Exploring Potential R&D Collaboration Partners Using Embedding of Patent Graph
Abstract
:1. Introduction
- A patent owned by co-applicants is a piece of work by collaboration. Thus, co-applicants are organizations that actively use the current business opportunities. Accordingly, this paper aims to explore the future of collaborative R&D by finding a pattern between co-applicants from a knowledge graph.
- A knowledge graph is an excellent tool that can express a complex relationship between numerous objects. Therefore, a knowledge graph is well-suited to identifying the collaboration history of co-applicants such as enterprises, research institutions, and universities. Furthermore, we aim to identify potential R&D collaboration partners by converting the co-applicants in the graph to a vector and measuring the collaborative similarity.
- In this study, the relevance algorithm that measures the collaborative similarity of co-applicants is free from specific assumptions. Therefore, the proposed method can be used regardless of the technical field and organization type.
2. Literature Review
2.1. Related Works
2.2. Node Embedding
2.3. Link Prediction
3. Discovering Collaboration Partners
3.1. Preliminary Theory
3.2. Embedding Collaboration Partners
3.3. Exploring Collaboration Partners
4. Experimental Results
4.1. Experimental Setup
4.2. Embedding Collaboration Partners
4.3. Embedding Collaboration Partners
5. Conclusions
5.1. Discussion and Implications
- Can the information about co-applicants of patents clearly explain business opportunities?
- Can potential R&D collaboration partners be discovered from co-applicants?
5.2. Limitations and Further Research
- Collaborative R&D will be conducted according to the plan of the human and financial scale. Thus, it is necessary to discover business opportunities that can maximize the value of a limited resource in the future.
- The potential of the discovered business opportunities will be determined by the management plan and strategy of the organization. Accordingly, advanced methodologies should consider the business feasibility of the discovered opportunities.
- Methodologies will be proposed that can be applied to various technological fields concurrently. This is because multidisciplinary business opportunities are a global trend.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviation | Applicant | Abbreviation | Applicant |
---|---|---|---|
Advics | Advics Co., Ltd. | LG | LG Electronics, Inc. |
Aisin | Aisin Seiki Kabushiki Kaisha | Lotte | Lotte Corporation |
Audi | Audi AG | Lotus | Lotus Thermal Solution, Inc. |
Axia | Axia Materials Co., Ltd. | Mazda | Mazda Motor Corp. |
BMW | Bayerische Motoren Werke Aktiengesellschaft | Mitsubishi | Mitsubishi Motors |
Bosch | Robert Bosch GmbH | Nissan | Nissan Motor Co., Ltd. |
Chrysler | Chrysler Group LLC | P | Patents filed by individuals |
Continental | Continental Automotive GmbH | PanKorea | PanKorea |
Daihatsu | Daihatsu Motor Co., Ltd. | Renault | Renault SAS |
Daimler | Daimler AG | Samsung | Samsung SDI Co., Ltd. |
Dasan | Dasan | SK | SK Hynix, Inc. |
Denso | Denso Corporation | Soken | Soken, Inc. |
Doowon | Doowon | Sumitomo_Wiring | Sumitomo Wiring Systems, Ltd. |
Egtronics | Egtronics Co., Ltd. | Suzuki | Suzuki Motor Corp. |
EJR | East Japan Railway Co. | Tamagawa | Tamagawa Seiki Co., Ltd. |
Fujitsu | Fujitsu Limited | Toshiba | Toshiba Corp. |
Gate | Gates Korea Co., Ltd. | Toyota | Toyota Motor Corp. |
Geely | Geely Co., Ltd. | U_Chungang | Chung-Ang University |
GM | GM Global Technology Operations LLC | U_Chungnam | Chungnam National University |
Hain | The Hain Celestial Group, Inc. | U_D’orleans | Université d’Orléans |
Hanon | Hanon Systems | U_Fudan | Fudan University |
Hawei | Huawei Technologies Co., Ltd. | U_Huazhong | Huazhong University |
Hitachi | Hitachi, Ltd. | U_Korea | Korea University |
Honda | Honda Motor Co., Ltd. | U_Kumoh | Kumoh National Institute of Technology |
