Possible Influence of Brittle Tectonics on the Main Road Network Built in the Central African Environment Using Remote Sensing and GIS
Abstract
:1. Introduction
2. Study Area
2.1. Geological Setting
2.2. Roads
3. Material and Methods
3.1. Data
3.1.1. Landsat 8 OLI/TIRS
3.1.2. SRTM (Shuttle Radar Topography Mission)
3.1.3. Field Data
3.2. Methodology
3.2.1. Preprocessing
3.2.2. Processing
- Principal component analysis (PCA)
- Directional filtering
- Shaded relief
- Manual and automatic lineament extraction
- Rose diagram
- Slope
4. Results and Discussion
4.1. Results
4.1.1. Lineaments Obtained
4.1.2. Altimetry
4.1.3. Slope
4.2. Discussion
4.2.1. Validation of Road Map
4.2.2. Correlation of Lineaments with the Geological Map
4.2.3. Correlation of the Lineaments with Some Previous Geophysical Work
4.2.4. Correlation of the Lineaments with the Elevation Map
4.2.5. Correlation of Lineaments with the Slope Map
4.2.6. Correlation of the Slope Map with the Geological Map
4.2.7. Correlation of the Slope Map with the Road Network
4.2.8. Correlation of Lineaments with the Road Network
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FZ | fault zone |
SZ | slope zone |
YD | Yaounde domain |
AYD | Adamaoua-Yade domain |
WCD | Western Cameroon domain |
TBSZ | Tchollire-Banyo shear zone |
CCSZ | Central Cameroon shear zone |
KCSZ | Kribi-Campo shear zone |
MSZ | Meiganga shear zone |
SSZ | Sanaga shear zone |
SCSZ | South Cameroon shear zone |
FSZ | Foumban shear zone |
References
- UNDRR (UN Office for Disater Risk Reduction). Sendai Framework for Disaster Risk Reduction. Available online: https://www.unisdr.org/we/coordinate/sendai-framework (accessed on 25 September 2023).
- General Assembly Resolution. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 25 September 2023).
- Coûts Unitaires des Projets d’Infrastructure en Afrique Subsaharienne. 2008. Available online: https://www.eu-africa-infrastructure-tf.net/attachments/library/aicd-background-paper-11-unit-costs-summary-fr.pdf (accessed on 24 May 2023).
- Coût de la Route au Kilomètre: Le Gabon Affole les Statistiques. 2016. Available online: http://news.alibreville.com/h/55354.html (accessed on 24 May 2023).
- Gabon: Entre 1 et 3 Milliards de Francs CFA, le km de Route le plus cher d’Afrique. 2021. Available online: https://www.gabonreview.com/gabon-entre-1-et-3-milliards-de-francs-cfa-le-km-de-route-le-plus-cher-dafrique/ (accessed on 22 May 2023).
- Le coût du km de Route Bitumée au Cameroun est le Double du prix Moyen en Afrique. 2013. Available online: https://www.investiraucameroun.com/btp/1709-4597-le-cout-du-km-de-route-bitumee-au-cameroun-est-le-double-du-prix-moyen-en-afrique (accessed on 24 May 2023).
- Lin, Y.; Zong, Z.; Lin, J.; Li, Y.; Chen, Y. Across-fault ground motions and their effects on some bridges in the 1999 Chi-Chi earthquake. Adv. Bridge Eng. 2021, 2, 8. [Google Scholar] [CrossRef]
- Cheng, R.; Hou, L.; Xu, S. A Review of Digital Twin Applications in Civil and Infrastructure Emergency Management. Buildings 2023, 13, 1143. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Briones-Bitar, J.; Morante-Carballo, F.; Stay-Coello, D.; Blanco-Torrens, R.; Berrezueta, E. Evaluation of Slope Stability in an Urban Area as a Basis for Territorial Planning: A Case Study. Appl. Sci. 2021, 11, 5013. [Google Scholar] [CrossRef]
- Aretouyap, Z.; Kemgang, F.E.G.; Domra, J.K.; Bisso, D.; Njandjock, P.N. Understanding the occurrences of fault and landslide in the region of West-Cameroon using remote sensing and GIS techniques. Nat. Hazards 2021, 109, 1589–1602. [Google Scholar] [CrossRef]
- Biswas, R.N.; Islam, M.; Islam, M.N. Modeling on management strategies of slope stability and susceptibility to landslides catastrophe at hilly region in Bangladesh. Model. Earth Syst. Environ. 2017, 3, 977–998. [Google Scholar] [CrossRef]
- Mbouombouo, I.N.; Meli’i, J.L.; Gweth, M.M.A.; Pokam, B.P.G.; Koffi, Y.P.; Njock, M.C.; Nkoma, M.A.P.; Nouck, P.N. Analysis of safety factors for roads slopes in central Africa. Eng. Fail. Anal. 2022, 138, 106359. [Google Scholar] [CrossRef]
