Political Connection and Environmental Protection Investment: A Study Based on Ownership Difference
Abstract
:1. Introduction
2. Background and Hypothesis Development
2.1. Research Background
2.2. Hypothesis Development
2.2.1. The Influence of Politically Connected Directors on Environmental Protection Investment in State-Owned Enterprises
2.2.2. The Influence of Politically Connected Directors on Environmental Protection Investment in Non-State-Owned Enterprises
3. Data and Empirical Models
3.1. Data and Sample Selection
3.2. Model Specification and Variable Description
- Dependent variable (EPI)
- 2.
- Independent variable
- Ownership of the enterprise (SOE)
- b.
- The political connection of the director (PD)
- 3.
- Control variables
3.3. Research Model
4. Political Connection and Enterprise Environmental Protection Investment
4.1. Baseline Regression Results: Political Connection and Enterprise Environmental Protection Investment
4.1.1. Descriptive Statistics Analysis
4.1.2. Univariate Analysis Based on Ownership Difference
4.1.3. Baseline Regression Results
4.2. Endogeneity Treatment: A Quasi-Natural Experiment Based on the Exogenous Policy Shock
4.3. Robustness Check of the Baseline Results: Sample Selecting Bias
5. Underlying Mechanisms
5.1. Different Roles of the Politically Connected Directors: Supervisors or Resource Providers?
5.2. Further Consideration of the Politically Connected Director’s Individual Characteristics
- Administration level of politically connected director (PD_PL)
- b.
- Whether the politically connected director is an independent director (PD_DEP)
5.3. The Moderating Effect of Regional Environmental Regulatory Intensity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adebayo, T.S.; Samour, A. Renewable energy, fiscal policy and load capacity factor in BRICS countries: Novel findings from panel nonlinear ARDL model. Environ. Dev. Sustain. 2023. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Samour, A.; Alola, A.A.; Abbas, S.; Ağa, M. The potency of natural resources and trade globalisation in the ecological sustainability target for the BRICS economies. Heliyon 2023, 9, e17534. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2310. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Chen, L.; Yang, M.; Msigwa, G.; Farghali, M.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Cost, environmental impact, and resilience of renewable energy under a changing climate: A review. Environ. Chem. Lett. 2023, 21, 741–764. [Google Scholar] [CrossRef]
- Yang, M.; Chen, L.; Msigwa, G.; Tang, K.H.D.; Yap, P.-S. Implications of COVID-19 on global environmental pollution and carbon emissions with strategies for sustainability in the COVID-19 era. Sci. Total Environ. 2022, 809, 151657. [Google Scholar] [CrossRef]
- Gray, W.B.; Deily, M.E. Compliance and Enforcement: Air Pollution Regulation in the U.S. Steel Industry. J. Environ. Econ. Manag. 1996, 31, 96–111. [Google Scholar] [CrossRef]
- Gray, W.B.; Shadbegian, R.J. Environmental regulation, investment timing, and technology choice. J. Ind. Econ. 1998, 46, 235–256. [Google Scholar] [CrossRef]
- Leiter, A.M.; Parolini, A.; Winner, H. Environmental regulation and investment: Evidence from European industry data. Ecol. Econ. 2011, 70, 759–770. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R. Effects of environmental regulation on CO2 emissions: An empirical analysis of 282 cities in China. Sustain. Prod. Consum. 2022, 29, 259–272. [Google Scholar] [CrossRef]
- Ren, S.; Li, X.; Yuan, B.; Li, D.; Chen, X. The effects of three types of environmental regulation on eco-efficiency: A cross-region analysis in China. J. Clean. Prod. 2018, 173, 245–255. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhong, S.; Shi, T.; Zhang, X. Environmental regulation and haze pollution: Neighbor-companion or neighbor-beggar? Energy Policy 2021, 151, 112183. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Z.; Lan, X. How environmental regulations affect corporate innovation? The coupling mechanism of mandatory rules and voluntary management. Technol. Soc. 2021, 65, 101575. [Google Scholar] [CrossRef]
