Energy Consumption and Environmental Quality in Africa: Does Energy Efficiency Make Any Difference? †
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Review on Energy Efficiency and Environmental Sustainability
2.2. Empirical Review on Energy Consumption and Environmental Sustainability
3. Materials and Methods
3.1. Data
3.2. Computation of Energy Efficiency Scores
4. Results and Discussion
4.1. Energy Efficiency: Estimation of Persistent, Transient and Total Scores
4.2. System GMM Results: Effect of Energy Consumption and Energy Efficiency on Environmental Sustainability in Africa
4.3. Robustness Checks
4.3.1. Effects of Energy Consumption and Energy Efficiency on the Carbon Dioxide Emissions
4.3.2. Effects of Energy Consumption, Energy Efficiency on Nitrogen Gas Emissions
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Coefficients | ||||
---|---|---|---|---|
Variables | Fixed Effect (b) | Random Effect (B) | Difference | Standard Error |
Trade openness | −0.0209 | −0.0343 | 0.0133 | 0.0000 |
Urbanisation | −0.312 *** | −0.439 *** | 0.1273 | 0.0646 |
Economic growth | 0.0867 | 0.0641 | 0.0226 | 0.0371 |
Crude oil price | 0.0042 | −0.0273 ** | 0.0315 | 0.0126 |
Industrialisation | 0.0494 | 0.0713 ** | −0.0218 | 0.0065 |
Human capital | 0.680 *** | 0.654 *** | 0.0256 | 0.0476 |
t | −2.312 *** | −0.0051 ** | −2.3064 | 0.8885 |
t2 | 0.0005 *** | 0.0001 | 0.0004 | 0.0001 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
---|---|---|---|---|---|---|---|---|---|---|---|
(1) Greenhouse gas emission | 1 | ||||||||||
(2) Nitrous emissions | −0.135 * | 1 | |||||||||
(3) CO2 emission per capita | −0.0760 | 0.121 * | 1 | ||||||||
(4) FDI | −0.117 * | 0.793 *** | 0.337 *** | 1 | |||||||
(5) Foreign aid | −0.00664 | −0.428 *** | 0.349 *** | −0.0633 | 1 | ||||||
6) GDP per capita | −0.00961 | 0.448 *** | −0.296 *** | 0.102 | −0.989 *** | 1 | |||||
(7) GDP per capita square | −0.0315 | −0.137 * | 0.529 *** | 0.311 *** | 0.755 *** | −0.750 *** | 1 | ||||
(8) Primary energy consumptions | 0.274 *** | −0.276 *** | 0.0791 | −0.173 ** | 0.483 *** | −0.504 *** | 0.389 *** | 1 | |||
(9) Renewable energy | 0.260 *** | −0.131 * | −0.126 * | −0.141 * | 0.0733 | −0.0871 | 0.0543 | 0.168 ** | 1 | ||
(10) Non-renewable energy consumption | 0.203 *** | 0.0989 | 0.184 ** | 0.191 ** | −0.0460 | 0.0459 | 0.146 * | 0.141 * | 0.0912 | 1 | |
(11) Energy efficiency | 0.0754 | −0.0383 | 0.0785 | 0.0643 | 0.109 | −0.116 | 0.210 *** | 0.0578 | 0.0887 | 0.480 *** | 1 |
References
- Sarkodie, S.A. Winners and losers of energy sustainability—Global assessment of the Sustainable Development Goals. Sci. Total Environ. 2022, 831, 154945. [Google Scholar] [CrossRef]
- Sachs, J.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. Sustainable Development Report 2021; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Brundtland, G.H. Our common future—Call for action. Environ. Conserv. 1987, 14, 291–294. [Google Scholar] [CrossRef]
- United Nations. Resolution Adopted by the General Assembly on 25 September 2015, Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E (accessed on 9 February 2022).
- Africa Union. Agenda 2063: Framework Document—The Africa We Want. 2015. Available online: https://au.int/sites/default/files/documents/33126-doc-01_background_note.pdf (accessed on 20 February 2022).
