Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources
Abstract
:1. Introduction
2. Wind Power Technologies
2.1. Evolution of Wind Energy Generation and Theories
2.2. Recent Developments in Air Foils and Blades
2.3. Theory of Wind Velocity Augmentation
- ο
- The velocity increases at the inlet as the area for flow is reduced.
- ο
- The velocity toward the end increases and reaches the peak at the exit.
2.4. Augmentation of Wind Energy Using Ducts and Diffusers
3. The Development of Kinetic Energy Recovery Systems
3.1. Latest Trends in the Development of Kinetic Energy Recovery Systems
3.2. Future Avenues of Development
- Most of the research in the field of energy recovery is based on heat recovery and only a handful amount of literature is available on KERS.
- Most of the studies done have visible issues in their applicability.
- The scarce understanding of the impact of actuator disk theory—in particular the negative impact of the back force generated due to the shear nature of the turbine—is a major drawback.
- Encourage further research, capacity building, and industry collaboration to understand the status quo better.
- LES-based simulative studies should be conducted to obtain a detailed analysis of the overall impact on the system.
- Development of novel mathematical models that can better explain the forces in play around the turbine and within the system.
- Development and evaluation of prototypes.
- Particle-image-velocimetry-based studies describe the fluid flow better and in real-time as compared to simulations.
3.3. Wind Turbine Efficiency against the Betz Limit
3.4. Financial Benefits
3.5. Environmental Benefits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uzar, U. Political Economy of Renewable Energy: Does Institutional Quality Make a Difference in Renewable Energy Consumption? Renew. Energy 2020, 155, 591–603. [Google Scholar] [CrossRef]
- Burke, M.J.; Stephens, J.C. Political Power and Renewable Energy Futures: A Critical Review. Energy Res. Soc. Sci. 2018, 35, 78–93. [Google Scholar] [CrossRef]
- Gadonneix, P.; Sambo, A.; Guobao, Z.; Kim, Y.D.; Teyssen, J.; Lleras, J.A.V.; Naqi, A.A.; Meyers, K.; Shin, H.C.; Nadeau, M.-J.; et al. World Energy Issues Monitor 2020. World Energy Council 2020. Available online: https://www.worldenergy.org/ (accessed on 2 September 2023).
- He, H.; Fu, Y.; Zhao, T.; Gao, X.; Xing, L.; Zhang, Y.; Xue, X. All-Solid-State Flexible Self-Charging Power Cell Basing on Piezo-Electrolyte for Harvesting/Storing Body-Motion Energy and Powering Wearable Electronics. Nano Energy 2017, 39, 590–600. [Google Scholar] [CrossRef]
- Qamruzzaman, M.; Karim, S. Does Public-Private Investment Augment Renewable Energy Consumption in BIMSTEC Nations? Evidence from Symmetric and Asymmetric Assessment. Energy Strateg. Rev. 2023, 49, 101169. [Google Scholar] [CrossRef]
- Alola, A.A.; Onifade, S.T.; Magazzino, C.; Obekpa, H.O. The Effects of Gas Flaring as Moderated by Government Quality in Leading Natural Gas Flaring Economies. Sci. Rep. 2023, 13, 14394. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.M.; Murad, M.W. The Impacts of Economic Growth, Trade Openness and Technological Progress on Renewable Energy Use in Organization for Economic Co-Operation and Development Countries. Renew. Energy 2020, 145, 382–390. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Tahmasebi, A.; Jeon, C.-H.; Yu, J. A Review of the Numerical Modeling of Pulverized Coal Combustion for High-Efficiency, Low-Emissions (HELE) Power Generation. Energy Fuels 2021, 35, 7434–7466. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, F.; Zhao, X.; Yang, J.; Lu, H.; Lin, L.Y.; Fan, L.Z. Self-Chargeable Flexible Solid-State Supercapacitors for Wearable Electronics. ACS Appl. Mater. Interfaces 2020, 12, 44883–44891. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, S.; Liu, X.; Guo, P.; Zhang, K. Driving Forces of Temporal-Spatial Differences in CO2 Emissions at the City Level for China’s Transport Sector. Environ. Sci. Pollut. Res. 2021, 28, 25993–26006. [Google Scholar] [CrossRef]
