How to Promote the Development of Industrial Wastewater Treatment Technological Innovation in China: A Tripartite Evolutionary Game Analysis
Abstract
:1. Introduction
- (1)
- To establish a three-party game model of the government, wastewater enterprises, and WTSPs considering factors such as public participation and penalty mechanisms and to analyze the strategies of each party;
- (2)
- To investigate the reciprocal impact and evolutionary trend of each party’s strategy and elucidate the effects of diverse factors on the conduct and decisions of participants in the game;
- (3)
- To propose countermeasure suggestions for stakeholders’ promotion of technological innovation development in wastewater treatment, drawing on the findings of this research.
2. Literature Review
2.1. Industrial Wastewater Treatment Technology
2.2. Incentive Mechanism under Evolutionary Game
3. Game Modeling and Analysis
3.1. Model Assumptions
3.2. Model Establishment
3.3. Analysis of Evolutionary Equilibrium Strategies
3.3.1. Evolutionary Equilibrium Strategy Analysis of the Government
3.3.2. Evolutionary Equilibrium Strategy Analysis of Wastewater Enterprises
3.3.3. Evolutionary Equilibrium Strategy Analysis of Wastewater Technology Service Providers
3.4. Analysis of Evolutionary Stability Points
4. Numerical Simulation Analysis
4.1. Impact of Different Initial Strategies
4.2. Sensitivity Analysis of Related Factors
4.2.1. The Impact of the Penalty Parameters, S1 and S2
4.2.2. The Impact of the Subsidy Parameters, I1 and I2
4.2.3. The Impact of the Cost Parameters, C12 and C21
4.2.4. The Impact of the Policy Cost Parameter, Cs
4.2.5. The Impact of the Loss-of-Reputation Parameter, Cf
5. Discussion
5.1. Strengthening Government Intervention and Optimizing Market Mechanisms
5.2. Creating an Appropriate System of Incentives and Penalties
5.3. Promoting Technological Innovation and Providing Additional Support
5.4. Promote Public Participation and Strengthen Government Internal Construction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Huang, S.; Xie, Y.; Wang, H.; Leng, G.; Huang, Q.; Wei, X.; Wang, L. Identification of the Non-stationarity of Floods: Changing Patterns, Causes, and Implications. Water Resour. Manag. 2018, 33, 939–953. [Google Scholar] [CrossRef]
- Chang, J.; Guo, A.; Wang, Y.; Ha, Y.; Zhang, R.; Xue, L.; Tu, Z. Reservoir Operations to Mitigate Drought Effects with a Hedging Policy Triggered by the Drought Prevention Limiting Water Level. Water Resour. Res. 2019, 55, 904–922. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, X.; Liang, P. Influence of drip irrigation by reclaimed water on the dynamic change of the nitrogen element in soil and tomato yield and quality. J. Clean. Prod. 2016, 139, 561–566. [Google Scholar] [CrossRef]
- Tong, Y.; Zhang, Q.; Cai, J.; Gao, C.; Wang, L.; Li, P. Water consumption and wastewater discharge in China’s steel industry. Ironmak. Steelmak. 2018, 45, 868–877. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Florke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present and future. Earth Future 2017, 5, 545–559. [Google Scholar] [CrossRef]
- Zhang, C.; Quan, B.; Tang, J.; Cheng, K.; Tang, Y.; Shen, W.; Su, P.; Zhang, C. China’s wastewater treatment: Status quo and sustainability perspectives. J. Water Process. Eng. 2023, 53, 103708. [Google Scholar] [CrossRef]
- Wang, R.; Wijen, F.; Heugens, P.P.M.A.R. Government’s green grip: Multifaceted state influence on corporate environmental actions in China. Strateg. Manag. J. 2017, 39, 403–428. [Google Scholar] [CrossRef]
- Wu, B.; Liu, P.; Xu, X. An evolutionary analysis of low-carbon strategies based on the government–enterprise game in the complex network context. J. Clean. Prod. 2017, 141, 168–179. [Google Scholar] [CrossRef]