- United Nations Conference on Trade and Development. Global Foreign Direct Investment Fell by 42% in 2020, Outlook Remains Weak. 2021. Available online: https://unctad.org/news/global-foreign-direct-investment-fell-42-2020-outlookremains-weak (accessed on 19 June 2022).
- Wang, M.; Wang, W.; Wu, L. Application of a new grey multivariate forecasting model in the forecasting of energy consumption in 7 regions of China. Energy 2022, 243, 123024. [Google Scholar] [CrossRef]
- Igawa, M.; Managi, S. Energy poverty and income inequality: An economic analysis of 37 countries. Appl. Energy 2022, 306, 118076. [Google Scholar] [CrossRef]
- Nchofoung, T.N.; Asongu, S.A. ICT for sustainable development: Global comparative evidence of globalisation thresholds. Telecommun. Policy 2022, 46, 102296. [Google Scholar] [CrossRef]
- Mazzucato, M.; Semieniuk, G. Financing renewable energy: Who is financing what and why it matters. Technol. Forecast. Soc. Chang. 2018, 127, 8–22. [Google Scholar] [CrossRef]
- International Energy Agency. World Energy Outlook 2020. Available online: windows.net (accessed on 20 June 2022).
- International Energy Agency. World Energy Outlook 2021. Available online: windows.net (accessed on 20 June 2022).
- International Renewable Energy Agency. Renewable Energy Statistics 2021. Available online: irena.org (accessed on 30 June 2022).
- Bouyghrissi, S.; Murshed, M.; Jindal, A.; Berjaoui, A.; Mahmood, H.; Khanniba, M. The importance of facilitating renewable energy transition for abating CO2 emissions in Morocco. Environ. Sci. Pollut. Res. 2022, 29, 20752–20767. [Google Scholar] [CrossRef] [PubMed]
- Shahnazi, R.; Shabani, Z.D. The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU. Renew. Energy 2021, 169, 293–307. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Amponsah, M.; Boateng, E. Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies. Energy Econ. 2020, 88, 104768. [Google Scholar] [CrossRef]
- Mensah, I.A.; Sun, M.; Gao, C.; Omari-Sasu, A.Y.; Zhu, D.; Ampimah, B.C.; Quarcoo, A. Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach. J. Clean. Prod. 2019, 228, 161–174. [Google Scholar] [CrossRef]
- Hanif, I.; Raza, S.M.F.; Gago-de-Santos, P.; Abbas, Q. Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence. Energy 2019, 171, 493–501. [Google Scholar] [CrossRef]
- Nathaniel, S.P.; Iheonu, C.O. Carbon dioxide abatement in Africa: The role of renewable and non-renewable energy consumption. Sci. Total Environ. 2019, 679, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhao, X.; Yan, X.; Wang, C.; Li, Q. Energy technological progress, energy consumption, and CO2 emissions: Empirical evidence from China. J. Clean. Prod. 2019, 236, 117666. [Google Scholar] [CrossRef]
- Arouri, M.; El Ghoul, S.; Gomes, M. Greenwashing and Product Market Competition. Available online: hal.science (accessed on 22 June 2022).
- Gao, X.; Zhou, F.; Chen, C.T.A. Pollution status of the Bohai Sea: An overview of the environmental quality assessment related trace metals. Environ. Int. 2014, 62, 12–30. [Google Scholar] [CrossRef]
- Esso, L.J.; Keho, Y. Energy consumption, economic growth and carbon emissions: Cointegration and causality evidence from selected African countries. Energy 2016, 114, 492–497. [Google Scholar] [CrossRef]
- Adom, P.K.; Agradi, M.; Vezzulli, A. Energy efficiency-economic growth nexus: What is the role of income inequality? J. Clean. Prod. 2021, 310, 127382. [Google Scholar] [CrossRef]
- Agradi, M.; Adom, P.K.; Vezzulli, A. Towards sustainability: Does energy efficiency reduce unemployment in African societies? Sustain. Cities Soc. 2022, 79, 103683. [Google Scholar] [CrossRef]
- Knight, K.W.; Schor, J.B.; Jorgenson, A.K. Wealth inequality and carbon emissions in high-income countries. Soc. Curr. 2017, 4, 403–412. [Google Scholar] [CrossRef]
- Magazzino, C.; Mutascu, M.; Mele, M.; Sarkodie, S.A. Energy consumption and economic growth in Italy: A wavelet analysis. Energy Rep. 2021, 7, 1520–1528. [Google Scholar] [CrossRef]
- Adom, P.K.; Amakye, K.; Abrokwa, K.K.; Quaidoo, C. Estimate of transient and persistent energy efficiency in Africa: A stochastic frontier approach. Energy Convers. Manag. 2018, 166, 556–568. [Google Scholar] [CrossRef]
- Liddle, B.; Sadorsky, P. Energy efficiency in OECD and non-OECD countries: Estimates and convergence. Energy Effic. 2021, 72, 14. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development. Organisation for Economic Co-Operation and Development Work on Green Growth 2019–20. 2019. Available online: https://issuu.com/oecd.publishing/docs/gg_brochure_2019_web (accessed on 1 July 2022).