- Gweth, M.M.A.; Nkoungou, H.E.; Meli’i, J.L.; Gouet, D.H.; Nouck, P.N. Fractures models comparison using GIS data around crater lakes in Cameroon volcanic line environment. Egypt. J. Remote Sens. Space Sci. 2021, 24, 419–429. [Google Scholar] [CrossRef]
- Nguemhe Fils, S.C.; Mongo, C.H.B.; Nkouathio, D.G.; Mimba, M.E.; Etouna, J.; Nouck, P.N.; Nyeck, B. Radarsat-1 image processing for regional-scale geological mapping with mining vocation under dense vegetation and equatorial climate environment, Southwestern Cameroon. Egypt. J. Remote Sens. Space Sci. 2018, 21, S43–S54. [Google Scholar] [CrossRef]
- Anbalagan, R.; Singh, B. Landslide hazard and risk assessment mapping of mountainous terrains—A case study from Kumaun Himalaya, India. Eng. Geol. 1996, 43, 237–246. [Google Scholar] [CrossRef]
- Vu, M.-N.; Vu, M.-N.; Pham, D.-T.; Nguyen-Sy, T.; Nguyen, Q.-B.; Dang, V.-D. A Multi-Layer Blowout Model for the Tunneling Face Stability Analysis. Buildings 2023, 13, 1362. [Google Scholar] [CrossRef]
- Nagarajan, R.; Roy, A.; Kumar, R.V.; Mukherjee, A.; Khire, M. Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull. Eng. Geol. Environ. 2000, 58, 275–287. [Google Scholar] [CrossRef]
- Temesgen, B.; Mohammed, M.; Korme, T. Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet area, Ethiopia. Phys. Chem. Earth Part C Sol. Terr. Planet. Sci. 2001, 26, 665–675. [Google Scholar] [CrossRef]
- Saha, A.; Gupta, R.; Arora, M. GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. Int. J. Remote Sens. 2002, 23, 357–369. [Google Scholar] [CrossRef]
- Lin, M.L.; Tung, C.C. A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Eng. Geol. 2004, 71, 63–77. [Google Scholar] [CrossRef]
- Soesilo, I.; Hoppin, R. Evaluation of digitally processed Landsat imagery and SIR—A imagery for geological analysis of West Java region, Indonesia. Remote sensing for ressources development and environmental management. Int. Symp. 1986, 7, 173–182. [Google Scholar]
- Mathew, J.; Jha, V.K.; Rawat, G.S. Application of binary logistic regression analysis and its validation for landslide susceptibility mapping in part of Garhwal Himalaya, India. Int. J. Remote Sens. 2007, 28, 2257–2275. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.J. Detecting landslide location using KOMPSAT 1 and its application to landslide-susceptibility mapping at the Gangneung area, Korea. Adv. Space Res. 2006, 38, 2261–2271. [Google Scholar] [CrossRef]
- Abdullah, A.; Akhir, J.M.; Abdullah, I. Automatic mapping of lineaments using shaded relief images derived from digital elevation model (DEMs) in the Maran–Sungi Lembing area, Malaysia. Electron. J. Geotech. Eng. 2010, 15, 949–958. [Google Scholar]
- Hubbard, B.M.; Thompson, T.J. Lineament Analysis of Mineral Areas of Interest in Afghanistan: Automatically Delineated Lineaments Using 30-m TM Imagery. 2012. Available online: https://pubs.usgs.gov/of/2012/1048/pdf/ofr2012-1048.pdf (accessed on 21 May 2023).
- Thannoun, R.G. Automatic extraction and geospatial analysis of lineaments and their tectonic significance in some areas of Northern Iraq using remote sensing techniques and GIS. Int. J. Enhanc. Res. Sci. Technol. Eng. Bull. 2013, 2, 1–11. [Google Scholar]
- Ramli, M.; Yusof, N.; Yusoff, M.; Juahir, H.; Shafri, H. Lineament mapping and its application in landslide hazard assessment: A review. Bull. Eng. Geol. Environ. 2010, 69, 215–233. [Google Scholar] [CrossRef]
- Al-Dossary, S.; Marfurt, K.J. Lineament-preserving filtering. Geophysics 2007, 72, P1–P8. [Google Scholar] [CrossRef]
- Jia, J.; Sun, H.; Jiang, C.; Karila, K.; Karjalainen, M.; Ahokas, E.; Khoramshahi, E.; Hu, P.; Chen, C.; Xue, T.; et al. Review on Active and Passive Remote Sensing Techniques for Road Extraction. Remote Sens. 2021, 13, 4235. [Google Scholar] [CrossRef]
- Adiri, Z.; El Harti, A.; Jellouli, A.; Lhissou, R.; Maacha, L.; Azmi, M.; Zouhair, M.; Bachaoui, E. Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Adv. Space Res. 2017, 60, 2355–2367. [Google Scholar] [CrossRef]
- Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.E.; Carson, W.W. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can. J. Remote Sens. 2003, 29, 527–535. [Google Scholar] [CrossRef]