Hyundai | Hyundai Motor Company Co., Ltd. | U_Marin | Korea Maritime & Ocean University |
I_GHI | Gyeongbuk Hybrid Technology Institute | U_Nagaoka | Nagaoka Univ of Technology |
I_GHIM | Global Frontier Hybrid Interface Materials | U_Pukyong | Pukyong National University |
I_KECA | Korea Electrical Contractors Association | U_Regents | Regents of the University |
I_KICCET | Korea Institute of Ceramic Engineering and Technology | U_Seoul | Seoul National University |
I_KICT | Korea Institute of Civil Engineering & Building Technology | U_SeoulTech | Seoul National University |
I_KIMM | Korea Institute of Machinery & Materials | U_Soongsil | Soongsil University |
I_KIST | Korea Institute of Science and Technology | U_Stuttgart | UNIVERSITÄT Stuttgart |
I_Kost | Korea Transportation Safety Authority | U_Sungkyunkwan | Sungkyunkwan University |
I_MultiEnergy | Global Frontier Center for Multiscale Energy System | U_Transport | Korea National University of Transportation |
Infineon | Infineon Technologies AG | U_woosuk | Woosuk University |
Inosuki | Inosuki | U_Yamaguchi | Tokyo Univ of Science Yamaguchi |
Jaeshin | Jaeshin PowerTech | U_Yeongnam | Yeungnam University |
JATCO | JATCO Ltd. | Unichem | Unichem Co., Ltd. |
JSMEA | Japan Ship Machinery & Equipment Association | Unicks | Unick Corporation |
KAIST | Korea Advanced Institute of Science and Technology | ValeoKapec | Valeo Kapec Co., Ltd. |
Kia | Kia Motors Corp. | Vinatech | VINATech Co., Ltd. |
Kyungshin | Kyungshin Corp. | Younghwa_Tech | YounghwaTech Co., Ltd. |
References
- Burnett, S.; Williams, D. The role of knowledge transfer in technological innovation: An oil and gas industry perspective. Knowl. Manag. Res. Pract. 2014, 12, 133–144. [Google Scholar] [CrossRef]
- Danneels, E. The process of technological competence leveraging. Strateg. Manag. J. 2007, 28, 511–533. [Google Scholar] [CrossRef]
- Hung, K.P.; Chou, C. The impact of open innovation on firm performance: The moderating effects of internal R&D and environmental turbulence. Technovation 2013, 33, 10–11. [Google Scholar] [CrossRef]
- Obradović, T.; Vlačić, B.; Dabić, M. Open innovation in the manufacturing industry: A review and research agenda. Technovation 2021, 102, 102221. [Google Scholar] [CrossRef]
- Nonaka, I. A dynamic theory of organizational knowledge creation. Organ. Sci. 1994, 5, 14–37. [Google Scholar] [CrossRef]
- Brown, S.L.; Eisenhardt, K.M. The art of continuous change: Linking complexity theory and time-paced evolution in relentlessly shifting organizations. Adm. Sci. Q. 1997, 42, 1–34. [Google Scholar] [CrossRef]
- Dyer, J.H.; Singh, H. The relational view: Cooperative strategy and sources of interorganizational competitive advantage. Acad. Manag. Rev. 1998, 23, 660–679. [Google Scholar] [CrossRef]
- Berends, H.; Vanhaverbeke, W.; Kirschbaum, R. Knowledge management challenges in new business development: Case study observations. J. Eng. Technol. Manag. 2007, 24, 314–328. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.Y.; Wu, C.Y. A real options framework for R&D planning in technology-based firms. J. Eng. Technol. Manag. 2015, 35, 93–114. [Google Scholar] [CrossRef]
- Pinto, E.B.; Fernandes, G. Collaborative R&D the key cooperation domain for university-industry partnerships sustainability-Position paper. Procedia Comput. Sci. 2021, 181, 102–109. [Google Scholar] [CrossRef]
- Chen, K.; Kenney, M. Universities/Research Institutes and Regional Innovation Systems: The Cases of Beijing and Shenzhen. World Dev. 2007, 35, 1056–1074. [Google Scholar] [CrossRef]
- Yang, H.X.; Wu, Z.X.; Wang, B.H. Role of aspiration-induced migration in cooperation. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2010, 81, 065101. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Guan, J.; Rousseau, R. Mapping collaborative knowledge production in China using patent co-inventorships. Scientometrics 2011, 88, 313–331. [Google Scholar] [CrossRef]
