Top 10 tourist countries | Panel random effects | The increase in TOUR reduces EF. Existence of the EKC. |
Eyuboglu and Uzar [17] | 1960–2014 | Turkey | Fourier ADL and ARDL | The increase in TOUR increases CO2 |
Ehigiamusoe [18] | 1995–2016 | 31 African countries | Fisher-type Johansen cointegration | The increase in TR and TOUR increase CO2; non-existence of the EKC. |
Godil et al. [20] | 1986–2018 | Turkey | QARDL | TOUR increases EF; existence of the EKC. |
Isik et al. [27] | 1995–2015 | G7 countries | AMG | The increase in TOUR reduces CO2 in Canada; non-existence of the EKC. |
Kocak et al. [19] | 1995–2014 | Top 10 tourist countries | CUP-FM, CUP-BC | The increase in TOUR increases CO2;the increase in TR reduces CO2 |
Kongbuamai et al. [26] | 1995–2016 | ASEAN countries | Driscoll–Kraay estimator | The increase in TOUR reduces EF, Existence of the EKC. |
Alola et al. [9] | 1995–2016 | Top 10 tourist countries | Kao panel cointegration | The increase in TOUR increases EF |
Khan and Hou [12] | 1995–2018 | 38 IEA countries | FMOLS | A rise in TOUR, TR, and TE reduce EF |
Nathaniel et al. [21] | 1995–2016 | Top 10 tourist countries | CUP-FM, CUP-BC | A rise in TR and TOUR increases EF |
Panel (b) Studies on the determinants of the LCF. | ||||
Pata [28] | 1982–2016 | United States and Japan | Augmented ARDL | The increase in GDP reduces LCF |
Fareed et al. [30] | 1965–2014 | Indonesia | Fourier quantile causality | The increase in GDP reduces LCF |
Pata and Isik [31] | 1981–2016 | China | Dynamic ARDL | Existence of the EKC. |
Awosusi et al. [32] | 1980–2017 | South Africa | ARDL | The increase in GDP reduces LCF; existence of the EKC. |
Pata and Balsalobre-Lorente [33] | 1965–2017 | Turkey | Dynamic ARDL | The increase in TOUR reduces LCF; existence of the EKC. |
Pata and Samour [34] | 1977–2017 | France | Fourier ARDL | Existence of the EKC. |
Shang et al. [35] | 1980–2018 | 10 ASEAN countries | CS-ARDL | The increase in GDP reduces LCF |
Xu et al. [23] | 1970–2017 | Brazil | ARDL | The increase in GDP reduces LCF |
Akadiri et al. [22] | 1970–2017 | India | HP filter, ARDL | The increase in GDP reduces LCF |
Agila et al. [36] | 1970–2018 | South Korea | Quantile cointegration | The increase in GDP reduces LCF |
Variables | Observation | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
lnLCF | 150 | −1.050 | 0.354 | −1.763 | −0.517 |
lnEF | 150 | 1.430 | 0.392 | 0.741 | 2.324 |
lnCO2 | 150 | 1.829 | 0.453 | 1.173 | 2.975 |
lnGDP(lnGDP2) | 150 | 9.872 | 0.861 | 8.026 | 10.995 |
lnTOUR | 150 | 18.009 | 0.791 | 16.263 | 16.263 |
lnFD | 150 | −0.401 | 0.294 | −1.143 | −1.143 |
lnLCF | lnEF | lnCO2 | lnGDP | lnTOUR | lnFD | |
---|---|---|---|---|---|---|
LM | 99.990 * | 227.654 * | 201.247 * | 191.525 * | 63.450 ** | 168.998 * |
CDLM | 5.796 * | 19.253 * | 16.470 * | 15.445 * | 1.945 ** | 13.071 * |