- Singh, K.; Arya, A.K.; Agarwal, K.K. Landslide Occurrences Along Lineaments on NH-154A, Chamba, Himachal Pradesh; Extracted from Satellite Data Landsat 8, India. J. Indian Soc. Remote Sens. 2020, 48, 791–803. [Google Scholar] [CrossRef]
- Tempa, K.; Aryal, K.R. Semi-automatic classification for rapid delineation of the geohazard-prone areas using Sentinel-2 satellite imagery. SN Appl. Sci. 2022, 4, 141. [Google Scholar] [CrossRef]
- Arnous, M.O.; David, R.G. GIS and remote sensing as tools for conducting geo-hazards risk assessment along Gulf of Aqaba coastal zone, Egypt. J. Coast. Conserv. 2011, 15, 457–475. [Google Scholar] [CrossRef]
- Nettis, A.; Massimi, V.; Nutricato, R.; Nitti, D.O.; Samarelli, S.; Uva, G. Satellite-based interferometry for monitoring structural deformations of bridge portfolios. Autom. Constr. 2023, 147, 104707. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, X.; Chen, G.; Qiao, L.; Zeng, R.; Chang, J. Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides 2016, 13, 1273–1284. [Google Scholar] [CrossRef]
- Shi, X.; Jiang, L.; Jiang, H.; Wang, X.; Xu, J. Geohazards Analysis of the Litang–Batang Section of Sichuan–Tibet Railway Using SAR Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11998–12006. [Google Scholar] [CrossRef]
- Zhuo, G.; Dai, K.; Huang, H.; Li, S.; Shi, X.; Feng, Y.; Li, T.; Dong, X.; Deng, J. Evaluating Potential Ground Subsidence Geo-Hazard of Xiamen Xiang’an New Airport on Reclaimed Land by SAR Interferometry. Sustainability 2020, 12, 6991. [Google Scholar] [CrossRef]
- Nefros, C.; Alatza, S.; Loupasakis, C.; Kontoes, C. Persistent Scatterer Interferometry (PSI) Technique for the Identification and Monitoring of Critical Landslide Areas in a Regional and Mountainous Road Network. Remote Sens. 2023, 15, 1550. [Google Scholar] [CrossRef]
- Gazel, J.; Guiraudie, C. Notice Explicative sur la Région Abong-Mbang Ouest de la Carte Géologique de Reconnaissance à l’Échelle du 1/500.000. 1965. Direction des Mines et Géologie, Yaoundé, 29p. Available online: https://books.google.com/books/about/Notice_explicative_sur_la_feuille_Abong.html?id=kaAPswEACAAJ (accessed on 2 May 2023).
- Vicat, J.-P.; Pouclet, A.; Nsifa, E. Les Dolérites du groupe du Ntem (Sud Cameroun) et des Régions Voisines (Centrafrique, Gabon, Congo, Bas Zaïre): Caractéristiques Géochimiques et Place dans l’Évolution du craton du Congo au Protérozoïque. In Géologie et Environnements au Cameroun, Collection GEOCAM; Vicat, J.P., Bilong, P., Eds.; Université de Yaoundé I: Yaoundé, Cameroon, 1998; pp. 305–324. Available online: https://www.researchgate.net/profile/Jean_Paul_Vicat/publication/281612596_Les-dolerites-du-complexe-du-Ntem-Sud-Cameroun-comparaison-avec-les-dolerites-du-Nord-Ouest-du-craton-du-Congo-et-evolution-geodynamique-du-Paleoproterozoique-et-du-Neoproterozoique.pdf (accessed on 23 May 2023).
- Gong, P.; Yu, L.; Li, C.; Wang, J.; Liang, L.; Li, X.; Ji, L.; Bai, Y.; Cheng, Y.; Zhu, Z. A new research paradigm for global land cover mapping. Ann. GIS 2016, 22, 87–102. [Google Scholar] [CrossRef]
- Shrestha, D.P.; Saepuloh, A.; Meer, F.V.D. Land cover classification in the tropics, solving the problem of cloud covered areas using topographic parameters. Int. J. Appl. Earth Obs. Geoinf. 2018, 77, 84–93. [Google Scholar] [CrossRef]
- Eboulement Spectaculaire sur la Route des Gorges du Tarn. 2017. Available online: https://www.journaldemillau.fr/2017/03/08/un-eboulement-spectaculaire-sur-la-route-des-gorges-du-tarn/ (accessed on 12 March 2023).
- Haute-Savoie: Spectaculaire Éboulement sur la Départementale 22 à Vinzier, dans le Chablais. 2018. Available online: https://images.app.goo.gl/ci97cQee8MZbyWqL6 (accessed on 21 May 2023).
- Road Works on Cracked Tarmac from Subsidence. 2016. Available online: https://images.app.goo.gl/7pWM2E9HkamWFunS7 (accessed on 2 April 2023).
- Colmaroute Spécialiste du Traitement Fissures de Chaussée. 2014. Available online: https://images.app.goo.gl/25gtcYSrZkgdeSqA8 (accessed on 21 July 2023).
- Une Route Fissurée et Déformée qui Exaspère le Maire et les Habitants. 2017. Available online: https://images.app.goo.gl/mJUdXYF8Kmqv15t4A (accessed on 2 May 2023).