- Temel, S.; Glassman, B. Examining university-industry collaboration as a source of innovation in the emerging economy of Turkey. Int. J. Innov. Sci. 2013, 5, 81–88. [Google Scholar] [CrossRef]
- Gulati, R. Social Structure and Alliance Formation Patterns: A Longitudinal Analysis. Adm. Sci. Q. 1995, 40, 619. [Google Scholar] [CrossRef]
- Capaldo, A. Network structure and innovation: The leveraging of a dual network as a distinctive relational capability. Strateg. Manag. J. 2007, 28, 585–608. [Google Scholar] [CrossRef]
- Durmuşoğlu, A.; Durmuşoğlu, Z.D.U. Remembering Medical Ventilators and Masks in the Days of COVID-19: Patenting in the Last Decade in Respiratory Technologies. IEEE Trans. Eng. Manag. 2022, 1–15. [Google Scholar] [CrossRef]
- Durmusoglu, A.; Durmusoglu, Z.D.U. Traffic control system technologies for road vehicles: A patent analysis. IEEE Intell. Transp. Syst. Mag. 2020, 13, 31–41. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, Y.; Huang, Y.; Guo, Y.; Zhang, G.; Lu, J. An entropy-based indicator system for measuring the potential of patents in technological innovation: Rejecting moderation. Scientometrics 2017, 111, 1925–1946. [Google Scholar] [CrossRef]
- Belderbos, R.; Cassiman, B.; Faems, D.; Leten, B.; Van Looy, B. Co-ownership of intellectual property: Exploring the value-appropriation and value-creation implications of co-patenting with different partners. Res. Policy 2014, 43, 841–852. [Google Scholar] [CrossRef]
- Lv, D.D.; Zeng, P.; Lan, H. Co-patent, financing constraints, and innovation in SMEs: An empirical analysis using market value panel data of listed firms. J. Eng. Technol. Manag. 2018, 48, 15–27. [Google Scholar] [CrossRef]
- Briggs, K. Co-owner relationships conducive to high quality joint patents. Res. Policy 2015, 44, 1566–1573. [Google Scholar] [CrossRef]
- Kim, C.S.; Inkpen, A.C. Cross-border R&D alliances, absorptive capacity and technology learning. J. Int. Manag. 2005, 11, 313–329. [Google Scholar] [CrossRef]
- Santamaría, L.; Nieto, M.J.; Rodríguez, A. Failed and successful innovations: The role of geographic proximity and international diversity of partners in technological collaboration. Technol. Forecast. Soc. Chang. 2021, 166, 120575. [Google Scholar] [CrossRef]
- Yoon, B.U.; Yoon, C.B.; Park, Y.T. On the development and application of a self-organizing feature map-based patent map. R D Manag. 2002, 32, 291–300. [Google Scholar] [CrossRef]
- Kim, Y.G.; Suh, J.H.; Park, S.C. Visualization of patent analysis for emerging technology. Expert Syst. Appl. 2008, 34, 1804–1812. [Google Scholar] [CrossRef]
- Lee, S.; Yoon, B.; Park, Y. An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation 2009, 29, 481–497. [Google Scholar] [CrossRef]
- Yoon, J.; Park, H.; Kim, K. Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis. Scientometrics 2013, 94, 313–331. [Google Scholar] [CrossRef]
- Lee, C.; Lee, G. Technology opportunity analysis based on recombinant search: Patent landscape analysis for idea generation. Scientometrics 2019, 121, 313–331. [Google Scholar] [CrossRef]
- Yoon, J.; Park, H.; Seo, W.; Lee, J.M.; Coh, B.; Kim, J. Technology opportunity discovery (TOD) from existing technologies and products: A function-based TOD framework. Technol. Forecast. Soc. Chang. 2015, 100, 153–167. [Google Scholar] [CrossRef]
- Faccin, K.; Balestrin, A. The dynamics of collaborative practices for knowledge creation in joint R&D projects. J. Eng. Technol. Manag. JET-M 2018, 48, 28–43. [Google Scholar] [CrossRef]
- Messeni Petruzzelli, A.; Murgia, G. University–Industry collaborations and international knowledge spillovers: A joint-patent investigation. J. Technol. Transf. 2020, 45, 958–983. [Google Scholar] [CrossRef]
- Murgia, G. The impact of collaboration diversity and joint experience on the reiteration of university co-patents. J. Technol. Transf. 2021, 46, 1108–1143. [Google Scholar] [CrossRef]
- Maggioni, M.A.; Uberti, T.E. Knowledge networks across Europe: Which distance matters? Ann. Reg. Sci. 2009, 43, 691–720. [Google Scholar] [CrossRef]