- Zhang, J.; Kang, L.; Li, H.; Ballesteros-Perez, P.; Skitmore, M.; Zuo, J. The impact of environmental regulations on urban Green innovation efficiency: The case of Xi’an. Sustain. Cities Soc. 2020, 57, 102123. [Google Scholar] [CrossRef]
- Cui, S.; Wang, Y.; Zhu, Z.; Zhu, Z.; Yu, C. The impact of heterogeneous environmental regulation on the energy eco-efficiency of China’s energy-mineral cities. J. Clean. Prod. 2022, 350, 131553. [Google Scholar] [CrossRef]
- Wu, H.; Li, S.; Ying, S.X.; Chen, X. Politically connected CEOs, firm performance, and CEO pay. J. Bus. Res. 2018, 91, 169–180. [Google Scholar] [CrossRef]
- Sharma, P.; Cheng, L.T.W.; Leung, T.Y. Impact of political connections on Chinese export firms’ performance—Lessons for other emerging markets. J. Bus. Res. 2020, 106, 24–34. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, M. China’s anti-corruption campaign, political connections and private firms’ debt financing. China Financ. Rev. Int. 2019, 9, 521–553. [Google Scholar] [CrossRef]
- Hoi, C.-K.; Xiong, J.; Zou, H. Ownership identity and corporate donations: Evidence from a natural experiment in China. China Financ. Rev. Int. 2020, 10, 113–142. [Google Scholar] [CrossRef]
- Hu, G.; Wang, Y. Political connections and stock price crash risk The role of intermediary information disclosure. China Financ. Rev. Int. 2018, 8, 140–157. [Google Scholar] [CrossRef]
- Wu, W.; Wu, C.; Rui, O.M. Ownership and the Value of Political Connections: Evidence from China. Eur. Financ. Manag. 2012, 18, 695–729. [Google Scholar] [CrossRef]
- Li, S.; Song, X.; Wu, H. Political Connection, Ownership Structure, and Corporate Philanthropy in China: A Strategic-Political Perspective. J. Bus. Ethics 2015, 129, 399–411. [Google Scholar] [CrossRef]
- Tihanyi, L.; Aguilera, R.V.; Heugens, P.; van Essen, M.; Sauerwald, S.; Duran, P.; Turturea, R. State Ownership and Political Connections. J. Manag. 2019, 45, 2293–2321. [Google Scholar] [CrossRef]
- Arnoldi, J.; Muratova, Y. Unrelated acquisitions in China: The role of political ownership and political connections. Asia Pac. J. Manag. 2019, 36, 113–134. [Google Scholar] [CrossRef]
- Hermalin, B.; Weisbach, M. Boards of Directors as an Endogenously Determined Institution: A Survey of the Economic Literature. Econ. Policy Rev. 2003, 9, 7–26. [Google Scholar] [CrossRef]
- Boone, A.L.; Field, L.C.; Karpoff, J.M.; Raheja, C.G. The determinants of corporate board size and composition: An empirical analysis. J. Financ. Econ. 2007, 85, 66–101. [Google Scholar] [CrossRef]
- Hermalin, B.E.; Weisbach, M.S. Endogenously chosen boards of directors and their monitoring of the CEO. Am. Econ. Rev. 1998, 88, 96–118. [Google Scholar]
- Goodstein, J.; Gautam, K.; Boeker, W. The effects of board size and diversity on strategic change. Strateg. Manag. J. 1994, 15, 241–250. [Google Scholar] [CrossRef]
- Pearce Ii, J.A.; Zahra, S.A. The relative power of ceos and boards of directors: Associations with corporate performance. Strateg. Manag. J. 1991, 12, 135–153. [Google Scholar] [CrossRef]
- Hillman, A.J.; Dalziel, T. Boards of Directors and Firm Performance: Integrating Agency and Resource Dependence Perspectives. Acad. Manag. Rev. 2003, 28, 383–396. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, H.M.; Tsai, S.B.; Wu, L.D.; Xue, K.K.; Fan, H.J.; Zhou, J.; Chen, Q. Does a Board Chairman’s Political Connection Affect Green Investment?—From a Sustainable Perspective. Sustainability 2018, 10, 582. [Google Scholar] [CrossRef]
- Djulic, K.; Kuzman, T. Structure of Company Boards. In Proceedings of the 2nd International Scientific Conference on Economic and Social Development (ESD), Paris, France, 4–5 April 2013. [Google Scholar]