CD | 25.760 * | 25.817 * | 25.853 * | 25.976 * | 25.979 * | 25.435 * |
LMadj | 14.444 * | 33.593 * | 29.876 * | 26.170 * | 23.528 * | 22.454 * |
Models | lnLCF | lnEF | lnCO2 | |||
5.483 * | 7.452 * | 7.157 * | ||||
6.715 * | 9.127 * | 8.766 * |
Tests | CADF | CIPS | ||
---|---|---|---|---|
Variables | I(0) | I(1) | I(0) | I(1) |
lnLCF | −1.698 | −3.759 * | −2.257 | −4.000 * |
lnEF | −1.301 | −2.452 ** | −1.770 | −3.452 * |
lnCO2 | −0.823 | −3.104 * | −1.255 | −2.913 * |
lnGDP(lnGDP2) | −1.884 | −2.637 ** | −0.842 | −2.867 * |
lnTOUR | −2.034 | −3.249 * | −1.526 | −3.120 * |
lnFD | −1.575 | −3.051 * | −2.987 * | ― |
Model | Model I Constant | Model II Constant + Trend | ||
---|---|---|---|---|
Dependent variable | Statistic | Bootstrapped p-value | Statistic | Bootstrapped p-value |
lnLCF | 18.699 | 0.156 | 20.618 | 0.997 |
lnEF | 18.314 | 0.206 | 19.747 | 0.995 |
lnCO2 | 20.547 ** | 0.038 | 17.298 | 0.992 |
Dependent Variable | lnLCF | lnEF | lnCO2 | |||
---|---|---|---|---|---|---|
Long run | coefficient | Prob. | coefficient | Prob. | coefficient | Prob. |
lnGDP | −33.994 | 0.415 | 16.808 | 0.497 | 45.259 | 0.781 |
lnGDP2 | 1.686 | 0.394 | −0.681 | 0.497 | −2.359 | 0.761 |
lnTOUR | 0.210 ** | 0.029 | 0.048 | 0.586 | −1.048 | 0.211 |
lnFD | −0.247 | 0.114 | −0.259 ** | 0.010 | −0.010 | 0.967 |
Short run | coefficient | Prob. | coefficient | Prob. | coefficient | Prob. |
∆lnGDP | −68.031 | 0.457 | 55.043 | 0.326 | 5.458 | 0.971 |
∆lnGDP2 | 3.364 | 0.438 | −2.374 | 0.393 | −0.467 | 0.949 |
∆lnTOUR | 0.467 ** | 0.040 | −0.050 | 0.899 | −1.133 | 0.105 |
∆lnFD | −0.540 *** | 0.089 | −0.513 * | 0.006 | 0.138 | 0.623 |
ECTt-1 | −1.130 * | 0.000 | −1.143 * | 0.000 | −0.333 *** | 0.076 |
Estimators | CUP-FM | CUP-BC | ||
---|---|---|---|---|
Variables | coefficient | t-stat. | coefficient | t-stat. |
lnGDP | −1.039 | −1.108 | −0.208 | −0.257 |
lnGDP2 | 0.918 | 0.946 | 0.025 | 1.236 |
lnTOUR | 0.321 * | 6.262 | 0.471 * | 7.277 |
lnFD | −0.196 * | −5.986 | −0.108 * | −6.403 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pata, U.K.; Tanriover, B. Is the Load Capacity Curve Hypothesis Valid for the Top Ten Tourism Destinations? Sustainability 2023, 15, 960. https://doi.org/10.3390/su15020960
Pata UK, Tanriover B. Is the Load Capacity Curve Hypothesis Valid for the Top Ten Tourism Destinations? Sustainability. 2023; 15(2):960. https://doi.org/10.3390/su15020960
Chicago/Turabian StylePata, Ugur Korkut, and Banu Tanriover. 2023. "Is the Load Capacity Curve Hypothesis Valid for the Top Ten Tourism Destinations?" Sustainability 15, no. 2: 960. https://doi.org/10.3390/su15020960
APA StylePata, U. K., & Tanriover, B. (2023). Is the Load Capacity Curve Hypothesis Valid for the Top Ten Tourism Destinations? Sustainability, 15(2), 960. https://doi.org/10.3390/su15020960