- Burhop, C.; Wolf, N. The German market for patents during the second industrialization, 1884-1913: A gravity approach. Bus. Hist. Rev. 2013, 87, 69–93. [Google Scholar] [CrossRef]
- Drivas, K.; Economidou, C. Is geographic nearness important for trading ideas? Evidence from the US. J. Technol. Transf. 2015, 40, 629–662. [Google Scholar] [CrossRef]
- Capaldo, A.; Petruzzelli, A.M. Partner geographic and organizational proximity and the innovative performance of knowledge-creating alliances. Eur. Manag. Rev. 2014, 11, 63–84. [Google Scholar] [CrossRef]
- Golosovsky, M.; Solomon, S. Growing complex network of citations of scientific papers: Modeling and measurements. Phys. Rev. E 2017, 95, 012324. [Google Scholar] [CrossRef]
- Ardito, L.; D’Adda, D.; Messeni Petruzzelli, A. Mapping innovation dynamics in the Internet of Things domain: Evidence from patent analysis. Technol. Forecast. Soc. Chang. 2018, 136, 317–330. [Google Scholar] [CrossRef]
- Goetze, C. An empirical enquiry into co-patent networks and their stars: The case of cardiac pacemaker technology. Technovation 2010, 30, 7–8. [Google Scholar] [CrossRef]
- Liu, W.; Li, F.; Bi, K. Exploring and visualizing co-patent networks in bioenergy field: A perspective from inventor, transnational inventor, and country. Int. J. Green Energy 2022, 19, 562–575. [Google Scholar] [CrossRef]
- Lee, M.; Kim, S.; Kim, H.; Lee, J. Technology Opportunity Discovery using Deep Learning-based Text Mining and a Knowledge Graph. Technol. Forecast. Soc. Chang. 2022, 180, 121718. [Google Scholar] [CrossRef]
- Seo, W. A patent-based approach to identifying potential technology opportunities realizable from a firm’s internal capabilities. Comput. Ind. Eng. 2022, 171, 108395. [Google Scholar] [CrossRef]
- Wu, Y.; Ji, Y.; Gu, F. Identifying firm-specific technology opportunities in a supply chain: Link prediction analysis in multilayer networks. Expert Syst. Appl. 2023, 213, 119053. [Google Scholar] [CrossRef]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online learning of social representations. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their Compositionality. arXiv 2013. [Google Scholar] [CrossRef]
- Le, Q.; Mikolov, T. Distributed representations of sentences and documents. In Proceedings of the 31st International Conference on Machine Learning, ICML, Beijing, China, 21–26 June 2014; Volume 4. [Google Scholar]
- Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2016; pp. 855–864. [Google Scholar] [CrossRef]
- Hu, F.; Liu, J.; Li, L.; Liang, J. Community detection in complex networks using Node2vec with spectral clustering. Phys. A Stat. Mech. Its Appl. 2020, 545, 123633. [Google Scholar] [CrossRef]
- Han, S.; Huang, H.; Huang, X.; Li, Y.; Yu, R.; Zhang, J. Core patent forecasting based on graph neural networks with an application in stock markets. Technol. Anal. Strateg. Manag. 2022, 1–15. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, G.; Fu, S.; Wang, L.; Hu, J.; Gao, Y. Internet Financial Fraud Detection Based on a Distributed Big Data Approach with Node2vec. IEEE Access 2021, 9, 43378–43386. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, F.; Yang, L.; Wu, J. Node2vec Representation for Clustering Journals and as A Possible Measure of Diversity. J. Data Inf. Sci. 2019, 4, 79–92. [Google Scholar] [CrossRef]
- Kim, S.; Suh, Y.; Lee, H. What IoT devices and applications should be connected? Predicting user behaviors of IoT services with node2vec embedding. Inf. Process. Manag. 2022, 59, 102869. [Google Scholar] [CrossRef]
- Jaccard, P. The Distribution of the Flora in the Alpine Zone. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Zhou, T.; Lü, L.; Zhang, Y.C. Predicting missing links via local information. Eur. Phys. J. B 2009, 71, 623–630. [Google Scholar] [CrossRef]
- Open Data Portal. “Patent Application Bibliographic Data”, United States Patent and Trademark Office. 2022. Available online: https://developer.uspto.gov/product/patent-application-bibliographic-dataxml (accessed on 26 December 2022).
