Fingerprinting Sediment Origin of the Silting Process of Urban Reservoirs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bathymetric Data
2.3. Characterization of Sediment-Producing Sources
2.4. Land Use and Land Cover
3. Results
3.1. Bathymetric Surveys
3.2. Characterization of Sediment-Producing Sources
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santikari, V.P.; Murdoch, L.C. Effects of Construction-Related Land Use Change on Streamflow and Sediment Yield. J. Environ. Manag. 2019, 252, 109605. [Google Scholar] [CrossRef] [PubMed]
- Wynants, M.; Millward, G.; Patrick, A.; Taylor, A.; Munishi, L.; Mtei, K.; Brendonck, L.; Gilvear, D.; Boeckx, P.; Ndakidemi, P.; et al. Determining Tributary Sources of Increased Sedimentation in East-African Rift Lakes. Sci. Total Environ. 2020, 717, 137266. [Google Scholar] [CrossRef] [PubMed]
- Gill, M.A. Sedimentation and Useful Life of Reservoirs. J. Hydrol. 1979, 44, 89–95. [Google Scholar] [CrossRef]
- Salas, J.D.; Shin, H.-S. Uncertainty Analysis of Reservoir Sedimentation. J. Hydraul. Eng. 1999, 125, 339–350. [Google Scholar] [CrossRef]
- Nagle, G.N.; Fahey, T.J.; Lassoie, J.P. PROFILE: Management of Sedimentation in Tropical Watersheds. Environ. Manag. 1999, 23, 441–452. [Google Scholar] [CrossRef]
- Walling, D.E.; Collins, A.L. The Catchment Sediment Budget as a Management Tool. Environ. Sci. Policy 2008, 11, 136–143. [Google Scholar] [CrossRef]
- Nelson, K.C.; Palmer, M.A.; Pizzuto, J.E.; Moglen, G.E.; Angermeier, P.L.; Hilderbrand, R.H.; Dettinger, M.; Hayhoe, K. Forecasting the Combined Effects of Urbanization and Climate Change on Stream Ecosystems: From Impacts to Management Options. J. Appl. Ecol. 2009, 46, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Habibi, S.; Gholami, H.; Fathabadi, A.; Jansen, J.D. Fingerprinting Sources of Reservoir Sediment via Two Modelling Approaches. Sci. Total Environ. 2019, 663, 78–96. [Google Scholar] [CrossRef]
- Newman, D.J., Jr.; Perault, D.R.; Shahady, T.D. Watershed Development and Sediment Accumulation in a Small Urban Lake. Lake Reserv. Manag. 2006, 22, 303–307. [Google Scholar] [CrossRef] [Green Version]
- Minella, J.P.G.; Merten, G.H.; Reichert, J.M.; Santos, D.R. dos Identification and implications for soil conservation of sediment sources in catchment areas. Rev. Bras. Cienc. Solo 2007, 31, 1637–1646. [Google Scholar] [CrossRef]
- Collins, A.L.; Blackwell, M.; Boeckx, P.; Chivers, C.-A.; Emelko, M.; Evrard, O.; Foster, I.; Gellis, A.; Gholami, H.; Granger, S.; et al. Sediment Source Fingerprinting: Benchmarking Recent Outputs, Remaining Challenges and Emerging Themes. J. Soils Sediments 2020, 20, 4160–4193. [Google Scholar] [CrossRef] [PubMed]
- Peart, M.; Walling, D. Fingerprinting Sediment Source: The Example of a Drainage Basin in Devon, UK. In Proceedings of the Drainage Basin Sediment Delivery, Albuquerque, NM, USA, 4–8 August 1986; pp. 41–55. [Google Scholar]
- Koiter, A.J.; Owens, P.N.; Petticrew, E.L.; Lobb, D.A. The Behavioural Characteristics of Sediment Properties and Their Implications for Sediment Fingerprinting as an Approach for Identifying Sediment Sources in River Basins. Earth Sci. Rev. 2013, 125, 24–42. [Google Scholar] [CrossRef]