- Abdul-Manaf, K.B.; Amran, N.A.; Ishak, R. Earnings Informativeness, Board Size, Board Composition and Board Leadership Structure. In Proceedings of the International Conference on Business, Management, Tourism and Hospitality (BIZMATOUR), Malacca, Malaysia, 12–14 May 2015. [Google Scholar]
- Homroy, S.; Slechten, A. Do Board Expertise and Networked Boards Affect Environmental Performance? J. Bus. Ethics 2019, 158, 269–292. [Google Scholar] [CrossRef]
- Peng, H.F.; Zhang, X.; Zhu, X.Q. Political connections of the board of directors and credit financing: Evidence from Chinese private enterprises. Account. Financ. 2017, 57, 1481–1516. [Google Scholar] [CrossRef]
- Cheng, L. Estimating the value of political connections in China: Evidence from sudden deaths of politically connected independent directors. J. Comp. Econ. 2018, 46, 495–514. [Google Scholar] [CrossRef]
- Wang, X.; Feng, M.M.; Xu, X.D. Political connections of independent directors and firm internationalization: An empirical study of Chinese listed firms. Pac.-Basin Financ. J. 2019, 58, 101205. [Google Scholar] [CrossRef]
- Wang, X.M.; Xu, T.T. Pay of political directors in China. Pac.-Basin Financ. J. 2022, 74, 101803. [Google Scholar] [CrossRef]
- Xiao, G.; Shen, S. To pollute or not to pollute: Political connections and corporate environmental performance. J. Corp. Financ. 2022, 74, 102214. [Google Scholar] [CrossRef]
- Jiang, F.; Kim, K.A. Corporate governance in China: A modern perspective. J. Corp. Financ. 2015, 32, 190–216. [Google Scholar] [CrossRef]
- Shleifer, A.; Boycko, M.; Vishny, R.W. A Theory of Privatization. Econ. J. 1996, 106, 309–319. [Google Scholar]
- Kornai, J. The Soft Budget Constraint. Kyklos 1986, 39, 3–30. [Google Scholar] [CrossRef]
- Maskin, E.; Xu, C. Soft budget constraint theories: From centralization to the market. Econ. Transit. 2001, 9, 1–27. [Google Scholar] [CrossRef]
- Sheng, Y. Economic Openness and Territorial Politics in China; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L.-A. Political turnover and economic performance: The incentive role of personnel control in China. J. Public Econ. 2005, 89, 1743–1762. [Google Scholar] [CrossRef]
- Walder, A.G. Local Governments as Industrial Firms: An Organizational Analysis of China’s Transitional Economy. Am. J. Sociol. 1995, 101, 263–301. [Google Scholar] [CrossRef]
- Barro, R.J. Government Spending in a Simple Model of Endogeneous Growth. J. Political Econ. 1990, 98, S103–S125. [Google Scholar] [CrossRef]
- Chen, S.M.; Sun, Z.; Tang, S.; Wu, D.H. Government intervention and investment efficiency: Evidence from China. J. Corp. Financ. 2011, 17, 259–271. [Google Scholar] [CrossRef]
- Desheng, L.; Jiakui, C.; Ning, Z. Political connections and green technology innovations under an environmental regulation. J. Clean. Prod. 2021, 298, 126778. [Google Scholar] [CrossRef]
- Farooq, U.; Ahmed, J.; Tabash, M.I.; Anagreh, S.; Subhani, B.H. Nexus between government green environmental concerns and corporate real investment: Empirical evidence from selected Asian economies. J. Clean. Prod. 2021, 314, 128089. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Caporale, G.M.; Rault, C.; Sova, R.; Sova, A. Environmental Regulation and Competitiveness: Evidence from Romania. Ecol. Econ. 2012, 81, 130–139. [Google Scholar] [CrossRef]
- Orsato, R.J. Competitive environmental strategies: When does it pay to be green? Strateg. Dir. 2006, 22. [Google Scholar] [CrossRef]
- Tan, W.H.; Ma, Z.P. Ownership, Internal Capital Market, and Financing Costs. Emerg. Mark. Financ. Trade 2016, 52, 1259–1278. [Google Scholar] [CrossRef]
- Fan, J.P.H.; Wong, T.J.; Zhang, T.Y. Institutions and Organizational Structure: The Case of State-Owned Corporate Pyramids. J. Law Econ. Organ. 2013, 29, 1217–1252. [Google Scholar] [CrossRef]