- Organisation for Economic Co-Operation and Development. Green Growth Indicators 2017; OECD Green Growth Studies; OECD Publishing: Paris, France, 2017. [Google Scholar] [CrossRef]
- Green Growth Knowledge Platform. Moving towards a Common Approach on Green Growth Indicators. In The Green Growth Knowledge Platform; Global Green Growth Institute: Seoul, Korea; OECD: Paris, France; UNEP: Nairobi, Kenya; The World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Tajudeen, I.A.; Wossink, A.; Banerjee, P. How significant is energy efficiency to mitigate CO2 emissions? Evidence from OECD countries. Energy Econ. 2018, 72, 200–221. [Google Scholar] [CrossRef] [Green Version]
- Ponce, P.; Khan, S.A.R. A causal link between renewable energy, energy efficiency, property rights, and CO2 emissions in developed countries: A road map for environmental sustainability. Environ. Sci. Pollut. Res. 2021, 28, 37804–37817. [Google Scholar] [CrossRef]
- Razzaq, A.; Wang, Y.; Chupradit, S.; Suksatan, W.; Shahzad, F. Asymmetric inter-linkages between green technology innovation and consumption-based carbon emissions in BRICS countries using quantile-on-quantile framework. Technol. Soc. 2021, 66, 101656. [Google Scholar] [CrossRef]
- Ohene-Asare, K.; Tetteh, E.N.; Asuah, E.L. Total factor energy efficiency and economic development in Africa. Energy Effic. 2020, 13, 1177–1194. [Google Scholar] [CrossRef]
- Njiru, C.W.; Letema, S.C. Energy poverty and its implication on standard of living in Kirinyaga, Kenya. J. Energy 2018, 2018, 3196567. [Google Scholar] [CrossRef] [Green Version]
- Gouldson, A.; Murphy, J. Ecological modernisation: Restructuring industrial economies. Political Q. 1997, 68, 74–86. Available online: https://eprints.gla.ac.uk/71082/ (accessed on 1 June 2022). [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Tomás, C. Energy efficiency and sustainable growth in industrial sectors in European Union countries: A nonlinear ARDL approach. J. Clean. Prod. 2019, 239, 118045. [Google Scholar] [CrossRef]
- Akram, R.; Chen, F.; Khalid, F.; Ye, Z.; Majeed, M.T. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: Evidence from developing countries. J. Clean. Prod. 2020, 247, 119122. [Google Scholar] [CrossRef]
- Opoku, E.E.O.; Boachie, M.K. The environmental impact of industrialization and foreign direct investment. Energy Policy 2020, 137, 111178. [Google Scholar] [CrossRef]
- Go, Y.H.; Lau, L.S.; Yii, K.J.; Lau, W.Y. Does energy efficiency affect economic growth? Evidence from aggregate and disaggregate levels. Energy Environ. 2020, 31, 983–1006. [Google Scholar] [CrossRef]
- Dauda, L.; Long, X.; Mensah, C.N.; Salman, M.; Boamah, K.B.; Ampon-Wireko, S.; Dogbe, C.S.K. Innovation, trade openness and CO2 emissions in selected countries in Africa. J. Clean. Prod. 2021, 281, 125143. [Google Scholar] [CrossRef]
- Pan, X.; Ai, B.; Li, C.; Pan, X.; Yan, Y. Dynamic relationship among environmental regulation, technological innovation and energy efficiency based on large scale provincial panel data in China. Technol. Forecast. Soc. C 2019, 144, 428–435. [Google Scholar] [CrossRef]
- Mahmood, T.; Kanwal, F. Long Run Relationship between Energy Efficiency and Economic Growth in Pakistan: Time Series Data Analysis. Forman J. Econ. Stud. 2017, 13, 105–120. [Google Scholar] [CrossRef]
- Sinha, A. Modeling energy efficiency and economic growth: Evidences from India. Int. J. Energy Econ. Policy 2015, 5, 96–104. [Google Scholar]
- Dercon, S. Is Green Growth Good for the Poor? In Policy Research Working Paper 6231; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Khazzoom, J.D. Economic implications of mandated efficiency in standards for household appliances. Energy J. 1980, 1. [Google Scholar] [CrossRef]