- Tiecher, T.; Minella, J.P.G.; Evrard, O.; Caner, L.; Merten, G.H.; Capoane, V.; Didoné, E.J.; dos Santos, D.R. Fingerprinting Sediment Sources in a Large Agricultural Catchment under No-Tillage in Southern Brazil (Concei\c Cão River). Land Degrad. Dev. 2018, 29, 939–951. [Google Scholar] [CrossRef]
- Ben Slimane, A.; Raclot, D.; Evrard, O.; Sanaa, M.; Lefèvre, I.; Ahmadi, M.; Tounsi, M.; Rumpel, C.; Ben Mammou, A.; Le Bissonnais, Y. Fingerprinting Sediment Sources in the Outlet Reservoir of a Hilly Cultivated Catchment in Tunisia. J. Soils Sediments 2013, 13, 801–815. [Google Scholar] [CrossRef]
- Voli, M.T.; Wegmann, K.W.; Bohnenstiehl, D.R.; Leithold, E.; Osburn, C.L.; Polyakov, V. Fingerprinting the Sources of Suspended Sediment Delivery to a Large Municipal Drinking Water Reservoir: Falls Lake, Neuse River, North Carolina, USA. J. Soils Sediments 2013, 13, 1692–1707. [Google Scholar] [CrossRef]
- Huang, D.; Pei, M.; Zhou, L.; Fan, H.; Jia, Y. Identification of Sediment Sources and Exploration of Scale Effects in the Black Soil Region of Northeast China. Catena 2020, 195, 104848. [Google Scholar] [CrossRef]
- Carter, J.; Owens, P.N.; Walling, D.E.; Leeks, G.J.L. Fingerprinting Suspended Sediment Sources in a Large Urban River System. Sci. Total Environ. 2003, 314–316, 513–534. [Google Scholar] [CrossRef]
- Franz, C.; Makeschin, F.; Weiß, H.; Lorz, C. Sediments in Urban River Basins: Identification of Sediment Sources within the Lago Paranoá Catchment, Brasilia DF, Brazil—Using the Fingerprint Approach. Sci. Total Environ. 2014, 466–467, 513–523. [Google Scholar] [CrossRef]
- Malhotra, K.; Lamba, J.; Srivastava, P.; Shepherd, S. Fingerprinting Suspended Sediment Sources in an Urbanized Watershed. Water 2018, 10, 1573. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Du, P.; Wang, J.; Wei, X.; Liu, B.; Xu, J. Using Reservoir Deposits to Quantify the Source Contributions to the Sediment Yield in the Black Soil Region, Northeast China, Based on the Fingerprinting Technique. Geomorphology 2019, 339, 1–18. [Google Scholar] [CrossRef]
- Poleto, C.; Merten, G.H.; Minella, J.P. The Identification of Sediment Sources in a Small Urban Watershed in Southern Brazil: An Application of Sediment Fingerprinting. Environ. Technol. 2009, 30, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Brasil. Instituto Nacional de Meteorologia—INMET. Available online: https://portal.inmet.gov.br/normais (accessed on 5 January 2023).
- Baloque, G.F.; Capoane, V. Susceptibilidade a erosão do solo na bacia hidrográfica do córrego Bandeira, Campo Grande—MS. Cerrados 2021, 19, 183–217. [Google Scholar] [CrossRef]
- Phillips, J.M.; Russell, M.A.; Walling, D.E. Time-Integrated Sampling of Fluvial Suspended Sediment: A Simple Methodology for Small Catchments. Hydrol. Process. 2000, 14, 2589–2602. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Mostafa, M.Y.A.; Zhukovsky, M.V. Heavy Metal Contamination in Urban Surface Sediments: Sources, Distribution, Contamination Control, and Remediation. Environ. Monit. Assess. 2019, 192, 32. [Google Scholar] [CrossRef]