- Zhang, J.H.; Quan, S.F.; Jiang, J.G. Corruption and private firms’ survival in transition economies: Evidence from China. China Econ. Rev. 2019, 57, 101339. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, B.; Tian, X. Political connections and green innovation: The role of a corporate entrepreneurship strategy in state-owned enterprises. J. Bus. Res. 2022, 146, 375–384. [Google Scholar] [CrossRef]
- Guner, A.B.; Malmendier, U.; Tatec, G. Financial expertise of directors. J. Financ. Econ. 2008, 88, 323–354. [Google Scholar] [CrossRef]
- Lorsch, J.W.; Young, J. Pawns or Potentates: The Reality of America’s Corporate Boards. Acad. Manag. Perspect. 1990, 4, 85–87. [Google Scholar] [CrossRef]
- Cooper, M.J.; Gulen, H.; Ovtchinnikov, A.V. Corporate Political Contributions and Stock Returns. J. Financ. 2010, 65, 687–724. [Google Scholar] [CrossRef]
- Peng, M.W. Outside directors and firm performance during institutional transitions. Strateg. Manag. J. 2004, 25, 453–471. [Google Scholar] [CrossRef]
- Burt, R.S.; Jannotta, J.E.; Mahoney, J.T. Personality correlates of structural holes. Soc. Netw. 1998, 20, 63–87. [Google Scholar] [CrossRef]
- Burt, R.S. Reinforced structural holes. Soc. Netw. 2015, 43, 149–161. [Google Scholar] [CrossRef]
- Burt, R.S. Structural holes and good ideas. Am. J. Sociol. 2004, 110, 349–399. [Google Scholar] [CrossRef]
- Goyal, S.; Vega-Redondo, F. Structural holes in social networks. J. Econ. Theory 2007, 137, 460–492. [Google Scholar] [CrossRef]
- Maxwell, J.W.; Decker, C.S. Voluntary Environmental Investment and Responsive Regulation. Environ. Resour. Econ. 2006, 33, 425–439. [Google Scholar] [CrossRef]
- Fisman, R.; Wang, Y.X. The Mortality Cost of Political Connections. Rev. Econ. Stud. 2015, 82, 1346–1382. [Google Scholar] [CrossRef]
- Konisky, D.M.; Teodoro, M.P. When Governments Regulate Governments. Am. J. Political Sci. 2016, 60, 559–574. [Google Scholar] [CrossRef]
- Fan, J.P.H.; Wong, T.J.; Zhang, T.Y. Politically connected CEOs, corporate governance, and Post-IPO performance of China’s newly partially privatized firms. J. Financ. Econ. 2007, 84, 330–357. [Google Scholar] [CrossRef]
- Chen, C.J.P.; Li, Z.Q.; Su, X.J.; Sun, Z. Rent-seeking incentives, corporate political connections, and the control structure of private firms: Chinese evidence. J. Corp. Financ. 2011, 17, 229–243. [Google Scholar] [CrossRef]
- Bushman, R.M.; Piotroski, J.D.; Smith, A.J. Capital Allocation and Timely Accounting Recognition of Economic Losses. J. Bus. Financ. Account. 2011, 38, 1–33. [Google Scholar] [CrossRef]
- Richardson, S. Over-investment of free cash flow. Rev. Account. Stud. 2006, 11, 159–189. [Google Scholar] [CrossRef]
- Petersen, M.A. Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches. Rev. Financ. Stud. 2008, 22, 435–480. [Google Scholar] [CrossRef]
- Niu, Z.Y.; Zhou, X.Y. Political uncertainty and corporate sustainability: How does official turnover affect environmental investment. Asia-Pac. J. Account. Econ. 2023, 30, 1184–1203. [Google Scholar] [CrossRef]
- Fan, J.P.H.; Rui, O.M.; Zhao, M.X. Public governance and corporate finance: Evidence from corruption cases. J. Comp. Econ. 2008, 36, 343–364. [Google Scholar] [CrossRef]
- Kang, E. Director Interlocks and Spillover Effects of Reputational Penalties From Financial Reporting Fraud. Acad. Manag. J. 2008, 51, 537–555. [Google Scholar] [CrossRef]
- Huang, L.; Lei, Z. How environmental regulation affect corporate green investment: Evidence from China. J. Clean. Prod. 2021, 279, 123560. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, M.T.; Long, L.Y.; Huo, C.J. Environmental Regulation, Political Connections, and Corporate Green Investment. Sustainability 2022, 14, 3357. [Google Scholar] [CrossRef]
- Tian, M.; Xu, G.; Zhang, L. Does environmental inspection led by central government undermine Chinese heavy-polluting firms’ stock value? The buffer role of political connection. J. Clean. Prod. 2019, 236, 117695. [Google Scholar] [CrossRef]
State-Owned Enterprise | Non-State-Owned Enterprise | |||||||
---|---|---|---|---|---|---|---|---|
Variables | Mean | Minimum | Median | Maximum | Mean | Minimum | Median | Maximum |