- An, X.; Li, H.; Wang, L.; Wang, Z.; Ding, J.; Cao, Y. Compensation mechanism for urban water environment treatment PPP project in China. J. Clean. Prod. 2018, 201, 246–253. [Google Scholar] [CrossRef]
- Sun, X.; Wang, W.; Pang, J.; Liu, X.; Zhang, M. Study on the evolutionary game of central government and local governments under central environmental supervision system. J. Clean. Prod. 2021, 296, 126574. [Google Scholar] [CrossRef]
- Husted, B.W.; Salazar, J.d.J. Taking Friedman Seriously: Maximizing Profits and Social Performance. J. Manag. Stud. 2006, 43, 75–91. [Google Scholar] [CrossRef]
- Liu, M.; Shadbegian, R.; Zhang, B. Does environmental regulation affect labor demand in China? Evidence from the textile printing and dyeing industry. J. Environ. Econ. Manag. 2017, 86, 277–294. [Google Scholar] [CrossRef]
- Song, H.; Zhao, C.; Zeng, J. Can environmental management improve financial performance: An empirical study of A-shares listed companies in China. J. Clean. Prod. 2017, 141, 1051–1056. [Google Scholar] [CrossRef]
- Sheng, J.; Zhou, W.; Zhu, B. The coordination of stakeholder interests in environmental regulation: Lessons from China’s environmental regulation policies from the perspective of the evolutionary game theory. J. Clean. Prod. 2020, 249, 119385. [Google Scholar] [CrossRef]
- Maizel, A.C.; Remucal, C.K. The effect of advanced secondary municipal wastewater treatment on the molecular composition of dissolved organic matter. Water Res. 2017, 122, 42–52. [Google Scholar] [CrossRef]
- Li, X.; Chen, W.; Ma, L.; Wang, H.; Fan, J. Industrial wastewater advanced treatment via catalytic ozonation with an Fe-based catalyst. Chemosphere 2018, 195, 336–343. [Google Scholar] [CrossRef]
- Liu, J.; Yi, Y.; Wang, X. Exploring factors influencing construction waste reduction: A structural equation modeling approach. J. Clean. Prod. 2020, 276, 123185. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Q.; Zhou, Z. A two-stage DEA model for resource allocation in industrial pollution treatment and its application in China. J. Clean. Prod. 2019, 228, 29–39. [Google Scholar] [CrossRef]
- Miao, C.L.; Meng, X.N.; Duan, M.M.; Wu, X.Y. Energy consumption, environmental pollution, and technological innovation efficiency: Taking industrial enterprises in China as empirical analysis object. Environ. Sci. Pollut. Res. 2020, 27, 34147–34157. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, Q.; Tang, J. Evolutionary game analysis of environmental pollution control under the government regulation. Sci. Rep. 2022, 12, 474. [Google Scholar] [CrossRef] [PubMed]
- de Frutos, J.; Martín-Herrán, G. Spatial effects and strategic behavior in a multiregional transboundary pollution dynamic game. J. Environ. Econ. Manag. 2019, 97, 182–207. [Google Scholar] [CrossRef]
- Li, L.; Chen, W. The impact of subsidies in a transboundary pollution game with myopic players. Omega 2021, 103, 102383. [Google Scholar] [CrossRef]
- André, B.d.S.R.; Gabriel, M.S. Environmental policy regulation and corporate compliance in evolutionary game models with well-mixed and structured populations. Eur. J. Oper. Res. 2019, 279, 486–501. [Google Scholar]
- Zhang, L.; Song, Y.; Zhang, M.; Wu, W. Evolutionary game analysis of strategic interaction of environmental regulation among local governments. Environ. Dev. 2023, 45, 100793. [Google Scholar] [CrossRef]
- Li, B.; Wu, S. Effects of local and civil environmental regulation on green total factor productivity in China: A spatial Durbin econometric analysis. J. Clean. Prod. 2016, 153, 342–353. [Google Scholar] [CrossRef]