- Effondremant de la Route à Bifoun: Le Gouveernement se Mobilise pour Rétablir la Situation. 2018. Available online: https://courierdesjournalistes.com/societe/effondrement-de-la-rote-a-bifoun-le-gouvernement-se-mobilise (accessed on 17 January 2023).
- Kankeu, B.; Greiling, R.O.; Nzenti, J.P.; Ganno, S.; Danguene, P.Y.E.; Bassahak, J.; Hell, J.V. Contrasting Pan-African structural styles at the NW margin of the Congo Shield in Cameroon. J. Afr. Earth Sci. 2018, 146, 28–47. [Google Scholar] [CrossRef]
- Toteu, S.F.; Van Schmus, W.R.; Penaye, J.; Nyobe, J.B. U/Pb and Sm/Nd edvidence for Eburnian and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambrian Res. 1994, 67, 321–347. [Google Scholar] [CrossRef]
- Tchameni, R.; Pouclet, A.; Penaye, J.; Ganwa, A.A.; Toteu, S.F. Petrography and geochemistry of the Ngaoundere Pan-African granitoids in Central North Cameroon: Implications for their sources and geological setting. J. Afr. Earth Sci. 2006, 44, 511–529. [Google Scholar] [CrossRef]
- Toteu, S.F.; PenayE, J.; Djomani, Y.P. Geodynamic evolution of the Pan-African belt in central Africa with special reference to Cameroon. Can. J. Earth Sci. 2004, 41, 73–85. [Google Scholar] [CrossRef]
- Pin, C.; Poidevin, J.L. U-Pb zircon evidence for a pan-african granulite facies metamorphism in the Central African Republic. A new interpretation of the high-grade series of the northern border of the congo craton. Precambrian Res. 1987, 36, 303–312. [Google Scholar] [CrossRef]
- Nzenti, J.; Barbey, P.; Macaudiere, J.; Soba, D. Origin and evolution of the late Precambrian high-grade Yaounde gneisses (Cameroon). Precambrian Res. 1988, 38, 91–109. [Google Scholar] [CrossRef]
- Njanko, T.; Nédélec, A.; Affaton, P. Synkinematic high-K calc-alkaline plutons associated with the Pan-African Central Cameroon shear zone (W-Tibati area): Petrology and geodynamic significance. J. Afr. Earth Sci. 2006, 44, 494–510. [Google Scholar] [CrossRef]
- Nzenti, J.; Barbey, P.; Bertrand, J.; Macaudière, J. La chaîne panafricaine au Cameroun: Cherchons suture et modèle. In Proceedings of the 15eme RST, Nancy, France, 26–28 April 1994; Société Géologique France: Paris, France, 1994; p. 99. [Google Scholar]
- Nzolang, C.; Kagami, H.; Nzenti, J.P.; Holtz, F. Geochemistry and preliminary Sr-Nd isotopic data on the Neoproterozoic granitoids from the Bantoum area, west Cameroon: Evidence for a derivation from a Paleoproterozoic to Archaean crust. Polar Geosci. 2003, 16, 196–226. [Google Scholar] [CrossRef]
- Njiosseu, E.L.T.; Nzenti, J.-P.; Njanko, T.; Kapajika, B.; Nédélec, A. New UPb zircon ages from Tonga (Cameroon): Coexisting Eburnean–Transamazonian (2.1 Ga) and Pan-African (0.6 Ga) imprints. Comptes Rendus Geosci. 2005, 337, 551–562. [Google Scholar] [CrossRef]
- Toteu, S.; Michard, A.; Bertrand, J.; Rocci, G. U/Pb dating of Precambrian rocks from Northern Cameroon, orogenic evolution and chronology of the Pan-African belt of Central Africa. Precambrian Res. 1987, 37, 71–87. [Google Scholar] [CrossRef]
- Penaye, J.; Toteu, S.F.; Michard, A.; Bertrand, J.-M.; Dautel, D. Reliques granulitiques d’âge protérozoïque inférieur dans la zone mobile panafricaine d’Afrique centrale au Cameroun; géochronologie U-Pb sur zircons. CR Acad. Sci. Paris 1989, 309, 315–318. [Google Scholar]
- Toteu, S.; Van Schmus, W.; Penaye, J.; Michard, A. New U–Pb and Sm–Nd data from north-central Cameroon and its bearing on the pre-Pan African history of central Africa. Precambrian Res. 2001, 108, 45–73. [Google Scholar] [CrossRef]
- Ngako, V.; Affaton, P.; Njonfang, E. Pan-African tectonics in northwestern Cameroon: Implication for the history of western Gondwana. Gondwana Res. 2008, 14, 509–522. [Google Scholar] [CrossRef]