- Devereux, O.H.; Prestegaard, K.L.; Needelman, B.A.; Gellis, A.C. Suspended-Sediment Sources in an Urban Watershed, Northeast Branch Anacostia River, Maryland. Hydrol. Process. 2010, 24, 1391–1403. [Google Scholar] [CrossRef]
- Haddadchi, A.; Ryder, D.S.; Evrard, O.; Olley, J. Sediment Fingerprinting in Fluvial Systems: Review of Tracers, Sediment Sources and Mixing Models. Int. J. Sediment Res. 2013, 28, 560–578. [Google Scholar] [CrossRef] [Green Version]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Smith, H.G.; Blake, W.H. Sediment Fingerprinting in Agricultural Catchments: A Critical Re-Examination of Source Discrimination and Data Corrections. Geomorphology 2014, 204, 177–191. [Google Scholar] [CrossRef]
- Collins, A.L.; Pulley, S.; Foster, I.D.L.; Gellis, A.; Porto, P.; Horowitz, A.J. Sediment Source Fingerprinting as an Aid to Catchment Management: A Review of the Current State of Knowledge and a Methodological Decision-Tree for End-Users. J. Environ. Manag. 2017, 194, 86–108. [Google Scholar] [CrossRef]
- Collins, A.L.; Walling, D.E. Selecting Fingerprint Properties for Discriminating Potential Suspended Sediment Sources in River Basins. J. Hydrol. 2002, 261, 218–244. [Google Scholar] [CrossRef]
- Collins, A.L.; Walling, D.E.; Leeks, G.J.L. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 1997, 29, 1–27. [Google Scholar] [CrossRef]
- Owens, P.N.; Walling, D.E.; Leeks, G.J.L. Use of floodplain sediment cores to investigate recent historical changes in overbank sedimentation rates and sediment sources in the catchment of the River Ouse, Yorkshire, UK. Catena 1999, 36, 21–47. [Google Scholar] [CrossRef]
- Congedo, L. Semi-Automatic Classification Plugin—QGIS Python Plugins Repository. 2022. Available online: https://plugins.qgis.org/plugins/SemiAutomaticClassificationPlugin/ (accessed on 28 December 2022).
- Walker, W.J.; McNutt, R.P.; Maslanka, C.K. The Potential Contribution of Urban Runoff to Surface Sediments of the Passaic River: Sources and Chemical Characteristics. Chemosphere 1999, 38, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Froger, C.; Ayrault, S.; Evrard, O.; Monvoisin, G.; Bordier, L.; Lefèvre, I.; Quantin, C. Tracing the Sources of Suspended Sediment and Particle-Bound Trace Metal Elements in an Urban Catchment Coupling Elemental and Isotopic Geochemistry, and Fallout Radionuclides. Environ. Sci. Pollut. Res. Int. 2018, 25, 28667–28681. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, V.M.; de Andrade, L.C.; Tiecher, T.; de Oliveira Camargo, F.A. The Urban Pressure over the Sediment Contamination in a Southern Brazil Metropolis: The Case of Diluvio Stream. Water Air Soil Pollut. 2020, 231, 156. [Google Scholar] [CrossRef]
- Vieira, L.M.; Neto, D.M.; do Couto, E.V.; Lima, G.B.; Peron, A.P.; Halmeman, M.C.R.; Froehner, S. Contamination Assessment and Prediction of 27 Trace Elements in Sediment Core from an Urban Lake Associated with Land Use. Environ. Monit. Assess. 2019, 191, 236. [Google Scholar] [CrossRef]