- Cai, L.; Cai, W.; Zhu, C.; Chen, S.; Mengting, Z.; Rocha, Á. An optimal penalty in an environmental pollution game with the suspension of production. J. Intell. Fuzzy Syst. 2016, 31, 2321–2333. [Google Scholar] [CrossRef]
- Chin, H.H.; Varbanov, P.S.; Klemeš, J.J.; Bandyopadhyay, S. Subsidised water symbiosis of eco-industrial parks: A multi-stage game theory approach. Comput. Chem. Eng. 2021, 155, 107539. [Google Scholar] [CrossRef]
- Shang, S.; Chen, Z.; Shen, Z.; Salman Shabbir, M.; Bokhari, A.; Han, N.; Klemeš, J.J. The effect of cleaner and sustainable sewage fee-to-tax on business innovation. J. Clean. Prod. 2022, 361, 132287. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Worden, S.; Cao, H.; Li, C. Public participation in environmental governance initiatives of chemical industrial parks. J. Clean. Prod. 2021, 305, 127092. [Google Scholar] [CrossRef]
- Chu, Z.; Bian, C.; Yang, J. How can public participation improve environmental governance in China? A policy simulation approach with multi-player evolutionary game. Environ. Impact Assess. Rev. 2022, 95, 106782. [Google Scholar] [CrossRef]
- Kou, P.; Han, Y.; Li, Y. An evolutionary analysis of corruption in the process of collecting environmental tax in China. Environ. Sci. Pollut. Res. Int. 2021, 28, 54852–54862. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Wei, Y.; Zhang, W.; Zhou, X.; Chen, H.; Huang, L.; Huang, J.; Kang, X.; Uddin, M.I. Evolutionary Game Simulation on Government Incentive Strategies of Prefabricated Construction: A System Dynamics Approach. Complexity 2020, 2020, 8861146. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, X.; Zhang, X. Collaborative strategy within China’s emission trading scheme: Evidence from a tripartite evolutionary game model. J. Clean. Prod. 2023, 382, 135255. [Google Scholar] [CrossRef]
- Hao, X.; Liu, G.; Zhang, X.; Dong, L. The coevolution mechanism of stakeholder strategies in the recycled resources industry innovation ecosystem: The view of evolutionary game theory. Technol. Forecast. Soc. Chang. 2022, 179, 121627. [Google Scholar] [CrossRef]
- Wang, Q.; Meng, H.; Gao, B. Spontaneous punishment promotes cooperation in public good game. Chaos Solitons Fractals 2019, 120, 183–187. [Google Scholar] [CrossRef]
- Sasaki, T. The Evolution of Cooperation Through Institutional Incentives and Optional Participation. Dyn. Games Appl. 2014, 4, 345–362. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Cheng, Z.; Zhong, C.; Ma, W. Evolution and equilibrium of a green technological innovation system: Simulation of a tripartite game model. J. Clean. Prod. 2021, 278, 123944. [Google Scholar] [CrossRef]
- Qu, J.; Wang, H.; Wang, K.; Yu, G.; Ke, B.; Yu, H.-Q.; Ren, H.; Zheng, X.; Li, J.; Li, W.-W.; et al. Municipal wastewater treatment in China: Development history and future perspectives. Front. Environ. Sci. Eng. 2019, 13, 88. [Google Scholar] [CrossRef]
- Gopal, R.; Chinnapan, M.M.; Bojarajan, A.K.; Rotte, N.K.; Ponraj, J.S.; Ganesan, R.; Atanas, I.; Nadarajah, M.; Manavalan, R.K.; Gaspar, J. Facile synthesis and defect optimization of 2D-layered MoS2 on TiO2 heterostructure for industrial effluent, wastewater treatments. Sci. Rep. 2020, 10, 21625. [Google Scholar] [CrossRef]
- Jia, X.; Yuan, S.; Li, B.; Miu, H.; Yuan, J.; Wang, C.; Zhu, Z.; Zhang, Y. Carbon Nanomaterials: Application and Prospects of Urban and Industrial Wastewater Pollution Treatment Based on Abrasion and Corrosion Resistance. Front. Chem. 2020, 8, 600594. [Google Scholar] [CrossRef] [PubMed]