- Shang, C.K.; Satir, M.; Siebel, W. TTG magmatism in the Congo craton; a view from major and trace element geochemistry, Rb-Sr and Sm-Nd systematic: Case of Sangmelima region, Ntem complex, southern Cameroon. J. Afr. Earth Sci. 2004, 40, 61–79. [Google Scholar] [CrossRef]
- Pouclet, A.; Tchameni, R.; Mezger, K.; Vidal, M.; Nsifa, N.E.; Penaye, P. Archaean crustal accretion at the northern border of the Congo Craton (South Cameroon). The charnockite-TTG link. Bull. Soc. Geol. Fr. 2007, 178, 3–14. [Google Scholar] [CrossRef]
- Takam, T.; Arima, M.; Kokonyangi, J.; Dunkley, D.J.; Nsifa, E.N. Paleoarchaean charnockites in the Ntem complex, Congo craton, Cameroon: Insights from SHRIMP zircon U–Pb ages. J. Mineral. Petrol. Sci. 2009, 104, 1–11. [Google Scholar] [CrossRef]
- Tchameni, R.; Lerouge, C.; Penaye, J.; Cocherie, A.; Milesi, J.P.; Toteu, S.F.; Nsifa, E.N. Mineralogical constraint for metamorphic conditions in a shear zone affecting the Archean Ngoulemakong tonalite, Congo craton (southern Cameroon) and retentivity of U–Pb SHRIMP zircon dates. J. Afr. Earth Sci. 2010, 58, 67–80. [Google Scholar] [CrossRef]
- Lerouge, C.; Cocherie, A.; Toteu, S.F.; Penaye, J.; Milesi, J.P.; Tchameni, R.; Nsifa, E.N.; Fanning, C.M.; Deloule, E. Shrimp U–Pb zircon age evidence for Paleoproterozoic sedimentation and 2.05 Ga syntectonic plutonism in the Nyong Group, South-Western Cameroon: Consequences for the Eburnean–Transamazonian belt of NE Brazil and Central Africa. J. Afr. Earth Sci. 2006, 44, 413–427. [Google Scholar] [CrossRef]
- Shang, C.K.; Satir, M.; Nsifa, E.N.; Liegeois, J.P.; Siebel, W.; Taubald, H. Archaean high K granitoids produced by remelting of the earlier Tonalite–Trondhjemite–Granodiorite (TTG) in the Sangmelima region of the Ntem complex of the Congo craton, southern Cameroon. Int. J. Earth Sci. 2007, 96, 817–842. [Google Scholar] [CrossRef]
- Carte Routière du Cameroun. 2023. Available online: https://www.openstreetmap.org (accessed on 25 September 2023).
- Tchato, S.C.; Manguelle-Dicoum, E.; Njandjock, P.N. Notice Explicative des Routes Principales en Afrique Centrale; Faculté de Sciences, Université de Yaoundé I: Yaounde, Cameroon, 2022. [Google Scholar]
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- USGS Earth Explorer. Available online: https://earthexplorer.usgs.gov (accessed on 12 March 2020).
- Gabr, S.; Ghulam, A.; Kusky, T. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol. Rev. 2010, 38, 59–69. [Google Scholar] [CrossRef]
- Adiri, Z.; El Harti, A.; Jellouli, A.; Maacha, L.; Bachaoui, E.M. Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas. J. Appl. Remote Sens. 2016, 10, 016005. [Google Scholar] [CrossRef]
- Amer, R.; Kusky, T.; El Mezayen, A. Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Adv. Space Res. 2012, 49, 121–134. [Google Scholar] [CrossRef]
- Zhang, X.; Pazner, M.; Duke, N. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). ISPRS J. Photogramm. Remote Sens. 2007, 62, 271–282. [Google Scholar] [CrossRef]
- Touzi, R.; Lopes, A.; Bousquet, P. A statistical and geometrical edge detector for SAR images. IEEE Trans. Geosci. Remote Sens. 1988, 26, 764–773. [Google Scholar] [CrossRef]
- Nezry, E.; Lopes, A.; Touzi, R. Detection of structural and textural features for SAR images filtering. In IGARSS’91, Proceedings of the 11th Annual International Geoscience and Remote Sensing Symposium, Espoo, Finland, 3–6 June 1991; Institute of Electrical and Electronics Engineers, Inc.: New York, NY, USA, 1991; pp. 2169–2172. Available online: https://ieeexplore.ieee.org/document/575470 (accessed on 1 May 2022).