- Waters, M.N.; Golladay, S.W.; Patrick, C.H.; Smoak, J.M.; Shivers, S.D. The Potential Effects of River Regulation and Watershed Land Use on Sediment Characteristics and Lake Primary Producers in a Large Reservoir. Hydrobiologia 2015, 749, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Peter, K.T.; Hou, F.; Tian, Z.; Wu, C.; Goehring, M.; Liu, F.; Kolodziej, E.P. More than a First Flush: Urban Creek Storm Hydrographs Demonstrate Broad Contaminant Pollutographs. Environ. Sci. Technol. 2020, 54, 6152–6165. [Google Scholar] [CrossRef]
- Zaimes, G.N.; Schultz, R.C. Riparian Land-Use Impacts on Bank Erosion and Deposition of an Incised Stream in North-Central Iowa, USA. Catena 2015, 125, 61–73. [Google Scholar] [CrossRef]
- Tiecher, T.; Minella, J.P.G.; Caner, L.; Evrard, O.; Zafar, M.; Capoane, V.; Le Gall, M.; Santos, D.R. dos Quantifying Land Use Contributions to Suspended Sediment in a Large Cultivated Catchment of Southern Brazil (Guaporé River, Rio Grande Do Sul). Agric. Ecosyst. Environ. 2017, 237, 95–108. [Google Scholar] [CrossRef]
- Vercruysse, K.; Grabowski, R.C. Temporal Variation in Suspended Sediment Transport: Linking Sediment Sources and Hydro-meteorological Drivers. Earth Surf. Process. 2019, 44, 2587–2599. [Google Scholar] [CrossRef]
- Cashman, M.J.; Gellis, A.; Sanisaca, L.G.; Noe, G.B.; Cogliandro, V.; Baker, A. Bank-Derived Material Dominates Fluvial Sediment in a Suburban Chesapeake Bay Watershed. River Res. Appl. 2018, 34, 1032–1044. [Google Scholar] [CrossRef]
- Liu, Y.; Zarfl, C.; Basu, N.B.; Schwientek, M.; Cirpka, O.A. Contributions of Catchment and In-Stream Processes to Suspended Sediment Transport in a Dominantly Groundwater-Fed Catchment. Hydrol. Earth Syst. Sci. 2018, 22, 3903–3921. [Google Scholar] [CrossRef] [Green Version]
- Kemper, J.T.; Miller, A.J.; Welty, C. Spatial and Temporal Patterns of Suspended Sediment Transport in Nested Urban Watersheds. Geomorphology 2019, 336, 95–106. [Google Scholar] [CrossRef]
- Nelson, E.J.; Booth, D.B. Sediment Sources in an Urbanizing, Mixed Land-Use Watershed. J. Hydrol. 2002, 264, 51–68. [Google Scholar] [CrossRef]
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. Urban Sediment Supply to Streams from Hillslope Sources. Sci. Total Environ. 2019, 653, 684–697. [Google Scholar] [CrossRef]
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. Global Sediment Yields from Urban and Urbanizing Watersheds. Earth Sci. Rev. 2017, 168, 73–80. [Google Scholar] [CrossRef]
- Gellis, A.C.; Myers, M.K.; Noe, G.B.; Hupp, C.R.; Schenk, E.R.; Myers, L. Storms, Channel Changes, and a Sediment Budget for an Urban-Suburban Stream, Difficult Run, Virginia, USA. Geomorphology 2017, 278, 128–148. [Google Scholar] [CrossRef] [Green Version]
- Russell, K.L.; Vietz, G.J.; Fletcher, T.D. Urban Catchment Runoff Increases Bedload Sediment Yield and Particle Size in Stream Channels. Anthropocene 2018, 23, 53–66. [Google Scholar] [CrossRef]
Fingerprinting Property | Sediment Sources | Kruskal–Wallis Test | DFA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bare Soil (n = 23) | Riverbank (n = 20) | Bed (n = 8) | H-Value | p-Value | Wilks’s Lambda | Partial Lambda | p-Value | ||||
Mean | SD | Mean | SD | Mean | SD | ||||||
Pb (mg kg−1) | 22.59 | 8.13 | 22.10 | 11.53 | 18.90 | 12.15 | 1.71 | 0.42 * | - | - | - |
Cr (mg kg−1) | 26.71 | 21.45 | 5.64 | 7.60 | 18.02 | 17.24 | 19.50 | 0.00 | 0.40 | 0.80 | 0.01 |