- Winter, A.K.; Le, H.; Roberts, S. From Black to Blue Skies: Civil Society Perceptions of Air Pollution in Shanghai. China Q. 2021, 248, 1059–1080. [Google Scholar] [CrossRef]
- Mo, T. Design of Energy and Powertrain Systems for Electric Buses Based on Driving Cycles and Multiple Criteria. Ph.D. Thesis, Swinburne University of Technology Melbourne, Melbourne, Australia, 2022. [Google Scholar]
- Rezaie, B.; Rosen, M.A. District Heating and Cooling: Review of Technology and Potential Enhancements. Appl. Energy 2012, 93, 2–10. [Google Scholar] [CrossRef]
- Werner, S. International Review of District Heating and Cooling. Energy 2017, 137, 617–631. [Google Scholar] [CrossRef]
- Atienza-Márquez, A.; Bruno, J.C.; Coronas, A. Recovery and Transport of Industrialwaste Heat for Their Use in Urban District Heating and Cooling Networks Using Absorption Systems. Appl. Sci. 2020, 10, 10291. [Google Scholar] [CrossRef]
- Oh, T.H.; Hasanuzzaman, M.; Selvaraj, J.; Teo, S.C.; Chua, S.C. Energy Policy and Alternative Energy in Malaysia: Issues and Challenges for Sustainable Growth—An Update. Renew. Sustain. Energy Rev. 2018, 81, 3021–3031. [Google Scholar] [CrossRef]
- Cederborg, A.J.; Snöbohm, S. Is there a Relationship between Economic Growth and Carbon Dioxide Emissions? Economic 2016. [Google Scholar] [CrossRef]
- Mohd Chachuli, F.S.; Ahmad Ludin, N.; Md Jedi, M.A.; Hamid, N.H. Transition of Renewable Energy Policies in Malaysia: Benchmarking with Data Envelopment Analysis. Renew. Sustain. Energy Rev. 2021, 150, 111456. [Google Scholar] [CrossRef]
- Sarkar, M.S.K.; Al-Amin, A.Q.; Filho, W.L. Revisiting the Social Cost of Carbon after INDC Implementation in Malaysia: 2050. Environ. Sci. Pollut. Res. 2019, 26, 6000–6013. [Google Scholar] [CrossRef]
- Rahmat, M.A.A.; Abd Hamid, A.S.; Lu, Y.; Ishak, M.A.A.; Suheel, S.Z.; Fazlizan, A.; Ibrahim, A. An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro. Sustainability 2022, 14, 13684. [Google Scholar] [CrossRef]
- Shahida, N.; Suhaime, M.; Suheel, S.Z.; Safwan, A.A. Energy Distribution and Economic Analysis of a Residential House with the Net-Energy Metering Scheme in Malaysia. Int. J. Electr. Comput. Eng. 2022, 12, 2313–2322. [Google Scholar] [CrossRef]
- Abdullah, W.M.Z.B.W.; Zainudin, W.N.R.A.B.; Ishak, W.W.B.M.; Sulong, F.B.; Zia Ul Haq, H.M. Public Participation of Renewable Energy (Ppred) Model in Malaysia: An Instrument Development. Int. J. Renew. Energy Dev. 2020, 10, 119–137. [Google Scholar] [CrossRef]
- Razali, A.H.; Pauzi Abdullah, M.; Hassan, M.Y.; Said, D.M.; Hussin, F. Net Energy Metering Scheme Based on Time of Use Pricing for Residents in Malaysia. Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 1140–1146. [Google Scholar] [CrossRef]
- Garofalo, E.; Bevione, M.; Cecchini, L.; Mattiussi, F.; Chiolerio, A. Waste Heat to Power: Technologies, Current Applications, and Future Potential. Energy Technol. 2020, 8, 2000413. [Google Scholar] [CrossRef]
- Firth, A.; Zhang, B.; Yang, A. Quantification of Global Waste Heat and Its Environmental Effects. Appl. Energy 2019, 235, 1314–1334. [Google Scholar] [CrossRef]
- Forman, C.; Muritala, I.K.; Pardemann, R.; Meyer, B. Estimating the Global Waste Heat Potential. Renew. Sustain. Energy Rev. 2016, 57, 1568–1579. [Google Scholar] [CrossRef]