- Carbonell, J.; Goldstein, J. Use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, NY, USA, 24–28 August 1998; pp. 335–336. [Google Scholar] [CrossRef]
- Bennani-Smires, K.; Musat, C.; Hossmann, A.; Baeriswyl, M.; Jaggi, M. Simple unsupervised keyphrase extraction using sentence embeddings. arXiv 2018, arXiv:1801.04470. [Google Scholar]
- Van Der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 11. [Google Scholar]
- Oda, S.; Saito, T.; Nishimura, K.; Hayakawa, A. Optical network technologies for enabling 5G services. Fujitsu Sci. Tech. J. 2019, 55, 38–45. [Google Scholar]
- Lai, K.K.; Chang, Y.H.; Kumar, V.; Wei, T.Y.; Su, F.P.; Mittal, A. The position and role on patent citation network of the parking lot guidance system. Technol. Anal. Strateg. Manag. 2021, 35, 1161–1177. [Google Scholar] [CrossRef]
- Lee, S.; Alsoubie, F.; Daim, T.U. Technology Intelligence Map: Autonomous Car. In Roadmapping Future. Applied Innovation and Technology Management; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Patterson, G.; Roberts, J. Gallium nitride-Delivering its promise in automotive applications. In Proceedings of the 6th Hybrid and Electric Vehicles Conference (HEVC 2016), London, UK, 2–3 November 2016; Volume 2016, pp. 1–6. [Google Scholar] [CrossRef]
- Tran, D.D.; Tran, M.T.; Deepak, K.; Ferreri, M.; El Baghdadi, M.; Hegazy, O. 48V 25 kW GaN Inverter Design Consideration for Urban-Sized Electric Utility Vehicles. In Proceedings of the 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2022, Sorrento, Italy, 22–24 June 2022; pp. 826–831. [Google Scholar] [CrossRef]
- Puliga, G.; Urbinati, A.; Franchin, E.M.; Castegnaro, S. Investigating the drivers of failure of research-industry collaborations in open innovation contexts. Technovation 2023, 119, 102543. [Google Scholar] [CrossRef]
Operator | Definition |
---|---|
Average | |
Hadamard | |
Weighted-L1 | |
Weighted-L2 |
Description | Hyperparameter |
---|---|
Dimensionality of node, D | 16 |
Return parameter, p | 0.5 |
In–out parameter, q | 2 |
Length of walk, l | 5 |
Number of walks per node | 30 |
Operator | Classifier | Accuracy | Precision | Recall | F1-Score | GM | AUC |
---|---|---|---|---|---|---|---|
Average | DT | 0.976 | 0.500 | 0.217 | 0.303 | 0.882 | 0.606 |
KNN | 0.987 | 0.867 | 0.565 | 0.684 | 0.659 | 0.782 | |
RF | 0.976 | 0.500 | 0.043 | 0.080 | 0.977 | 0.521 | |
AB | 0.978 | 0.583 | 0.304 | 0.400 | 0.832 | 0.649 | |
Hadamard | DT | 0.974 | 0.400 | 0.174 | 0.242 | 0.906 | 0.584 |
KNN | 0.981 | 0.727 | 0.348 | 0.471 | 0.806 | 0.672 | |