EPI | 0.00801 | 0.00001 | 0.00603 | 0.05870 | 0.00715 | 0.00001 | 0. 00452 | 0.05041 |
PD_Dummy | 0.56517 | 0.00000 | 1.00000 | 1.00000 | 0.64337 | 0.00000 | 1.00000 | 1.00000 |
PD_Ratio | 0.09203 | 0.00000 | 0.10296 | 0.57764 | 0.10874 | 0.00000 | 0.08123 | 0.50587 |
Firm_Q | 1.53858 | 0.81005 | 1.44522 | 5.15439 | 1.90807 | 0.82377 | 1.48250 | 5.42617 |
CF | 0.06135 | −0.12945 | 0.05764 | 0.24548 | 0.06768 | −0.10068 | 0.06234 | 0.23575 |
ROA | 0.04320 | 0.00000 | 0.06028 | 0.33975 | 0.19412 | −0.37113 | 0.10049 | 0.27270 |
Cash | 0.09718 | 0.01120 | 0.09512 | 0.49798 | 0.16540 | 0.02916 | 0.12846 | 0.41154 |
Age | 2.85895 | 0.69315 | 2.83321 | 3.25810 | 1.98245 | 0.69315 | 2.39790 | 3.21888 |
Cost | 0.06532 | 0.00919 | 0.05018 | 0.19484 | 0.08115 | 0.01548 | 0.06030 | 0.18669 |
Size | 26.68019 | 19.52406 | 23.68181 | 27.44961 | 23.66353 | 20.39068 | 25.73628 | 26.09942 |
Lev | 0.48774 | 0.07278 | 0.47123 | 0.85746 | 0.37251 | 0.07306 | 0.40341 | 0.87822 |
RET | −0.06184 | −0.76482 | −0.11501 | 1.37814 | −0.01899 | −0.76594 | −0.03098 | 1.32757 |
TOP1 | 0.45032 | 0.09106 | 0.37785 | 0.87192 | 0.23553 | 0.09610 | 0.27465 | 0.71975 |
TOP2_5 | 0.14362 | 0.00747 | 0.10965 | 0.54590 | 0.23167 | 0.01106 | 0.15748 | 0.47653 |
BoardSize | 2.47483 | 1.79176 | 2.39790 | 2.77259 | 2.18588 | 1.79176 | 2.30259 | 2.83321 |
DUAL | 0.08104 | 0.00000 | 0.00000 | 1.00000 | 0.14708 | 0.00000 | 0.00000 | 1.00000 |
Category Method | Environment Protection Investment (EPI) | |||||
---|---|---|---|---|---|---|
Mean | T-Stat. | Median | Z-Stat. | |||
Categorized by PD_Dummy | Non-SOE | PD_Dummy=0 | 0.00899 | 2.887 *** | 0.00654 | 3.090 *** |
PD_Dummy=1 | 0.00484 | 0.00247 | ||||
SOE | PD_Dummy=0 | 0.00596 | −3.255 *** | 0.00352 | −3.27 *** | |
PD_Dummy=1 | 0.00937 | 0.00698 | ||||
Categorized by PD_Ratio | Non-SOE | PD_Ratio<Median | 0.00905 | 3.087 *** | 0.00654 | 3.213 *** |
PD_Ratio≥Median | 0.00464 | 0.00247 | ||||
SOE | PD_Ratio<Median | 0.00614 | −3.517 *** | 0.00399 | −2.966 *** | |
PD_Ratio≥Median | 0.00975 | 0.00723 |
Dependent Variable: EPI | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
All Sample | SOE | Non-SOE | |||||
SOE | 0.0045 *** | 0.0044 *** | 0.0044 *** | ||||
(3.46) | (3.44) | (3.46) | |||||
PD_Dummy | 0.0009 | 0.0035 *** | −0.0048 ** | ||||
(0.90) | (3.34) | (−2.19) | |||||
PD_Ratio | 0.0034 | 0.0133 ** | −0.0199 *** | ||||
(0.64) | (2.25) | (−2.71) | |||||
Firm_Q | 0.0010 | 0.0010 | 0.0010 | −0.0006 | −0.0005 | 0.0011 | 0.0011 |
(1.26) | (1.17) | (1.17) | (−0.46) | (−0.33) | (0.85) | (0.85) | |
CF | 0.0037 | 0.0041 | 0.0034 | 0.0066 | 0.0024 | 0.0124 | 0.0098 |
(0.57) | (0.61) | (0.52) | (0.83) | (0.29) | (1.08) | (0.82) | |
ROA | −0.0110 | −0.0118 * | −0.0119 | −0.0087 | −0.0102 | −0.0084 | −0.0073 |
(−1.55) | (−1.66) | (−1.65) | (−0.82) | (−0.97) | (−0.90) | (−0.72) | |
Cash | −0.0126 ** | −0.0124 ** | −0.0125 ** | −0.0103 * | −0.0105 * | −0.0118 * | −0.0115 * |
(−2.40) | (−2.37) | (−2.40) | (−1.67) | (−1.68) | (−1.79) | (−1.86) | |
Age | −0.0019 * | −0.0018 * | −0.0018 * | −0.0017 | −0.0018 * | −0.0042 *** | −0.0039 *** |
(−1.73) | (−1.70) | (−1.75) | (−1.65) | (−1.69) | (−2.89) | (−2.78) | |
Cost | −0.0292 ** | −0.0286 ** | −0.0286 ** | −0.0334 ** | −0.0308 ** | −0.0181 ** | −0.0125 * |
(−2.54) | (−2.49) | (−2.51) | (−2.29) | (−2.05) | (−1.94) | (−1.66) | |
Size | −0.0000 | −0.0001 | −0.0001 | −0.0009 | −0.0008 | 0.0012 * | 0.0013 * |
(−0.07) | (−0.10) | (−0.11) | (−1.34) | (−1.17) | (1.87) | (1.86) | |
Lev | −0.0009 | −0.0012 | −0.0012 | −0.0051 | −0.0052 | 0.0089 * | 0.0089 * |
(−0.27) | (−0.36) | (−0.36) | (−1.24) | (−1.22) | (1.75) | (1.79) | |
RET | −0.0002 | −0.0001 | −0.0002 | 0.0008 | 0.0008 | −0.0028 | −0.0025 |
(−0.14) | (−0.09) | (−0.11) | (0.40) | (0.41) | (−1.22) | (−1.14) | |
TOP1 | −0.0059 | −0.0060 | −0.0056 | −0.0052 | −0.0039 | −0.0025 | −0.0045 |
(−1.19) | (−1.22) | (−1.18) | (−0.83) | (−0.67) | (−0.27) | (−0.50) | |