- Miró, L.; Gasia, J.; Cabeza, L.F. Thermal Energy Storage (TES) for Industrial Waste Heat (IWH) Recovery: A Review. Appl. Energy 2016, 179, 284–301. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, X.; Lu, H.; Ni, T.; Li, Y. Waste Energy Recovery and Energy Efficiency Improvement in China’s Iron and Steel Industry. Appl. Energy 2017, 191, 502–520. [Google Scholar] [CrossRef]
- He, K.; Wang, L.; Li, X. Review of the Energy Consumption and Production Structure of China’s Steel Industry: Current Situation and Future Development. Metals 2020, 10, 302. [Google Scholar] [CrossRef]
- Sahin, A.D. Progress and Recent Trends in Wind Energy. Prog. Energy Combust. Sci. 2004, 30, 501–543. [Google Scholar] [CrossRef]
- Patel, S.; Parkins, J.R. Assessing Motivations and Barriers to Renewable Energy Development: Insights from a Survey of Municipal Decision-Makers in Alberta, Canada. Energy Rep. 2023, 9, 5788–5798. [Google Scholar] [CrossRef]
- Bontempo, R.; Manna, M. Diffuser Augmented Wind Turbines: Review and Assessment of Theoretical Models. Appl. Energy 2020, 280, 115867. [Google Scholar] [CrossRef]
- Schubel, P.J.; Crossley, R.J. Wind Turbine Blade Design. Energies 2012, 5, 3425–3449. [Google Scholar] [CrossRef]
- Okulov, V.; Kuik, G. The Betz-Joukowski Limit: On the Contribution to Rotor Aerodynamics by the British, German and Russian Scientific Schools. Wind Energy 2012, 15, 335–344. [Google Scholar] [CrossRef]
- Kramm, G.; Sellhorst, G.; Ross, H.K.; Cooney, J.; Dlugi, R.; Mölders, N. On the Maximum of Wind Power Efficiency. J. Power Energy Eng. 2016, 4, 1. [Google Scholar] [CrossRef]
- Chaviaropoulos, P.K.; Hansen, M.O.L. Investigating Three-Dimensional and Rotational Effects on Wind Turbine Blades by Means of a Quasi-3d Navier-Stokes Solver. J. Fluids Eng. Trans. ASME 2000, 122, 330–336. [Google Scholar] [CrossRef]
- Du, Z.; Selig, M. A 3-D Stall-Delay Model for Horizontal Axis Wind Turbine Performance Prediction. In 1998 ASME Wind Energy Symposium; Aerospace Sciences Meetings; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1998. [Google Scholar]
- Elliott, D.L. Status of Wake and Array Loss Research. In Proceedings of the 21 American Wind Energy Association Conference: Windpower ’91, Palm Springs, CA, USA, 24–27 September 1991; pp. 224–227. [Google Scholar]
- van Kuik, G.A.M. The Lanchester–Betz–Joukowsky Limit. Wind Energy 2007, 10, 289–291. [Google Scholar] [CrossRef]
- Van Kuik, G.A.M.; Sørensen, J.N.; Okulov, V.L. Rotor Theories by Professor Joukowsky: Momentum Theories. Prog. Aerosp. Sci. 2015, 73, 1–18. [Google Scholar] [CrossRef]
- Lock, C.N.H.; Bateman, H.; Townend, H.C.H. An Extension of the Vortex Theory of Airscrews with Applications to Airscrews of Small Pitch, Including Experimental Results; HMSO London: London, UK, 1926. [Google Scholar]
- Glauert, H. The Elements of Aerofoil and Airscrew Theory; Cambridge Science Classics; Cambridge University Press: Cambridge, UK, 1983; ISBN 9780521274944. [Google Scholar]
- Yuan, Z.; Jiang, J.; Zang, J.; Sheng, Q.; Sun, K.; Zhang, X.; Ji, R. A Fast Two-Dimensional Numerical Method for the Wake Simulation of a Vertical Axis Wind Turbine. Energies 2021, 14, 49. [Google Scholar]
- Tang, S.; Tian, D.; Huang, M.; Li, B.; Tao, L. Load Control Optimization Method for Offshore Wind Turbine Based on LTR. Energy Rep. 2021, 7, 4288–4297. [Google Scholar] [CrossRef]
- Zadorozhna, D.B.; Benavides, O.; Grajeda, J.S.; Ramirez, S.F.; de la Cruz May, L. A Parametric Study of the Effect of Leading Edge Spherical Tubercle Amplitudes on the Aerodynamic Performance of a 2D Wind Turbine Airfoil at Low Reynolds Numbers Using Computational Fluid Dynamics. Energy Rep. 2021, 7, 4184–4196. [Google Scholar] [CrossRef]
- Abdelsalam, A.M.; Kotb, M.A.; Yousef, K.; Sakr, I.M. Performance Study on a Modified Hybrid Wind Turbine with Twisted Savonius Blades. Energy Convers. Manag. 2021, 241, 114317. [Google Scholar] [CrossRef]