- Lopes, A.; Nezry, E.; Touzi, R.; Laur, H. Structure detection and statistical adaptive speckle filtering in SAR images. Int. J. Remote Sens. 1993, 14, 1735–1758. [Google Scholar] [CrossRef]
- Binam, E.P.M.; Bidjeck, L.M.B.; Wambo, J.D.T.; Taku JR, A.; Betsi, T.B.; Ipan, A.S.; Nfada, L.T.; Dieudonné, L.B. Lithologic and structural mapping of the Abiete–Toko gold district in southern Cameroon, using Landsat 7 ETM+/SRTM. Comptes Rendus Geosci. 2018, 350, 130–140. [Google Scholar] [CrossRef]
- Kenea, N. Improved geological mapping using Landsat TM data, Southern Red Sea Hills, Sudan: PC and IHS decorrelation stretching. Int. J. Remote Sens. 1997, 18, 1233–1244. [Google Scholar] [CrossRef]
- Suzen, M.; Toprak, V. Filtering of satellite images in geological lineament analyses: An application to a fault zone in Central Turkey. Int. J. Remote Sens. 1998, 19, 1101–1114. [Google Scholar] [CrossRef]
- Mallast, U.; Gloaguen, R.; Geyer, S.; Rödiger, T.; Siebert, C. Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data. Hydrol. Earth Syst. Sci. 2011, 15, 2665–2678. [Google Scholar] [CrossRef]
- Abdelouhed, F.; Algouti, A.; Algouti, A.; Mlouk, M.A.; Ifkirne, M. Lithological mapping using Landsat 8 Oli multispectral data in Boumalne, Imider, and Sidi Ali Oubork, High Central Atlas, Morocco. E3S Web Conf. 2021, 234, 00017. [Google Scholar] [CrossRef]
- Masoud, A.; Koike, K. Arid land salinization detected by remotely-sensed landcover changes: A case study in the Siwa region, NW Egypt. J. Arid. Environ. 2006, 66, 151–167. [Google Scholar] [CrossRef]
- Villalta Echeverria, M.D.P.; Vina Ortega, A.G.; Larreta, E.; Romero Crespo, P.; Mulas, M. Lineament Extraction from Digital Terrain Derivate Model: A case study in the Giron-Santa Isabel Basin, South Ecuador. Remote Sens. 2022, 14, 5400. [Google Scholar] [CrossRef]
- Yao, T.K.; Oya, Y.M.S.; Olivier, F.; Assoma, V. Extraction de linéaments structuraux à partir d’images satellitaires, et estimation des biais induits, en milieu de socle précambrien métamorphisé. Rev. Teledetect. 2012, 10, 161–178. [Google Scholar]
- Singhal, B.B.S.; Gupta, R.P. Applied Hydrogeology of Fractured Rocks; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; Available online: https://link.springer.com/book/10.1007/978-90-481-8799-7 (accessed on 9 April 2023).
- Li, N. Textural and Rule-Based Lithological Classification of Remote Sensing Data, and Geological Mapping in Southwestern Prieska Sub-Basin. Transvaal Supergroup, South Africa. Ph.D. Dissertation, LMU, Munchen, Germany, 2010. [Google Scholar] [CrossRef]
- Nkono, C.; FéméniaS, O.; Lesne, A.; Mercier, J.-C.; Demaiffe, D. Fractal Analysis of lineaments in Equatorial Africa: Insights on lithospheric structure. Open J. Geol. 2013, 3, 33924. [Google Scholar] [CrossRef]
- Actualités IRGM: Séisme dans Plusieurs Localités du Cameroun. 2019. Available online: https://www.irgm-cameroun.org/actualites (accessed on 15 December 2022).
- Manguelle, E.D.; Bokosah, A.S.; Kwende-Mbanwi, T.E. Geophysical evidence for a major Precambrian schist-granite boundary in southern Cameroon. Tectonophysics 1992, 205, 437–446. [Google Scholar] [CrossRef]
- Gweth, M.M.A.; Meli’i, J.L.; Oyoa, V.; Diab, A.D.; Gouet, D.H.; Jean, M.; Njandjock, P.N. Fracture network mapping using remote sensing in three crater lakes environments of the Cameroon volcanic line (central Africa). Arab. J. Geosci. 2021, 14, 422. [Google Scholar] [CrossRef]