RF | 0.977 | 0.667 | 0.087 | 0.154 | 0.955 | 0.543 | |
AB | 0.985 | 0.846 | 0.478 | 0.611 | 0.722 | 0.738 | |
Weighted-L1 | DT | 0.972 | 0.389 | 0.304 | 0.341 | 0.829 | 0.646 |
KNN | 0.983 | 0.706 | 0.522 | 0.600 | 0.690 | 0.758 | |
RF | 0.979 | 1.000 | 0.130 | 0.231 | 0.933 | 0.565 | |
AB | 0.977 | 0.538 | 0.304 | 0.389 | 0.831 | 0.649 | |
Weighted-L2 | DT | 0.969 | 0.364 | 0.348 | 0.356 | 0.801 | 0.666 |
KNN | 0.984 | 0.700 | 0.609 | 0.651 | 0.624 | 0.801 | |
RF | 0.981 | 1.000 | 0.217 | 0.357 | 0.885 | 0.609 | |
AB | 0.977 | 0.538 | 0.304 | 0.389 | 0.831 | 0.649 |
No. | Co-Applicant Candidate | No. | Co-Applicant Candidate |
---|---|---|---|
1 | Aisin, Daihatsu | 9 | I_KIST, Inosuki |
2 | Aisin, Fujitsu | 10 | Kia, Lotte |
3 | Axia, Lotte | 11 | Lotte, Infineon |
4 | Daihatsu, Fujitsu | 12 | Soken, Fujitsu |
5 | Egtronics, Unichem | 13 | Soken, Sumitomo_Wiring |
6 | Fujitsu, Sumitomo_Wiring | 14 | U_Korea, Inosuki |
7 | I_GHI, I_KECA | 15 | U_Sungkyunkwan, U_Transport |
8 | I_KICT, I_KIST | 16 | Unichem, Gate |
Candidate Collaboration Partners | Potential Collaboration Partners |
---|---|
Aisin, Daihatsu | Renault, Toshiba |
Aisin, Fujitsu | Toyota, Honda |
Axia, Lotte | I_KECA, Audi |
Daihatsu, Fujitsu | Daihatsu, Chrysler |
Egtronics, Unichem | U_Yeongnam, U_Huazhong |
Fujitsu, Sumitomo_Wiring | Tamagawa, Huawei |
I_GHI, I_KECA | Jaeshin, U_Yeongnam |
I_KICT, I_KIST | Egtronics, Chrysler |
I_KIST, Inosuki | PanKorea, BMW |
Kia, Lotte | PanKorea, U_Huazhong |
Lotte, Infineon | U_Korea, Nissan |
Soken, Fujitsu | Soken, Tamagawa |
Soken, Sumitomo_Wiring | Toshiba, LG |
U_Korea, Inosuki | Egtronics, Suzuki |
U_Sungkyunkwan, U_Transport | YounghwaTech, Aisin |
Unichem, Gate | Unichem, SK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Park, S.; Lee, J. Exploring Potential R&D Collaboration Partners Using Embedding of Patent Graph. Sustainability 2023, 15, 14724. https://doi.org/10.3390/su152014724
Lee J, Park S, Lee J. Exploring Potential R&D Collaboration Partners Using Embedding of Patent Graph. Sustainability. 2023; 15(20):14724. https://doi.org/10.3390/su152014724
Chicago/Turabian StyleLee, Juhyun, Sangsung Park, and Junseok Lee. 2023. "Exploring Potential R&D Collaboration Partners Using Embedding of Patent Graph" Sustainability 15, no. 20: 14724. https://doi.org/10.3390/su152014724
APA StyleLee, J., Park, S., & Lee, J. (2023). Exploring Potential R&D Collaboration Partners Using Embedding of Patent Graph. Sustainability, 15(20), 14724. https://doi.org/10.3390/su152014724