- Zadeh, M.N.; Pourfallah, M.; Sabet, S.S.; Gholinia, M.; Mouloodi, S.; Ahangar, A.T. Performance Assessment and Optimization of a Helical Savonius Wind Turbine by Modifying the Bach’s Section. SN Appl. Sci. 2021, 3, 1–11. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, X.; Chao, Y.; Li, Q.; Li, M.; Chen, T.; Ouyang, W. Numerical Optimization of Horizontal-Axis Wind Turbine Blades with Surrogate Model. Proc. Inst. Mech. Eng. Part A J. Power Energy 2020, 235, 1173–1186. [Google Scholar] [CrossRef]
- Paranjape, A.D.; Bajaj, A.S.; Palanganda, S.T.; Parikh, R.; Nayak, R.; Radhakrishnan, J. Computational Analysis of High-Lift-Generating Airfoils for Diffuser-Augmented Wind Turbines. Wind Energy Sci. 2021, 6, 149–157. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mohammadi, R.; Ramadan, A.; Mohamed, M.H. Numerical Investigation of Performance Refinement of a Drag Wind Rotor Using Flow Augmentation and Momentum Exchange Optimization. Energy 2018, 158, 592–606. [Google Scholar] [CrossRef]
- Dighe, V.V.; de Oliveira, G.; Avallone, F.; van Bussel, G.J.W. On the Effects of the Shape of the Duct for Ducted Wind Turbines. Wind Energy Symp. 2018, 2018, 997. [Google Scholar] [CrossRef]
- Alejandro Franco, J.; Carlos Jauregui, J.; Toledano-Ayala, M. Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades. J. Energy Resour. Technol. 2015, 137, 051206. [Google Scholar] [CrossRef]
- Ibrahim, M.; Alsultan, A.; Shen, S.; Amano, R.S. Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle. J. Energy Resour. Technol. 2015, 137, 051205. [Google Scholar] [CrossRef]
- Koay, Y.Y.; Tan, J.D.; Koh, S.P.; Chong, K.H.; Tiong, S.K.; Ekanayake, J. Optimization of Wind Energy Conversion Systems—An Artificial Intelligent Approach. Int. J. Power Electron. Drive Syst. 2020, 11, 1040–1046. [Google Scholar] [CrossRef]
- Attig-Bahar, F.; Ritschel, U.; Akari, P.; Abdeljelil, I.; Amairi, M. Wind Energy Deployment in Tunisia: Status, Drivers, Barriers and Research Gaps—A Comprehensive Review. Energy Rep. 2021, 7, 7374–7389. [Google Scholar] [CrossRef]
- Tan, J.D.; Chang, C.C.W.; Bhuiyan, M.A.S.; Minhad, K.N.; Ali, K. Advancements of Wind Energy Conversion Systems for Low-Wind Urban Environments: A Review. Energy Rep. 2022, 8, 3406–3414. [Google Scholar] [CrossRef]
- Acarer, S.; Uyulan, Ç.; Karadeniz, Z.H. Optimization of Radial Inflow Wind Turbines for Urban Wind Energy Harvesting. Energy 2020, 202, 117772. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Hou, Y.; Yuan, R.; Luo, K.; Fan, J. Micrositing of Roof Mounting Wind Turbine in Urban Environment: CFD Simulations and Lidar Measurements. Renew. Energy 2018, 115, 1118–1133. [Google Scholar] [CrossRef]
- Šarkić Glumac, A.; Hemida, H.; Höffer, R. Wind Energy Potential above a High-Rise Building Influenced by Neighboring Buildings: An Experimental Investigation. J. Wind Eng. Ind. Aerodyn. 2018, 175, 32–42. [Google Scholar] [CrossRef]
- Didane, D.H.; Maksud, S.M.; Zulkafli, M.F.; Rosly, N.; Shamsudin, S.S.; Khalid, A. Performance Investigation of a Small Savonius-Darrius Counter-Rotating Vertical-Axis Wind Turbine. Int. J. Energy Res. 2020, 44, 9309–9316. [Google Scholar] [CrossRef]
- Rodriguez, C.V.; Ríos, A.; Luyo, J.E. CFD Design of Urban Wind Turbines: A Review and Critical Analysis. Int. J. Renew. Energy Res. 2021, 11, 618–638. [Google Scholar] [CrossRef]
- Blocken, B. LES over RANS in Building Simulation for Outdoor and Indoor Applications: A Foregone Conclusion? Springer: Berlin/Heidelberg, Germany, 2018; Volume 11, ISBN 1227301804. [Google Scholar]
- Shonhiwa, C.; Makaka, G. Concentrator Augmented Wind Turbines: A Review. Renew. Sustain. Energy Rev. 2016, 59, 1415–1418. [Google Scholar] [CrossRef]