- Cheunteu, C.A.F.; Adiang, C.M.; Pemi, M.M.; Tokam, A.P.K.; Nouayou, R.; Nguiya, S. Mapping of major tectonic lineaments across Cameroon using potential field data. Earth Planets Space 2022, 74, 59. [Google Scholar] [CrossRef]
- Nguimbous-Kouoh, J.J.; Manguelle-Dicoum, E. Contribution of topographic and penetrometric measurements to a site characterization, case of the Kekem landslide, National road N⁰5 (western Cameroon). Earth Sci. Res. 2010, 14, 135–144. [Google Scholar]
- Pouyon, D.E.; Ganno, S.; Tabod, C.T. Geophysical and Geotechnical Investigations of a Landslide in Kekem Area, Western Cameroon. Int. J. Geosci. 2012, 3, 780–789. [Google Scholar] [CrossRef]
Scenes | Row | Path | Acquisition Date | Level |
---|---|---|---|---|
1 | 58 | 182 | 1 May 2020 | 1 |
2 | 59 | 182 | 1 May 2020 | 1 |
3 | 55 | 183 | 13 February 2020 | 1 |
4 | 57 | 183 | 13 February 2020 | 1 |
5 | 58 | 183 | 28 January 2020 | 1 |
6 | 51 | 184 | 20 February 2020 | 1 |
7 | 52 | 184 | 4 February 2020 | 1 |
8 | 53 | 184 | 4 February 2020 | 1 |
9 | 54 | 184 | 20 February 2020 | 1 |
10 | 55 | 184 | 20 February 2020 | 1 |
11 | 56 | 184 | 18 November 2020 | 1 |
12 | 57 | 184 | 18 November 2020 | 1 |
13 | 58 | 184 | 23 December 2015 | 1 |
14 | 51 | 185 | 27 February 2020 | 1 |
15 | 52 | 185 | 11 February 2020 | 1 |
16 | 53 | 185 | 11 February 2020 | 1 |
17 | 54 | 185 | 11 February 2020 | 1 |
18 | 55 | 185 | 11 February 2020 | 1 |
19 | 56 | 185 | 11 February 2020 | 1 |
20 | 57 | 185 | 26 January 2020 | 1 |
21 | 58 | 185 | 26 January 2020 | 1 |
22 | 55 | 186 | 18 February 2020 | 1 |
23 | 56 | 186 | 5 March 2020 | 1 |
24 | 57 | 186 | 6 January 2016 | 1 |
25 | 58 | 186 | 29 March 2017 | 1 |
26 | 55 | 187 | 25 February 2020 | 1 |
27 | 56 | 187 | 24 January 2020 | 1 |
28 | 57 | 187 | 29 January 2016 | 1 |
Threshold Parameters and Units | Default Values | Selected Values |
---|---|---|
RADI (In pixels) | 10 | 10 |
GTHR (In range, 0–255) | 100 | 80 |
LTHR (In pixels) | 30 | 30 |
FTHR (In pixels) | 3 | 3 |
ATHR (In degrees) | 30 | 20 |
DTHR (In pixels) | 20 | 20 |
N° | Lineaments | Geological Faults | Corresponding Road |
---|---|---|---|
1 | / | F1 | / |
2 | L1 | F2 | N1 |
3 | L14 | F3 (FSZ) | N4, N6 |
4 | L13 | F4 | N6, N15A |
5 | L9, L10, L11, L12 | F5 (CCSZ) | N6, N15A |
6 | L16 | F6 (KCSZ) | N3, N17 |
7 | L15 | F7 (SCSZ) | N3, N4 |
8 | L8 | F8 | N6 |
9 | / | F9 | N15 |
10 | L6 | F10 | N1 |
11 | L7 | F11 | / |
12 | L5 | F12 | / |
13 | L4 | F13 | N13 |
14 | L27 | F14 | / |
15 | L28 | F15 | / |
16 | L23, L24, L25, L26 | F16 (MSZ) | N1, N6 |
17 | / | F17 | N1 |
18 | / | F18 | / |
19 | L2, L3 | F19 (TBSZ) | N1, N13 |
20 | L17, L18, L19, L20, L21, L22 | F20 (SCZ) | N3, N4, N15 |
Lineament | Slope | ||||
---|---|---|---|---|---|
F1N3 | 11°26′55.5″ E | 3°52′30.8″ N | SZ1 | 11°28′16.2″ E | 3°52′6.6″ N |
F2N3 | 11°24′40.7″ E | 3°52′45,″ N | SZ2 | 11°22′53.7″ E | 3°51′0.5″ N |
F3N3 | 11°19′59.3″ E | 3°51′0.2″ N | SZ3 | 11°19′11.5″ E | 3°50′58.3″ N |
F4N3 | 11°4′39.4″ E | 3°45′18.1″ N | SZ4 | 11°20′34.7″ E | 3°50′30.2″ N |
FZ5N3 | 11°0′53.6″ E | 3°48′38.4″ N | SZ5 | 11°16′30.2″ E | 3°50′8.5″ N |
FZ6N3 | 10°48′35.6″ E | 3°52′57.3″ N | SZ6 | 11°2′39.1″ E | 3°47′23.2″ N |
FZ7N3 | 10°40′24″ E | 3°52′51.4″ N | SZ7 | 11°2′35.8″ E | 3°47′15″ N |
FZ8N3 | 10°32′12.1″ E | 3°51′22.8″ N | SZ8 | 11°2′3.1″ E | 3°48′24.7″ N |
F9N3 | 10°20′45.7″ E | 3°48′45.4″ N | SZ9 | 10°57′14.4″ E | 3°50′36.5″ N |
F10N3 | 10°24′59.7″ E | 3°50′16.9″ N | SZ10 | 10°58′26.5″ E | 3°49′43.3″ N |
F11N3 | 10°19′41.7″ E | 3°48′54.7″ N | SZ11 | 10°49′37″ E | 3°52′15.1″ N |
F12N3 | 10°14′14.6″ E | 3°48′9.3″ N | SZ12 | 10°44′52.8″ E | 3°53′28.4″ N |