- Guselnikova, O.; Barras, A.; Addad, A.; Sviridova, E.; Szunerits, S.; Postnikov, P.; Boukherroub, R. Magnetic polyurethane sponge for efficient oil adsorption and separation of oil from oil-in-water emulsions. Sep. Purif. Technol. 2020, 240, 116627. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, K.; Huang, X. Characterizing the roles of organic and inorganic foulants in RO membrane fouling development: The case of coal chemical wastewater treatment. Sep. Purif. Technol. 2019, 210, 1008–1016. [Google Scholar] [CrossRef]
- Kim, S.; Chu, K.H.; Al-Hamadani, Y.A.J.; Park, C.M.; Jang, M.; Kim, D.-H.; Yu, M.; Heo, J.; Yoon, Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018, 335, 896–914. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, H.; Liu, R.; Liu, H.; Qu, J. Effects of different secondary biological treatment processes followed by flocculation and sand-filtration on subsequent DBPs control from sewage treatment plants. Sep. Purif. Technol. 2019, 211, 81–89. [Google Scholar] [CrossRef]
- Pinkard, B.R.; Shetty, S.; Stritzinger, D.; Bellona, C.; Novosselov, I.V. Destruction of perfluorooctanesulfonate (PFOS) in a batch supercritical water oxidation reactor. Chemosphere 2021, 279, 130834. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.; Hu, H.; Liu, X.; Crittenden, J.; Huang, N. A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. Environ. Pollut. 2021, 275, 115785. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Dong, J.W.; Tan, S.K. Constructed wetlands for wastewater treatment in cold climate—A review. J. Environ. Sci. 2017, 57, 293–311. [Google Scholar] [CrossRef]
- Wang, W.; Cai, Y.; Hu, H.; Chen, J.; Wang, J.; Xue, G.; Wu, Q. Advanced treatment of bio-treated dyeing and finishing wastewater using ozone-biological activated carbon: A study on the synergistic effects. Chem. Eng. J. 2019, 359, 168–175. [Google Scholar] [CrossRef]
- Zhou, L.; Zhuang, W.-Q.; De Costa, Y.G. In situ and short-time anaerobic digestion coupled with alkalization and mechanical stirring to enhance sludge disintegration for phosphate recovery. Chem. Eng. J. 2018, 351, 878–885. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Q.; Sun, H.; Zhao, Q. Efficient nitrogen removal from synthetic domestic wastewater in a novel step-feed three-stage integrated anoxic/oxic biological aerated filter process through optimizing influent flow distribution ratio. J. Environ. Manag. 2019, 231, 1277–1282. [Google Scholar] [CrossRef]
- Gutierrez, A.M.; Dziubla, T.D.; Hilt, J.Z. Recent advances on iron oxide magnetic nanoparticles as sorbents of organic pollutants in water and wastewater treatment. Rev. Environ. Health 2017, 32, 111–117. [Google Scholar] [CrossRef]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hubner, U. Evaluation of advanced oxidation processes for water and wastewater treatment—A critical review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Dereli, R.K.; Wang, X.; van der Zee, F.P.; van Lier, J.B. Biological performance and sludge filterability of anaerobic membrane bioreactors under nitrogen limited and supplied conditions. Water Res. 2018, 137, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2018, 17, 145–155. [Google Scholar] [CrossRef]
- He, L.; Chen, L. The incentive effects of different government subsidy policies on green buildings. Renew. Sustain. Energy Rev. 2021, 135, 110123. [Google Scholar] [CrossRef]
- Newton, J. Evolutionary Game Theory: A Renaissance. Games 2018, 9, 31. [Google Scholar] [CrossRef]
- Long, H.; Liu, H.; Li, X.; Chen, L. An Evolutionary Game Theory Study for Construction and Demolition Waste Recycling Considering Green Development Performance under the Chinese Government’s Reward-Penalty Mechanism. Int. J. Environ. Res. Public Health 2020, 17, 6303. [Google Scholar] [CrossRef]