- Taura, L.S. The Use of a Continuity Equation of Fluid Mechanics to Reduce the Abnormality of the Cardiovascular System: A Control Mechanics of the Human Heart. J. Biophys. Struct. Biol. 2012, 4, 1–12. [Google Scholar] [CrossRef]
- Sabzevari, A. Performance Characteristics of Concentrator-Augmented Savonius Wind Rotors. Wind Eng. 1977, 1, 198–206. [Google Scholar]
- Anzai, A.; Nemoto, Y.; Ushiyama, I. Wind Tunnel Analysis of Concentrators for Augmented Wind Turbines. Wind Eng. 2004, 28, 605–614. [Google Scholar] [CrossRef]
- Shikha, S.; Bhatti, T.S.; Kothari, D.P. Air Concentrating Nozzles: A Promising Option for Wind Turbines. Int. J. Energy Technol. Policy 2005, 3, 394–412. [Google Scholar] [CrossRef]
- Van Bussel, G.J.W. The Science of Making More Torque from Wind: Diffuser Experiments and Theory Revisited. J. Phys. Conf. Ser. 2007, 75, 012010. [Google Scholar] [CrossRef]
- Chong, W.T.; Fazlizan, A.; Poh, S.C.; Pan, K.C.; Hew, W.P.; Hsiao, F.B. The Design, Simulation and Testing of an Urban Vertical Axis Wind Turbine with the Omni-Direction-Guide-Vane. Appl. Energy 2013, 112, 601–609. [Google Scholar] [CrossRef]
- Osman, D.A.A.; Rosmin, N.; Hasan, N.S.; Ishak, B.; Mustaamal Jamal, A.H.; Marzuki, M. Savonius Wind Turbine Performances on Wind Concentrator. Int. J. Power Electron. Drive Syst. 2017, 8, 376–383. [Google Scholar]
- Allaei, D.; Andreopoulos, Y. INVELOX: Description of a New Concept in Wind Power and Its Performance Evaluation. Energy 2014, 69, 336–344. [Google Scholar] [CrossRef]
- Han, W.; Yan, P.; Han, W.; He, Y. Design of Wind Turbines with Shroud and Lobed Ejectors for Efficient Utilization of Low-Grade Wind Energy. Energy 2015, 89, 687–701. [Google Scholar] [CrossRef]
- Koç, E.; Yavuz, T. Effect of Flap on the Wind Turbine-Concentrator Combination. Int. J. Renew. Energy Res. 2019, 9, 551–560. [Google Scholar]
- Thangavelu, S.K.; Goh, C.Y.; Sia, C.V. Design and Flow Simulation of Concentrator Augmented Wind Turbine. IOP Conf. Ser. Mater. Sci. Eng. 2019, 501, 012041. [Google Scholar] [CrossRef]
- Rajendra Prasad, K.; Manoj Kumar, V.; Swaminathan, G.; Loganathan, G.B. Computational Investigation and Design Optimization of a Duct Augmented Wind Turbine (DAWT). Mater. Today Proc. 2020, 22, 1186–1191. [Google Scholar] [CrossRef]
- Taghinezhad, J.; Alimardani, R.; Masdari, M.; Mosazadeh, H. Parametric Study and Flow Characteristics of a New Duct for Ducted Wind Turbines System Using Analytical Hierarchy Process: Numerical & Experimental Study. Energy Syst. 2022, 3, 1–30. [Google Scholar] [CrossRef]
- Heragy, M.; Kono, T.; Kiwata, T. Investigating the Effects of Wind Concentrator on Power Performance Improvement of Crossflow Wind Turbine. Energy Convers. Manag. 2022, 255, 115326. [Google Scholar] [CrossRef]
- Aman, M. Power Generation from Piezoelectric Footstep Technique. J. Mech. Contin. Math. Sci. 2018, 13, 67–72. [Google Scholar] [CrossRef]
- Xue, X.; Wang, S.; Guo, W.; Zhang, Y.; Wang, Z.L. Hybridizing Energy Conversion and Storage in a Mechanical-to- Electrochemical Process for Self-Charging Power Cell. Nano Lett. 2012, 12, 5048–5054. [Google Scholar] [CrossRef] [PubMed]
- Broberg Viklund, S.; Johansson, M.T. Technologies for Utilization of Industrial Excess Heat: Potentials for Energy Recovery and CO2 Emission Reduction. Energy Convers. Manag. 2014, 77, 369–379. [Google Scholar] [CrossRef]
- Han, F.; Wang, Z.; Ji, Y.; Li, W.; Sundén, B. Energy Analysis and Multi-Objective Optimization of Waste Heat and Cold Energy Recovery Process in LNG-Fueled Vessels Based on a Triple Organic Rankine Cycle. Energy Convers. Manag. 2019, 195, 561–572. [Google Scholar] [CrossRef]