- Herring, H.; Sorrell, S. Energy efficiency and sustainable consumption. In The Rebound Effect, Hampshire; Palgrave Macmillan London: London, UK, 2009; pp. 1–266. [Google Scholar]
- Gillingham, K.; Rapson, D.; Wagner, G. The rebound effect and energy efficiency policy. Rev Environ. Econ. Policy 2016, 10, 68–88. [Google Scholar] [CrossRef] [Green Version]
- Rajbhandari, A.; Zhang, F. Does energy efficiency promote economic growth? Evidence from a multicountry and multisectoral panel dataset. Energy Econ. 2018, 69, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Özbuğday, F.C.; Erbas, B.C. How effective are energy efficiency and renewable energy in curbing CO2 emissions in the long run? A heterogeneous panel data analysis. Energy 2015, 82, 734–745. [Google Scholar] [CrossRef]
- Lei, W.; Ozturk, I.; Muhammad, H.; Ullah, S. On the asymmetric effects of financial deepening on renewable and non-renewable energy consumption: Insights from China. Econ. Res. -Ekon. Istraz. 2021, 35, 3961–3978. [Google Scholar] [CrossRef]
- Javid, M.; Khan, M. Energy efficiency and underlying carbon emission trends. Environ. Sci. Pollut. Res. 2020, 27, 3224–3236. [Google Scholar] [CrossRef] [PubMed]
- Howarth, R.B. Energy efficiency and economic growth. Contemp. Econ. Policy 1997, 15, 1–9. [Google Scholar] [CrossRef]
- Saunders, H.D. The Khazzoom-Brookes postulate and neoclassical growth. Energy J. 1992, 13. [Google Scholar] [CrossRef]
- Lopez, R. The environment as a factor of production: The effects of economic growth and trade liberalization. J. Environ. Econ. Manag. 1994, 27, 163–184. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development (No. 992927783402676); International Labour Organization: Geneva, Switzerland, 1993. [Google Scholar]
- Shafiei, S.; Salim, R.A. Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis. Energy Policy 2014, 66, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, C. Economic Growth and the Environment: An Introduction to the Theory; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Brock, W.A.; Taylor, M.S. Economic growth and the environment: A review of theory and empirics. In Handbook of Economic Growth; Elsevier B.V.: Amsterdam, The Netherlands, 2005; Volume 1, pp. 1749–1821. [Google Scholar]
- Swain, R.B.; Kambhampati, U.S.; Karimu, A. Regulation, governance and the role of the informal sector in influencing environmental quality? Ecol. Econ. 2020, 173, 106649. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Adams, S. Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci. Total Environ. 2018, 643, 1590–1601. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Alola, A.A.; Bekun, F.V.; Sarkodie, S.A. Dynamic impact of trade policy, economic growth, fertility rate, renewable and non-renewable energy consumption on ecological footprint in Europe. Sci. Total Environ. 2019, 685, 702–709. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V.; Jiang, Y.; Evans, T. Proximate determinants of particulate matter (PM2. 5) emission, mortality and life expectancy in Europe, Central Asia, Australia, Canada and the US. Sci. Total Environ. 2019, 683, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.W.; Shahbaz, M.; Sinha, A.; Sengupta, T.; Qin, Q. How renewable energy consumption contribute to environmental quality? The role of education in OECD countries. J. Clean. Prod. 2020, 268, 122149. [Google Scholar] [CrossRef]
- Sinha, A.; Sengupta, T. Impact of energy mix on nitrous oxide emissions: An environmental Kuznets curve approach for APEC countries. Environ. Sci. Pollut. Res. 2019, 26, 2613–2622. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Khan, M.Z.; Zaman, K.; Naz, L. Global estimates of energy consumption and greenhouse gas emissions. Renew. Sustain. Energy Rev. 2014, 29, 336–344. [Google Scholar] [CrossRef]