- Yuan, M.; Li, Z.; Li, X.; Li, L.; Zhang, S.; Luo, X. How to promote the sustainable development of prefabricated residential buildings in China: A tripartite evolutionary game analysis. J. Clean. Prod. 2022, 349, 131423. [Google Scholar] [CrossRef]
- Liu, Y.; Zuo, J.; Pan, M.; Ge, Q.; Chang, R.; Feng, X.; Fu, Y.; Dong, N. The incentive mechanism and decision-making behavior in the green building supply market: A tripartite evolutionary game analysis. Build. Environ. 2022, 214, 108903. [Google Scholar] [CrossRef]
- Wang, G.; Chao, Y.; Chen, Z. Promoting developments of hydrogen powered vehicle and solar PV hydrogen production in China: A study based on evolutionary game theory method. Energy 2021, 237, 121649. [Google Scholar] [CrossRef]
- Zhu, G.; Pan, G.; Zhang, W. Evolutionary Game Theoretic Analysis of Low Carbon Investment in Supply Chains under Governmental Subsidies. Int. J. Environ. Res. Public Health 2018, 15, 2465. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Gao, X.; Hua, C.; Gong, S.; Yue, A. Evolutionary process of promoting green building technologies adoption in China: A perspective of government. J. Clean. Prod. 2021, 279, 123607. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Shen, G.Q.; Yan, Y. Incentives for green retrofits: An evolutionary game analysis on Public-Private-Partnership reconstruction of buildings. J. Clean. Prod. 2019, 232, 1076–1092. [Google Scholar] [CrossRef]
- Water Pollution Control Action Plan. Available online: https://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm (accessed on 9 October 2023). (In Chinese)
- Amaral, A.L.; Martins, R.; Dias, L.C. Efficiency benchmarking of wastewater service providers: An analysis based on the Portuguese case. J. Environ. Manag. 2022, 321, 115914. [Google Scholar] [CrossRef]
- Amaral, A.L.; Martins, R.; Dias, L.C. Operational drivers of water reuse efficiency in Portuguese wastewater service providers. Util. Policy 2023, 83, 101591. [Google Scholar] [CrossRef]
- Environmental Protection Tax Law of the People’s Republic of China. Available online: https://cjjg.mee.gov.cn/xxgk/zcfg/201906/t20190629_715174.html (accessed on 8 October 2023). (In Chinese)
- Meng, L.; Liu, K.; He, J.; Han, C.; Liu, P. Carbon emission reduction behavior strategies in the shipping industry under government regulation: A tripartite evolutionary game analysis. J. Clean. Prod. 2022, 378, 134556. [Google Scholar] [CrossRef]
- Liu, B.; Li, T.; Tsai, S.-B. Low Carbon Strategy Analysis of Competing Supply Chains with Different Power Structures. Sustainability 2017, 9, 835. [Google Scholar] [CrossRef]
- Friedman, D. On economic applications of evolutionary game theory. J. Evol. Econ. 1998, 8, 15–43. [Google Scholar] [CrossRef]
- China Statistical Yearbook. Available online: http://www.stats.gov.cn/sj/ndsj/2022/indexch.htm (accessed on 9 October 2023). (In Chinese)
- Environment, National Bureau of Statistics, Ministry of Ecology and Environment. China Statistical Yearbook on Environment; China Statistics Press: Beijing, China, 2023.
- Wang, C.; Li, J. The Evaluation and Promotion Path of Green Innovation Performance in Chinese Pollution-Intensive Industry. Sustainability 2020, 12, 4198. [Google Scholar] [CrossRef]
- Doran, J.; Bigliardi, B.; Ryan, G. Regulation and firm perception, eco-innovation and firm performance. Eur. J. Innov. Manag. 2012, 15, 421–441. [Google Scholar] [CrossRef]
Parameters | Description |
---|---|
Ce | Environmental treatment cost for the ordinary production of wastewater enterprises |
Cs | Cost of the government’s active participation |
Cf | The reputation loss experienced by the government because of public supervision when the government chooses passive participation |
C11 | Wastewater enterprises’ cost for ordinary production |