- Ng, C.W.; Tam, I.C.K.; Wu, D. System Modelling of Organic Rankine Cycle for Waste Energy Recovery System in Marine Applications. Energy Procedia 2019, 158, 1955–1961. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rasul, M.G.; Khan, M.M.K.; Ashwath, N.; Jahirul, M.I. Energy Recovery from Municipal Solid Waste Using Pyrolysis Technology: A Review on Current Status and Developments. Renew. Sustain. Energy Rev. 2021, 145, 111073. [Google Scholar] [CrossRef]
- Utlu, Z. Thermophotovoltaic Applications in Waste Heat Recovery Systems: Example of GaSb Cell. Int. J. Low-Carbon Technol. 2020, 15, 277–286. [Google Scholar] [CrossRef]
- Rashid, W.E.S.W.A.; Ker, P.J.; Jamaludin, M.Z.B.; Gamel, M.M.A.; Lee, H.J.; Rahman, N.B.A. Recent Development of Thermophotovoltaic System for Waste Heat Harvesting Application and Potential Implementation in Thermal Power Plant. IEEE Access 2020, 8, 105156–105168. [Google Scholar] [CrossRef]
- Kumaravelu, T.; Saadon, S.; Abu Talib, A.R. Heat Transfer Enhancement of a Stirling Engine by Using Fins Attachment in an Energy Recovery System. Energy 2022, 239, 121881. [Google Scholar] [CrossRef]
- Hasanpour Omam, S. Exhaust Waste Energy Recovery Using Otto-ATEG-Stirling Engine Combined Cycle. Appl. Therm. Eng. 2021, 183, 116210. [Google Scholar] [CrossRef]
- Chikere, A.O.; Al-Kayiem, H.H.; Karim, Z.A.A. Review on the Enhancement Techniques and Introduction of an Alternate Enhancement Technique of Solar Chimney Power Plant. J. Appl. Sci. 2011, 11, 1877–1884. [Google Scholar] [CrossRef]
- Chilugodu, N.; Yoon, Y.J.; Chua, K.S.; Datta, D.; Baek, J.D.; Park, T.; Park, W.T. Simulation of Train Induced Forced Wind Draft for Generating Electrical Power from Vertical Axis Wind Turbine (VAWT). Int. J. Precis. Eng. Manuf. 2012, 13, 1177–1181. [Google Scholar] [CrossRef]
- Goh, K.H.; Duan, F. Performance of a Prototype Micro Wind Turbine in the Manmade Wind Field from Air Conditioner of Buildings. QScience Connect. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Venkatesh, G. Power Production Technique Using Exhaust Gas from Present Automobiles via Convergent-Divergent Nozzle. In Proceedings of the 2006 IEEE Conference on Electric and Hybrid Vehicles, Pune, India, 18–20 December 2006. [Google Scholar] [CrossRef]
- Tong, C.W.; Chew, P.S.; Abdullah, A.F.; Sean, O.C.; Ching, T.C. Exhaust Air and Wind Energy Recovery System for Clean Energy Generation. In Proceedings of the 2011 International Conference on Environment and Industrial Innovation IPCBEE, Kuala Lumpur, Malaysia, 4–5 June 2011. [Google Scholar]
- Chong, W.T.; Poh, S.C.; Fazlizan, A.; Yip, S.Y.; Chang, C.K.; Hew, W.P. Early Development of an Energy Recovery Wind Turbine Generator for Exhaust Air System. Appl. Energy 2013, 112, 568–575. [Google Scholar] [CrossRef]
- Wong, K.H.; Chong, W.T.; Yap, H.T.; Fazlizan, A.; Omar, W.Z.W.; Poh, S.C.; Hsiao, F.B. The Design and Flow Simulation of a Power-Augmented Shroud for Urban Wind Turbine System. Energy Procedia 2014, 61, 1275–1278. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Git, H.M.; Lee, S.L. Experimental Investigation on Solar - Flue Gas Chimney. J. Power Energy Eng. 2009, 3, 25–31. [Google Scholar]
- Hossain, M.T.; Hasan, A.; Paul, R.; Akter, N. Producing Electrical Energy by Using Wastage Wind Energy from Exhaust Fans of Industries. Int. J. Sci. Eng. Res. 2013, 4, 1184–1187. [Google Scholar]
- Mann, H.S.; Singh, P.K. Effect of Number of Blades in Ducted Turbine System on Kinetic Energy Extraction from Chimney Flue Gases—Benchmarking with Wind Energy System. J. Mech. Sci. Technol. 2018, 32, 5443–5455. [Google Scholar] [CrossRef]
- Mann, H.S.; Singh, P.K. Kinetic Energy Recovery from the Chimney Flue Gases Using Ducted Turbine System. Chin. J. Mech. Eng. 2017, 30, 472–482. [Google Scholar] [CrossRef]
- Mann, H.S.; Singh, P.K. Conceptual Development of an Energy Recovery from the Chimney Flue Gases Using Ducted Turbine System. J. Nat. Gas Sci. Eng. 2016, 33, 448–457. [Google Scholar] [CrossRef]