- Zoundi, Z. CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew. Sustain. Energy Rev. 2017, 72, 1067–1075. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Kenya: A multivariate analysis. Renew. Sustain. Energy Rev. 2020, 117, 109481. [Google Scholar] [CrossRef]
- Sharif, A.; Raza, S.A.; Ozturk, I.; Afshan, S. The dynamic relationship of renewable and nonrenewable energy consumption with carbon emission: A global study with the application of heterogeneous panel estimations. Renew. Energy 2019, 133, 685–691. [Google Scholar] [CrossRef]
- Dong, K.; Dong, X.; Jiang, Q. How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels. World Econ. 2020, 43, 1665–1698. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Ozturk, I.; Solarin, S.A. Investigating the environmental Kuznets curve hypothesis in seven regions: The role of renewable energy. Ecol. Indic. 2016, 67, 267–282. [Google Scholar] [CrossRef]
- Bilgili, M.; Ozbek, A.; Sahin, B.; Kahraman, A. An overview of renewable electric power capacity and progress in new technologies in the world. Renew. Sust. Energy Rev. 2015, 49, 323–334. [Google Scholar] [CrossRef]
- Mujtaba, A.; Jena, P.K.; Bekun, F.V.; Sahu, P.K. Symmetric and asymmetric impact of economic growth, capital formation, renewable and non-renewable energy consumption on environment in OECD countries. Renew. Sustain. Energy Rev. 2020, 160, 112300. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Danish, B.; Zhang, B.; Wang, B.; Wang, Z. Role of renewable energy and non-renewable energy consumption on EKC: Evidence from Pakistan. J. Clean. Prod. 2017, 156, 855–864. [Google Scholar] [CrossRef]
- Farhani, S.; Shahbaz, M. What role of renewable and non-renewable electricity consumption and output is needed to initially mitigate CO2 emissions in MENA region? Renew. Sustain. Energy Rev. 2014, 40, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Mert, M.; Bölük, G. Do foreign direct investment and renewable energy consumption affect the CO2 emissions? New evidence from a panel ARDL approach to Kyoto Annex countries. Environ. Sci. Pollut. Res. 2016, 23, 21669–21681. [Google Scholar] [CrossRef]
- Kisswani, K.M.; Zaitouni, M. Does FDI affect environmental degradation? Examining pollution haven and pollution halo hypotheses using ARDL modelling. J. Asian Pac. Econ. 2021, 1–27. [Google Scholar] [CrossRef]
- Filippini, M.; Zhang, L. Estimation of the energy efficiency in Chinese provinces. Energy Effici. 2016, 9, 1315–1328. [Google Scholar] [CrossRef]
- Kumbhakar, S.C.; Lien, G.; Hardaker, J.B. Technical efficiency in competing panel data models: A study of Norwegian grain farming. J. Product. Anal. 2014, 41, 321–337. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, B.; Khan, M.K.; Khan, M.I.; Khan, S. Impact of foreign direct investment, natural resources, renewable energy consumption, and economic growth on environmental degradation: Evidence from BRICS, developing, developed and global countries. Environ. Sci. Pollut. Res. 2021, 28, 21789–21798. [Google Scholar] [CrossRef]
- Alvarado, R.; Ponce, P.; Criollo, A.; Córdova, K.; Khan, M.K. Environmental degradation and real per capita output: New evidence at the global level grouping countries by income levels. J. Clean. Prod. 2018, 189, 13–20. [Google Scholar] [CrossRef]
- Lorente, D.B.; Álvarez-Herranz, A. Economic growth and energy regulation in the environmental Kuznets curve. Environ. Sci. Pollut. Res. 2016, 23, 16478–16494. [Google Scholar] [CrossRef] [PubMed]