TOP2_5 | −0.0070 * | −0.0069 * | −0.0068 * | −0.0026 | −0.0030 | −0.0176 ** | −0.0209 ** |
(−1.69) | (−1.75) | (−1.75) | (−0.41) | (−0.49) | (−2.31) | (−2.58) | |
BoardSize | 0.0061 *** | 0.0060 *** | 0.0063 *** | 0.0054 ** | 0.0060 ** | 0.0068 * | 0.0038 * |
(2.74) | (2.68) | (2.78) | (2.10) | (2.35) | (1.91) | (1.66) | |
DUAL | 0.0008 | 0.0006 | 0.0008 | 0.0017 | 0.0024 | −0.0006 | −0.0010 |
(0.45) | (0.31) | (0.41) | (0.65) | (0.87) | (−0.34) | (−0.68) | |
Cons | −0.0039 | −0.0036 | −0.0035 | 0.0083 | 0.0074 | −0.0643 *** | −0.0607 *** |
(−0.34) | (−0.32) | (−0.31) | (0.64) | (0.57) | (−3.00) | (−3.18) | |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 1533 | 1533 | 1533 | 903 | 903 | 630 | 630 |
Adj R-squared | 0.1646 | 0.1650 | 0.1645 | 0.2043 | 0.2006 | 0.5337 | 0.5292 |
Dependent Variable: EPI | (1) | (2) | (3) |
---|---|---|---|
All Sample | SOE | Non-SOE | |
Treat | 0.0024 * | 0.0034 * | −0.0003 |
(1.73) | (1.83) | (−0.15) | |
Post | −0.0004 | −0.0024 | 0.0058 ** |
(−0.38) | (−1.62) | (2.34) | |
Treat × Post | −0.0018 | −0.0045 *** | 0.0028 *** |
(−0.93) | (−2.98) | (2.86) | |
Firm_Q | 0.0006 | −0.0015 | 0.0014 |
(0.62) | (−0.80) | (1.37) | |
CF | 0.0075 | 0.0080 | 0.0089 |
(0.92) | (0.83) | (0.57) | |
ROA | −0.0098 | −0.0059 | 0.0034 |
(−1.30) | (−0.48) | (0.30) | |
Cash | −0.0152 ** | −0.0133 * | −0.0083 * |
(−2.43) | (−1.91) | (−185) | |
Age | −0.0017 * | −0.0019 | −0.0043 *** |
(−1.67) | (−1.24) | (−2.87) | |
Cost | −0.0241 * | −0.0258 * | −0.0104 |
(−1.94) | (−1.71) | (−0.58) | |
Size | −0.0001 | −0.0011 | 0.0014 ** |
(−0.27) | (−1.56) | (2.22) | |
Lev | −0.0034 | −0.0085 * | 0.0041 |
(−0.89) | (−1.76) | (0.79) | |
RET | 0.0002 | 0.0019 | −0.0068 ** |
(0.13) | (1.00) | (−1.99) | |
TOP1 | −0.0036 | −0.0053 | −0.0055 |
(−0.74) | (−0.81) | (−0.80) | |
TOP2_5 | −0.0059 | 0.0004 | −0.0156 *** |
(−1.25) | (0.06) | (−2.74) | |
BoardSize | 0.0084 *** | 0.0079 ** | 0.0088 *** |
(2.92) | (2.39) | (2.59) | |
DUAL | 0.0002 | 0.0008 | −0.0017 |
(0.07) | (0.24) | (−0.81) | |
Cons | 0.0012 | 0.0292 * | −0.0349 ** |
(0.09) | (1.66) | (−2.13) | |
Industry FE | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes |
N | 1403 | 813 | 590 |
Adj R-squared | 0.1951 | 0.3549 | 0.4073 |
Dependent Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
EPI_Dummy | EPI_All | |||||||
SOE | Non−SOE | SOE | Non−SOE | |||||
PD_Dummy | 0.2185 ** | −0.3602 ** | 0.2422 *** | −0.1263 | ||||
(2.24) | (−1.98) | (3.52) | (−1.26) | |||||
PD_Ratio | 0.2059 | −2.2962 ** | 0.1848 * | −1.6781 *** | ||||
(1.49) | (−2.45) | (1.66) | (−3.30) | |||||
Firm_Q | −0.0957 | −0.0834 | −0.0827 | −0.1035 | −0.0697 | −0.0625 | −0.0084 | −0.0193 |
(−1.18) | (−1.04) | (−0.78) | (−0.99) | (−1.19) | (−1.06) | (−0.15) | (−0.35) | |
CF | 1.5211 * | 1.5009 * | 0.9330 | 0.5786 | 1.1253 * | 1.0297 | 0.5491 | 0.3367 |
(1.71) | (1.68) | (0.64) | (0.41) | (1.79) | (1.62) | (0.69) | (0.44) | |
ROA | 1.4333 | 1.5446 | 3.6541 | 4.1466 * | 0.4807 | 0.6363 | 1.3128 | 1.5426 |
(0.89) | (0.95) | (1.29) | (1.71) | (0.42) | (0.55) | (0.83) | (1.03) | |
Cash | −1.6316 *** | −1.7126 *** | −1.7868 ** | −1.5771 * | −1.1721 *** | −1.2520 *** | −1.0136 ** | −0.8800 ** |
(−2.94) | (−3.06) | (−2.03) | (−1.80) | (−2.98) | (−3.10) | (−2.07) | (−1.98) | |
Age | 0.0067 | −0.0141 | −0.1809 * | −0.1682 | −0.0020 | −0.0161 | −0.1439 ** | −0.1379 ** |
(0.07) | (−0.15) | (−1.70) | (−1.32) | (−0.03) | (−0.24) | (−2.01) | (−2.01) | |
Cost | 1.3686 ** | 1.4147** | −1.3336 | −1.4743 | 0.8089 * | 0.8700 * | −0.8654 | −0.8977 * |
(1.96) | (2.02) | (−1.25) | (−1.40) | (1.66) | (1.73) | (−1.45) | (−1.76) | |
Size | 0.2439 *** | 0.2572 *** | 0.6653 *** | 0.6092 *** | 0.1294 *** | 0.1432 *** | 0.3909 *** | 0.3521 *** |
(4.82) | (5.08) | (4.95) | (4.69) | (3.63) | (3.96) | (5.28) | (5.07) | |
Lev | −1.1503 *** | −1.1355 *** | −0.5276 | −0.3603 | −0.6903 *** | −0.6913 *** | −0.2321 | −0.1465 |
(−3.19) | (−3.13) | (−0.74) | (−0.52) | (−2.73) | (−2.67) | (−0.59) | (−0.39) | |