- Puttichaem, W.; Putivisutisak, S.; Boonyongmaneerat, Y.; Vadhanasindhud, P. Early Development of a Shaftless Horizontal Axis Wind Turbine for Generating Electricity from Air Discharged from Ventilation Systems. Int. J. Energy Res. 2020, 2019, 1–11. [Google Scholar] [CrossRef]
- Puttichaem, W.; Boonyongmaneerat, Y.; Vadhanasindhu, P.; Putivisutisak, S. Performance of the Prototype Shaftless Small Scale Horizontal Wind Turbine for Electricity Generating from Industrial Exhaust Air System. In IOP Conference Series: Earth and Environmental Science 2020; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 463. [Google Scholar] [CrossRef]
- Suheel, S.Z.; Fazlizan, A. Workability of a New Kinetic Energy Recovery System Proven Mathematically. In Proceedings of the Green Design and Manufacture 2020, Arau, Malaysia, 23–24 July 2020; Volume 2339. [Google Scholar] [CrossRef]
- Yeboah, D.; Ackor, N.; Abrowah, E. Evaluation of Wind Energy Recovery from an Underground Mine Exhaust Ventilation System. J. Eng. 2023, 2023, 1–20. [Google Scholar] [CrossRef]
- Toghraie, D.; Karami, A.; Afrand, M.; Karimipour, A. Effects of Geometric Parameters on the Performance of Solar Chimney Power Plants. Energy 2018, 162, 1052–1061. [Google Scholar] [CrossRef]
- Kasaeian, A.; Mahmoudi, A.R.; Astaraei, F.R.; Hejab, A. 3D Simulation of Solar Chimney Power Plant Considering Turbine Blades. Energy Convers. Manag. 2017, 147, 55–65. [Google Scholar] [CrossRef]
- Chong, W.T.; Fazlizan, A.; Poh, S.C.; Yip, S.Y.; Hew, W.P. The Design and Testing of an Exhaust Air Energy Recovery Wind Turbine Generator. In Proceedings of the World Renewable Energy Congress XII, Colorado Renewable Energy Society (CRES) Annual Conference, Denver, Colorado, 13–17 May 2012; Volume 4, pp. 2721–2727. [Google Scholar] [CrossRef]
- Rogowski, K.; Hansen, M.O.L.; Lichota, P. 2-D CFD Computations of the Two-Bladed Darrieus-Type Wind Turbine. J. Appl. Fluid Mech. 2018, 11, 835–845. [Google Scholar] [CrossRef]
Ref. No. | Design | Orientation | Application | Propulsion | Peak Efficiency |
---|---|---|---|---|---|
1 | Savonius rotor | VAWT | Historic Persian windmill to modern-day ventilation | Drag | 16% |
2 | Cup | VAWT | Modern-day cup anemometer | Drag | 8% |
3 | American farm windmill | HAWT | 18th century to the present day, farms were used for pumping water, grinding wheat, generating electricity | Lift | 31% |
4 | Dutch windmill | HAWT | 16th century, used for grinding wheat | Lift | 27% |
5 | Darrieus rotor (eggbeater) | VAWT | 20th-century electricity generation | Lift | 40% |
6 | Modern wind turbine | HAWT | 20th-century electricity generation | Lift | Single-bladed: 43% Two-bladed: 47% Three-bladed: 50% |
Author(s) | Methods | Advantages | Limitations |
---|---|---|---|
Yuan Z. et al. [43] | Wake-field: Numerical simulation | A fast and accurate method to design the optimized array of VAWTs by simulating the wake-field | The method is theoretically feasible; however, experimental validation is limited |
S. Tang et al. [44] | Pitch controller: Loop transfer recovery (LTR)-based pitch controller optimization | Turbine rotor rotation and tower motion controller (due to aerodynamic forces), improved performance for tower load alleviation and power fluctuation mitigation | Suitable for HAWT only, output power stabilization needs to be investigated under different wind conditions |
O. Benavides et al. [45] | Aerofoil: Optimization by CFD analysis on low Reynolds number aerofoil | Compared to the unmodified version of the aerofoil, the aerofoil with a tubercle at the leading edge has a lower maximum lift coefficient and a lower stall angle | Not suitable for a large-scale HAWT; instead, it performs better for a small VAWT in low winds |