C12 | Wastewater enterprises’ additional cost for green production |
C21 | Cost of providing services for WTSPs |
V11 | Wastewater enterprises’ base revenue for ordinary production |
V12 | Wastewater enterprises’ additional revenue for green production |
V21 | The base revenue of WTSPs |
T1 | Wastewater enterprises’ sunk-cost loss for suffering a betrayal |
T2 | WTSP’s sunk-cost loss for suffering a betrayal |
W | Environmental benefits brought about by the green production of wastewater enterprises |
I1 | Government subsidies when wastewater enterprises choose green production |
I2 | Government subsidies when WTSPs choose cooperation |
S1 | Government penalties when wastewater enterprises choose ordinary production |
S2 | Government penalties when WTSPs choose no cooperation |
The Government | |||||
---|---|---|---|---|---|
Active Participation (x) | Passive Participation (1 − x) | ||||
Wastewater enterprises | Green production (y) | WTSPs | Cooperation (z) | W − Cs − I1 − I2 | W − I2 − Cf − γCs |
V11 + V12 − C11 − C12 + I1 | V11 + V12 − C11 − C12 | ||||
V21 + C12 − C21 + I2 | V21 + C12 − C21 + I2 | ||||
No cooperation (1 − z) | S2 − Cs − Ce | −Ce − Cf − γCs | |||
V11 − C11 − T1 | V11 − C11 − T1 | ||||
V21 − S2 | V21 | ||||
Ordinary production (1 − y) | WTSPs | Cooperation (z) | S1 − Ce − Cs − I2 | −Ce − I2 − Cf − γCs | |
V11 − C11 − S1 | V11 − C11 | ||||
V21 − T2 + I2 | V21 + I2 − T2 | ||||
No cooperation (1 − z) | S1 + S2 − Ce − Cs | −Ce − Cf − γCs | |||
V11 − C11 − S1 | V11 − C11 | ||||
V21 − S2 | V21 |
Equilibrium Points | Eigenvalues | Eigenvalue Symbol | Stability |
---|---|---|---|
Q1(1,1,1) | λ1 = Cs − Cf + I1 − γCs | − | ESS |
λ2 = C12 − I1 − S1 − V12 | − | ||
λ3 = C21 − C12 − I2 − S2 | − | ||
Q2(1,1,0) | λ1 = Cs − Cf − S2 − γCs | − | Saddle point |
λ2 = T1 − S1 | − | ||
λ3 = C12 − C21 + I2 + S2 | + | ||
Q3(1,0,1) | λ1 = Cs − Cf − S1 − γCs | − | Saddle point |
λ2 = I1 − C12 + S1 + V12 | + | ||
λ3 = T2 − S2 − I2 | − | ||
Q4(1,0,0) | λ1 = Cs − Cf − S1 − S2 − γCs | − | Saddle point |
λ2 = S1 − T1 | + | ||
λ3 = I2 + S2 − T2 | + | ||
Q5(0,1,1) | λ1 = Cf − Cs − I1 + γCs | + | Saddle point |
λ2 = C12 − V12 | − | ||
λ3 = C21 − C12 − I2 | − | ||
Q6(0,1,0) | λ1 = Cf − Cs + S2 + γCs | + | Unstable point |
λ2 = T1 | + | ||
λ3 = C12 − C21 + I2 | + | ||
Q7(0,0,1) | λ1 = Cf − Cs + S1 + γCs | + | Unstable point |
λ2 = V12 − C12 | + | ||
λ3 = T2 − I2 | + | ||
Q8(0,0,0) | λ1 = Cf − Cs + S1 + S2 + γCs | + | Saddle point |
λ2 = −T1 | − | ||
λ3 = I2 − T2 | − |
Name of Parameter | Initial Value | Name of Parameter | Initial Value |
---|---|---|---|
Cf | 50 | S2 | 12 |
Cs | 25 | I1 | 9 |
γ | 0.2 | I2 | 7 |
C12 | 22 | V12 | 30 |
C21 | 16 | T1 | 19 |
S1 | 17 | T2 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, X.; Lu, S.; Li, Q. How to Promote the Development of Industrial Wastewater Treatment Technological Innovation in China: A Tripartite Evolutionary Game Analysis. Sustainability 2023, 15, 15359. https://doi.org/10.3390/su152115359
Mu X, Lu S, Li Q. How to Promote the Development of Industrial Wastewater Treatment Technological Innovation in China: A Tripartite Evolutionary Game Analysis. Sustainability. 2023; 15(21):15359. https://doi.org/10.3390/su152115359
Chicago/Turabian StyleMu, Xiaoman, Suao Lu, and Qinyi Li. 2023. "How to Promote the Development of Industrial Wastewater Treatment Technological Innovation in China: A Tripartite Evolutionary Game Analysis" Sustainability 15, no. 21: 15359. https://doi.org/10.3390/su152115359
APA StyleMu, X., Lu, S., & Li, Q. (2023). How to Promote the Development of Industrial Wastewater Treatment Technological Innovation in China: A Tripartite Evolutionary Game Analysis. Sustainability, 15(21), 15359. https://doi.org/10.3390/su152115359