RET | −0.2033 | −0.1844 | 0.3351 | 0.3740 | −0.1450 | −0.1279 | 0.1486 | 0.1665 |
(−1.19) | (−1.08) | (1.11) | (1.24) | (−1.21) | (−1.05) | (0.89) | (1.03) | |
TOP1 | 0.2548 | 0.2346 | −0.8129 | −1.0206 | 0.0992 | 0.0953 | −0.5196 | −0.6480 * |
(0.67) | (0.61) | (−1.21) | (−1.52) | (0.37) | (0.35) | (−1.41) | (−1.82) | |
TOP2_5 | −0.4425 | −0.4232 | 0.4794 | 0.3128 | −0.3790 | −0.3973 | −0.0106 | −0.1359 |
(−0.87) | (−0.83) | (0.50) | (0.33) | (−1.05) | (−1.08) | (−0.02) | (−0.27) | |
BoardSize | 0.3152 | 0.3327 | −1.2463 *** | −1.3795 *** | 0.3253 * | 0.3451 * | −0.5651 ** | −0.6460 *** |
(1.27) | (1.34) | (−2.66) | (−2.93) | (1.85) | (1.94) | (−2.18) | (−2.59) | |
DUAL | −1.3746 *** | −1.3879 *** | −1.1662 *** | −1.1326 *** | −0.8615 *** | −0.8809 *** | −0.6361 *** | −0.6109 *** |
(−9.96) | (−10.02) | (−5.15) | (−5.13) | (−8.97) | (−9.03) | (−5.11) | (−5.19) | |
Cons | −5.8490 *** | −6.0201 *** | −12.1413 *** | −10.1405 *** | −3.5210 *** | −3.7428 *** | −7.3898 *** | −6.0498 *** |
(−5.01) | (−5.15) | (−4.23) | (−3.63) | (−4.27) | (−4.48) | (−4.67) | (−4.06) | |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
N | 4063 | 4063 | 3213 | 3213 | 4063 | 4063 | 3213 | 3213 |
Pseudo_R2 | 0.3205 | 0.3201 | 0.2163 | 0.2167 | 0.3211 | 0.3240 | 0.2189 | 0.3205 |
Dependent Variable: EPI | (1) | (2) | (3) | (4) |
---|---|---|---|---|
SOE | Non−SOE | |||
Current | 0.0033 ** | 0.0032 | ||
(2.41) | (1.53) | |||
LnPay | 0.0002 | −0.0016 *** | ||
(1.19) | (−2.81) | |||
Firm_Q | −0.0005 | −0.0002 | −0.0009 | −0.0009 |
(−0.30) | (−0.09) | (−0.65) | (−0.53) | |
CF | 0.0023 | 0.0042 | 0.0163 | 0.0126 |
(0.21) | (0.39) | (1.04) | (0.79) | |
ROA | −0.0134 | −0.0144 | −0.0046 | −0.0006 |
(−0.87) | (−0.94) | (−0.44) | (−0.05) | |
Cash | −0.0128 * | −0.0132 * | −0.0085 | −0.0107 * |
(−1.79) | (−1.90) | (−1.61) | (−1.69) | |
Age | −0.0027 | −0.0030 | −0.0031 * | −0.0034 ** |
(−1.36) | (−1.55) | (−1.87) | (−2.07) | |
Cost | −0.0194 | −0.0219 | −0.0118 | −0.0034 |
(−0.90) | (−1.03) | (−0.52) | (−0.17) | |
Size | −0.0006 | −0.0004 | −0.0005 | 0.0003 |
(−0.68) | (−0.45) | (−0.46) | (0.21) | |
Lev | −0.0107 * | −0.0124 ** | 0.0024 | 0.0004 |
(−1.88) | (−2.19) | (0.50) | (0.07) | |
RET | 0.0032 | 0.0021 | −0.0046 * | −0.0043 * |
(0.85) | (0.55) | (−1.87) | (−1.66) | |
TOP1 | −0.0137 * | −0.0143 * | 0.0063 | 0.0041 |
(−1.71) | (−1.69) | (0.58) | (0.37) | |
TOP2_5 | −0.0099 | −0.0093 | −0.0041 | −0.0060 |
(−1.24) | (−1.15) | (−0.35) | (−0.54) | |
BoardSize | 0.0054 * | 0.0056 * | 0.0040 | 0.0021 |
(1.72) | (1.77) | (0.79) | (0.45) | |
DUAL | 0.0006 | 0.0006 | −0.0023 | −0.0026 |
(0.22) | (0.22) | (−0.98) | (−1.11) | |
Cons | 0.0335 | 0.0319 | 0.0125 | 0.0041 |
(1.66) | (1.57) | (0.59) | (0.17) | |
Industry FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
N | 903 | 903 | 630 | 630 |
Adj R-squared | 0.2631 | 0.2642 | 0.5987 | 0.5916 |
Dependent Variable: EPI | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
All Sample (with Politically Connected Directors) | SOE (With Politically Connected Directors) | Non−SOE (with Politically Connected Directors) | ||||
PD_DEP | 0.0031 | 0.0041 ** | 0.0010 | |||
(1.15) | (2.18) | (0.89) | ||||
PD_PL | 0.0005 | 0.0011 * | −0.0019 *** | |||
(0.94) | (1.69) | (−3.15) | ||||
Firm_Q | 0.0006 | 0.0006 | −0.0001 | −0.0007 | −0.0006 | −0.0022 * |
(0.62) | (0.55) | (−0.06) | (−0.41) | (−0.42) | (−1.70) | |
CF | 0.0040 | 0.0052 | 0.0048 | 0.0038 | 0.0104 | 0.0045 |
(0.42) | (0.56) | (0.44) | (0.35) | (0.70) | (0.30) | |
ROA | −0.0108 | −0.0106 | −0.0165 | −0.0085 | 0.0035 | 0.0047 |
(−1.08) | (−1.07) | (−1.14) | (−0.58) | (0.29) | (0.45) | |
Cash | −0.0138 * | −0.0145 ** | −0.0147 ** | −0.0124 * | −0.0083 | −0.0157 ** |
(−1.94) | (−2.00) | (−2.02) | (−1.85) | (−0.86) | (−1.98) | |
Age | −0.0026 * | −0.0024 * | −0.0030* | −0.0025 | −0.0025 * | −0.0024 ** |
(−1.74) | (−1.70) | (−1.67) | (−1.31) | (−1.74) | (−1.97) | |
Cost | −0.0121 | −0.0208 | −0.0144 | −0.0294 | −0.0020 | 0.0155 |