Cu (mg kg−1) | 78.39 | 38.97 | 74.70 | 54.90 | 83.76 | 72.60 | 1.03 | 0.60 * | - | - | - |
Mn (g kg−1) | 0.26 | 0.16 | 0.10 | 0.05 | 0.24 | 0.20 | 16.74 | 0.00 | 0.39 | 0.81 | 0.01 |
Ni (mg kg−1) | 23.6 | 13.27 | 14.38 | 12.73 | 15.14 | 16.27 | 7.56 | 0.02 | 0.33 | 0.95 | 0.34 * |
Mg (g kg−1) | 0.46 | 1.31 | 0.32 | 0.18 | 5.55 | 14.08 | 12.16 | 0.02 | 0.33 | 0.95 | 0.35 * |
Zn (mg kg−1) | 37.85 | 17.78 | 73.43 | 73.92 | 68.01 | 69.50 | 1.65 | 0.44 * | - | - | - |
Fe (g kg−1) | 62.12 | 32.28 | 32.01 | 24.34 | 47.04 | 42.17 | 9.32 | 0.01 | 0.33 | 0.95 | 0.33 * |
Al (g kg−1) | 24.96 | 13.55 | 18.92 | 12.63 | 5.80 | 5.86 | 14.78 | 0.00 | 0.45 | 0.71 | 0.00 |
Cd (mg kg−1) | 0.94 | 0.64 | 0.56 | 0.42 | 0.76 | 0.68 | 4.98 | 0.08 * | - | - | - |
Sample | Date | Sample Period | Weight (g) | Accumulated Rainfall (mm) |
---|---|---|---|---|
B1 | 27 September 2019 | 46 days | 9.22 | 17.80 |
C1 | 81.93 | |||
B2 | 31 October 2019 | 34 days | 577.99 | 30.80 |
C2 | 762.90 | |||
B3 | 23 December 2019 | 10 days | 405.69 | 71.20 |
C3 | 178.29 | |||
B4 | 28 January 2020 | 36 days | 2030.16 | 334.00 |
C4 | 965.79 | |||
B5 | 6 March 2020 | 38 days | 1573.24 | 253.80 |
C5 | 899.13 |
Fingerprinting Property | Bandeira (B) (n = 5) | Cabaça (C) (n = 5) | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Pb (mg kg−1) | 32.92 | 8.54 | 35.63 | 5.60 |
Cr (mg kg−1) | 21.05 | 6.55 | 17.89 | 7.00 |
Cu (mg kg−1) | 127.09 | 44.17 | 113.67 | 36.15 |
Mn (mg kg−1) | 330.77 | 170.92 | 185.29 | 110.73 |
Ni (mg kg−1) | 29.56 | 12.89 | 23.66 | 9.38 |
Mg (g kg−1) | 1.40 | 0.41 | 1.41 | 0.27 |
Zn (mg kg−1) | 240.77 | 81.99 | 303.24 | 220.91 |
Fe (g kg−1) | 59.26 | 19.14 | 63.55 | 13.00 |
Al (g kg−1) | 37.95 | 11.51 | 28.33 | 5.59 |
Cd (mg kg−1) | 0.22 | 0.49 | 0.27 | 0.60 |
Sample | Bare Soil (%) | Bed (%) | Riverbank (%) | Error (%) |
---|---|---|---|---|
B1 | 10 | 10 | 97 | 40 (a) |
B2 | 31 | 43 | 26 | 0.00 |
B3 | 72 | 19 | 9 | 0.00 |
B4 | 80 | 14 | 6 | 0.00 |
B5 | 90 | 10 | 0 | 22 (a) |
C1 | 63 | 17 | 20 | 0.00 |
C2 | 22 | 8 | 70 | 0.00 |
C3 | 30 | 9 | 61 | 0.00 |
C4 | 25 | 9 | 66 | 0.00 |
C5 | 96 | 5 | 0 | 25 (a) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, M.E.A.; Zanoni, D.A.; Carvalho, G.A.; Anache, J.A.A.; Oliveira, P.T.S.; Sobrinho, T.A. Fingerprinting Sediment Origin of the Silting Process of Urban Reservoirs. Sustainability 2023, 15, 1745. https://doi.org/10.3390/su15031745
Ferreira MEA, Zanoni DA, Carvalho GA, Anache JAA, Oliveira PTS, Sobrinho TA. Fingerprinting Sediment Origin of the Silting Process of Urban Reservoirs. Sustainability. 2023; 15(3):1745. https://doi.org/10.3390/su15031745
Chicago/Turabian StyleFerreira, Maria E. A., Diego A. Zanoni, Glauber A. Carvalho, Jamil A. A. Anache, Paulo Tarso S. Oliveira, and Teodorico Alves Sobrinho. 2023. "Fingerprinting Sediment Origin of the Silting Process of Urban Reservoirs" Sustainability 15, no. 3: 1745. https://doi.org/10.3390/su15031745
APA StyleFerreira, M. E. A., Zanoni, D. A., Carvalho, G. A., Anache, J. A. A., Oliveira, P. T. S., & Sobrinho, T. A. (2023). Fingerprinting Sediment Origin of the Silting Process of Urban Reservoirs. Sustainability, 15(3), 1745. https://doi.org/10.3390/su15031745