F13N3 | 10°10′39.5″ E | 3°46′42.3″ N | SZ13 | 10°33′41″ E | 3°51′11″ N |
F14N3 | 10°6′16.5″ E | 3°47′24″ N | SZ114 | 10°22′25.3″ E | 3°49′37″ N |
F15N3 | 10°5′58.2″ E | 3°47′35.5″ N | SZ15 | 10°12′60″ E | 3°48′5.1″ N |
F16N3 | 10°3′59.5″ E | 3°49′55.8″ N | SZ16 | 10°3′38.4″ E | 3°51′31.5″ N |
F17N3 | 10°3′29.9″ E | 3°51′30″ N | SZ17 | 9°14′17.9″ E | 4°4′36.7″ N |
F18N3 | 10°0′18.1″ E | 3°56′26.6″ N | SZ18 | 9°11′14.3″ E | 4°3′15.8″ N |
F19N3 | 9°58′10″ E | 3°57′1.2″ N | |||
F20N3 | 9°57′22″ E | 3°56′59″ N | |||
F21N3 | 9°55′50.5″ E | 3°57′40.5″ N | |||
F22N3 | 9°49′8″ E | 4°0′19.4″ N | |||
F23N3 | 9°46′32.4″ E | 4°0′12.7″ N | |||
F24N3 | 9°45′42″ E | 3°59′52.1″ N | |||
F25N3 | 9°36′37.8″ E | 4°6′0.2″ N | |||
F26N3 | 9°32′28.5″ E | 4°9′4.2″ N | |||
F27N3 | 9°23′32.9″ E | 4°7′55.5″ N | |||
F28N3 | 9°14′12.2″ E | 4°4′26.7″ N | |||
F29N3 | 9°14′39.6″ E | 4°4′45″ N |
N° | Road Name | Accident Type | ||||
---|---|---|---|---|---|---|
Zone of Possible Landslides | Possible Collapse Zone | Possible Shear Zone | ||||
Transverse | Longitudinal | Transverse | Longitudinal | |||
1 | N1 | 5 | 7 | 0 | 65 | 7 |
2 | N1A | 0 | 0 | 0 | 0 | 0 |
3 | N2 | 4 | 4 | 1 | 4 | 1 |
4 | N2A | 0 | 0 | 0 | 1 | 0 |
5 | N3 | 18 | 8 | 1 | 19 | 1 |
6 | N4 | 7 | 4 | 0 | 17 | 1 |
7 | N5 | 4 | 8 | 0 | 6 | 0 |
8 | N6 | 7 | 23 | 0 | 56 | 1 |
9 | N6A | 1 | 0 | 0 | 1 | 0 |
10 | N7 | 0 | 0 | 0 | 4 | 1 |
11 | N8 | 4 | 7 | 0 | 13 | 1 |
12 | N9 | 1 | 7 | 0 | 10 | 0 |
13 | N10 | 3 | 4 | 0 | 9 | 0 |
14 | N11 | 19 | 17 | 0 | 25 | 0 |
15 | N12 | 0 | 0 | 0 | 8 | 1 |
16 | N13 | 5 | 1 | 0 | 6 | 0 |
17 | N13A | 1 | 0 | 0 | 3 | 0 |
18 | N14 | 1 | 0 | 0 | 1 | 0 |
19 | N15 | 4 | 10 | 0 | 8 | 0 |
20 | N15A | 4 | 1 | 0 | 7 | 1 |
21 | N16 | 7 | 1 | 0 | 3 | 0 |
22 | N17 | 13 | 8 | 0 | 2 | 0 |
23 | N17A | 3 | 1 | 0 | 0 | 0 |
24 | N17B | 2 | 5 | 0 | 2 | 0 |
25 | N18 | 0 | 1 | 0 | 1 | 0 |
Total | 113 | 117 | 2 | 271 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tchato, S.C.; Gounou Pokam, B.P.; Ariane Gweth, M.M.; Kayo Pokam, E.F.; Pouth Nkoma, A.M.; Mbouombouo Ngapouth, I.; Poufone Koffi, Y.; Manguelle-Dicoum, E.; Njandjock Nouck, P. Possible Influence of Brittle Tectonics on the Main Road Network Built in the Central African Environment Using Remote Sensing and GIS. Sustainability 2023, 15, 15551. https://doi.org/10.3390/su152115551
Tchato SC, Gounou Pokam BP, Ariane Gweth MM, Kayo Pokam EF, Pouth Nkoma AM, Mbouombouo Ngapouth I, Poufone Koffi Y, Manguelle-Dicoum E, Njandjock Nouck P. Possible Influence of Brittle Tectonics on the Main Road Network Built in the Central African Environment Using Remote Sensing and GIS. Sustainability. 2023; 15(21):15551. https://doi.org/10.3390/su152115551
Chicago/Turabian StyleTchato, Sandra Céleste, Blaise Pascal Gounou Pokam, Marthe Mbond Ariane Gweth, Euloge Felix Kayo Pokam, André Michel Pouth Nkoma, Ibrahim Mbouombouo Ngapouth, Yvonne Poufone Koffi, Eliezer Manguelle-Dicoum, and Philippe Njandjock Nouck. 2023. "Possible Influence of Brittle Tectonics on the Main Road Network Built in the Central African Environment Using Remote Sensing and GIS" Sustainability 15, no. 21: 15551. https://doi.org/10.3390/su152115551
APA StyleTchato, S. C., Gounou Pokam, B. P., Ariane Gweth, M. M., Kayo Pokam, E. F., Pouth Nkoma, A. M., Mbouombouo Ngapouth, I., Poufone Koffi, Y., Manguelle-Dicoum, E., & Njandjock Nouck, P. (2023). Possible Influence of Brittle Tectonics on the Main Road Network Built in the Central African Environment Using Remote Sensing and GIS. Sustainability, 15(21), 15551. https://doi.org/10.3390/su152115551