(−0.67) | (−1.11) | (−0.64) | (−1.34) | (−0.09) | (0.77) | |
Size | −0.0001 | −0.0004 | −0.0004 | −0.0009 | 0.0001 | 0.0015 * |
(−0.13) | (−0.57) | (−0.46) | (−1.14) | (0.12) | (1.69) | |
Lev | −0.0037 | −0.0054 | −0.0112 * | −0.0127 ** | 0.0032 | −0.0017 |
(−0.83) | (−1.27) | (−1.87) | (−2.22) | (0.65) | (−0.46) | |
RET | −0.0017 | −0.0012 | 0.0021 | 0.0031 | −0.0051 ** | −0.0045 ** |
(−0.64) | (−0.48) | (0.54) | (0.83) | (−1.82) | (−1.86) | |
TOP1 | −0.0045 | −0.0052 | −0.0134 * | −0.0139 * | 0.0046 | 0.0057 |
(−0.56) | (−0.70) | (−1.71) | (−1.75) | (0.41) | (0.59) | |
TOP2_5 | −0.0086 | −0.0080 | −0.0116 * | −0.0127 * | −0.0077 | −0.0130 |
(−1.32) | (−1.17) | (−1.69) | (−1.71) | (−0.74) | (−1.28) | |
BoardSize | 0.0055 * | 0.0061 ** | 0.0059 * | 0.0070* | 0.0017 | 0.0013 |
(1.86) | (1.96) | (1.75) | (1.68) | (0.45) | (0.38) | |
DUAL | 0.0000 | 0.0002 | 0.0005 | 0.0009 | −0.0019 | −0.0004 |
(0.02) | (0.07) | (0.18) | (0.30) | (−0.90) | (−0.25) | |
Cons | 0.0078 | 0.0108 | 0.0316 | 0.0373 * | 0.0053 | −0.0135 |
(0.52) | (0.73) | (1.54) | (1.91) | (0.21) | (−0.63) | |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
N | 915 | 915 | 510 | 510 | 405 | 405 |
Adj R-squared | 0.1800 | 0.1852 | 0.2331 | 0.2337 | 0.4529 | 0.4556 |
Dependent Variable: EPI | (1) | (2) | (3) | (4) |
---|---|---|---|---|
SOE | Non − SOE | |||
PD_Dummy | 0.0016 * | −0.0003 | ||
(1.67) | (−1.21) | |||
PD_Ratio | 0.0041 | −0.0031 | ||
(1.59) | (−1.15) | |||
REG | 0.0008 | 0.0005 | 0.0004 | 0.0003 |
(0.48) | (0.32) | (1.26) | (0.54) | |
PD_Dummy × REG | 0.0009 ** | −0.0004 *** | ||
(2.14) | (−2.63) | |||
PD_Ratio × REG | 0.0015 *** | −0.0021 *** | ||
(3.12) | (−3.63) | |||
Firm_Q | −0.0007 | −0.0003 | 0.0006 | 0.0005 |
(−0.52) | (−0.25) | (0.43) | (0.39) | |
CF | 0.0074 | 0.0047 | 0.0150 * | 0.0120 |
(0.93) | (0.56) | (1.69) | (1.43) | |
ROA | −0.0097 | −0.0120 | −0.0092 | −0.0099 |
(−0.92) | (−1.13) | (−0.92) | (−0.92) | |
Cash | −0.0096 * | −0.0099 * | −0.0116 * | −0.0095 |
(−1.84) | (−1.89) | (−1.70) | (−1.65) | |
Age | −0.0013 | −0.0017 | −0.0044 *** | −0.0039 *** |
(−0.96) | (−1.29) | (−3.04) | (−2.66) | |
Cost | −0.0352 *** | −0.0299 ** | −0.0159 | −0.0079 |
(−2.65) | (−1.97) | (−0.83) | (−0.40) | |
Size | −0.0010 * | −0.0007 | 0.0016 * | 0.0019 * |
(−1.75) | (−1.08) | (1.66) | (1.71) | |
Lev | −0.0055 | −0.0049 | 0.0092 * | 0.0101 ** |
(−1.36) | (−1.09) | (1.68) | (1.98) | |
RET | 0.0007 | 0.0009 | −0.0022 | −0.0019 |
(0.36) | (0.44) | (−0.94) | (−0.84) | |
TOP1 | −0.0027 | −0.0026 | −0.0040 | −0.0076 |
(−0.49) | (−0.47) | (−0.43) | (−0.84) | |
TOP2_5 | −0.0003 | −0.0027 | −0.0179 ** | −0.0201 *** |
(−0.06) | (−0.44) | (−2.22) | (−2.66) | |
BoardSize | 0.0051 ** | 0.0057 ** | 0.0057* | 0.0028 |
(2.09) | (2.38) | (1.76) | (0.92) | |
DUAL | 0.0021 | 0.0027 | −0.0007 | −0.0008 |
(0.78) | (1.00) | (−0.40) | (−0.50) | |
Cons | 0.0201 | 0.0177 | −0.0244 | −0.0236 |
(1.33) | (1.07) | (−1.25) | (−1.03) | |
Industry FE | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
N | 903 | 903 | 630 | 630 |
Adj R−squared | 0.2245 | 0.2321 | 0.3649 | 0.3981 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Niu, C.; He, H. Political Connection and Environmental Protection Investment: A Study Based on Ownership Difference. Sustainability 2023, 15, 15982. https://doi.org/10.3390/su152215982
Qi Y, Niu C, He H. Political Connection and Environmental Protection Investment: A Study Based on Ownership Difference. Sustainability. 2023; 15(22):15982. https://doi.org/10.3390/su152215982
Chicago/Turabian StyleQi, Yunfei, Chengzhi Niu, and Hong He. 2023. "Political Connection and Environmental Protection Investment: A Study Based on Ownership Difference" Sustainability 15, no. 22: 15982. https://doi.org/10.3390/su152215982
APA StyleQi, Y., Niu, C., & He, H. (2023). Political Connection and Environmental Protection Investment: A Study Based on Ownership Difference. Sustainability, 15(22), 15982. https://doi.org/10.3390/su152215982