M. Abdelsalam et al. [46] | Hybrid VAWT rotors | The improved self-starting ability of the Savonius rotor due to additional Darrieus blades | A variation in radius ratio has a significant influence on performance and structural complexity |
Zadeh M.N., et al. [47] | Blade optimization | Compared to the basic helical Savonius rotor, the optimized Bach model performed better in the high velocity and turbulent environment | Lack of experimental validation |
Wang et al. [48] | Blade optimization (based on the combined method of surrogate model and numerical simulation) | Optimized blade of HAWT can capture more kinetic energy, power coefficient increased by 4.3% | The structural load on the HAWT blade also increased, not applicable for VAWT |
Aniruddha et al. [49] | Flow augmentation | A pool of airfoils to design the diffuser as an augmentor for wind turbines | The thrust coefficient and tip clearance effect of the turbine in the diffuser are yet to be studied |
M. Mohammadi et al. [50] | Flow augmentation | The performance of the Savonius turbine improved by adding a nozzle in front of the advancing blade | The nozzle is fixed, and hence, cannot follow the wind direction |
Dighe et al. [51] | Flow augmentation | Among different shapes of the Duct for DWT, the S1223 airfoil-shaped duct attained better coefficient of performance | Increased structural complexity |
Researcher | System Source | Novelty | Velocity | Velocity Augmented | Turbine Type |
---|---|---|---|---|---|
Al-Kayiem et al. [95] | Industrial flue gas | Used industrial flue gas to increase the efficiency of the SCPP | 4.1 m/s | 4.6 m/s | Savonius wind rotor |
Chong et al. [94] | Steam from cooling towers | Used guide vanes and side diffusers for a HAWT | 8 m/s | 30.4% | 5-bladed HAWT |
Nikhita Chilugodu et al. [89] | Wind is generated from the kinematic movement of trains | The use of VAWT in the vicinity of the MRT train system in Singapore | 6–8 m/s | 6% (with the increase in altitude) | VAWT |
Md. Abir et al. [96] | Air from industrial exhaust systems | Suggested methods to conserve velocity until the wind turbine | 14.5–16 m/s | - | - |
Mann and Singh [97,98,99] | Industrial flue gas | Suggested the use of augmenting the velocity using the most appropriate diffuser and harnessing the kinetic energy in the industrial flue gas | 20 m/s | 57.2 m/s | VAWT (NACA air foils) |
Wachira Puttichaem et al. [100,101] | Air condition exhaust | Suggested the use of a novel design of SSHWT equipped with a novel BDC generator | 1–5 m/s | - | SSHWT |
Douglas Yeboah et al. [103] | Underground mine exhaust | Suggested the use of exhaust wind from underground mines | 7.67 m/s | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zishan, S.; Molla, A.H.; Rashid, H.; Wong, K.H.; Fazlizan, A.; Lipu, M.S.H.; Tariq, M.; Alsalami, O.M.; Sarker, M.R. Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources. Sustainability 2023, 15, 15345. https://doi.org/10.3390/su152115345
Zishan S, Molla AH, Rashid H, Wong KH, Fazlizan A, Lipu MSH, Tariq M, Alsalami OM, Sarker MR. Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources. Sustainability. 2023; 15(21):15345. https://doi.org/10.3390/su152115345
Chicago/Turabian StyleZishan, Shaikh, Altaf Hossain Molla, Haroon Rashid, Kok Hoe Wong, Ahmad Fazlizan, Molla Shahadat Hossain Lipu, Mohd Tariq, Omar Mutab Alsalami, and Mahidur R. Sarker. 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources" Sustainability 15, no. 21: 15345. https://doi.org/10.3390/su152115345
APA StyleZishan, S., Molla, A. H., Rashid, H., Wong, K. H., Fazlizan, A., Lipu, M. S. H., Tariq, M., Alsalami, O. M., & Sarker, M. R. (2023). Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources. Sustainability, 15(21), 15345. https://doi.org/10.3390/su152115345