- Song, M.L.; Zhang, W.; Wang, S.H. Inflection point of environmental Kuznets curve in Mainland China. Energy Policy 2013, 57, 14–20. [Google Scholar] [CrossRef]
- Sabir, S.; Qayyum, U.; Majeed, T. FDI and environmental degradation: The role of political institutions in South Asian countries. Environ. Sci. Pollut. Res. 2020, 27, 32544–32553. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Nasir, M.A.; Roubaud, D. Environmental degradation in France: The effects of FDI, financial development, and energy innovations. Energy Econ. 2018, 74, 843–857. [Google Scholar] [CrossRef] [Green Version]
- Mahalik, M.K.; Villanthenkodath, M.A.; Mallick, H.; Gupta, M. Assessing the effectiveness of total foreign aid and foreign energy aid inflows on environmental quality in India. Energy Policy 2021, 149, 112015. [Google Scholar] [CrossRef]
- Opršal, Z.; Harmáček, J. Is Foreign Aid Responsive to Environmental Needs and Performance of Developing Countries? Case Study of the Czech Republic. Sustainability 2019, 11, 401. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Menaldo, V.; Prakash, A. Foreign aid, economic globalization, and pollution. Policy Sci. 2015, 48, 181–205. [Google Scholar] [CrossRef]
- Boamah, K.B.; Du, J.; Mensah, I.A.; Antwi, S.; Siddique, A.S.; Doku, J.N. The environmental consequences of foreign aid and key economic indicators: The Sino-Africa perspective. Environ. Sci. Pollut. Res. 2022, 29, 56281–56290. [Google Scholar] [CrossRef]
- Hu, B.; Li, Z.; Zhang, L. Long-run dynamics of sulphur dioxide emissions, economic growth, and energy efficiency in China. J. Clean. Prod. 2019, 227, 942–949. [Google Scholar] [CrossRef] [Green Version]
- Mutz, R.; Bornmann, L.; Daniel, H.D. Are there any frontiers of research performance? Efficiency measurement of funded research projects with the Bayesian stochastic frontier analysis for count data. J. Informetr. 2017, 11, 613–628. [Google Scholar] [CrossRef]
- Greene, W. Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. J. Econom. 2005, 126, 269–303. [Google Scholar] [CrossRef]
- Zhang, L.; Adom, P.K. Energy efficiency transitions in China: How persistent are the movements to/from the frontier? Energy J. 2018, 39, 147–169. [Google Scholar] [CrossRef]
- Schmidt, P.; Sickles, R.C. Production frontiers and panel data. J. Bus. Econ. Stat. 1984, 2, 367–374. [Google Scholar]
- Stock, J.H.; Watson, M.W. A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S.R. Initial conditions and moment restrictions in dynamic panel data models. J. Econom. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Asongu, S.A.; Odhiambo, N.M. Governance, CO2 emissions and inclusive human development in sub-Saharan Africa. Energy Explor. Exploit. 2020, 38, 18–36. [Google Scholar] [CrossRef] [Green Version]
- Ofori, P.E.; Grechyna, D. Remittances, natural resource rent and economic growth in Sub-Saharan Africa. Cogent Econ. Finance. 2021, 9, 1979305. [Google Scholar] [CrossRef]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef] [Green Version]
- Kripfganz, S. Generalized method of moments estimation of linear dynamic panel data models. In Proceedings of the London Stata Conference 2019, London, UK, 5 September 2019; Available online: https://www.stata.com/Kripfgan (accessed on 7 December 2021).
- Roodman, D. How to do xtabond2: An introduction to difference and system GMM in Stata. Stata J. 2009, 9, 86–136. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bond, S.R. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.C.; Schmidt, P. Efficient estimation of models for dynamic panel data. J. Econom. 1995, 68, 5–27. [Google Scholar] [CrossRef]
- Bond, S.R.; Hoeffler, A.; Temple, J.R. GMM estimation of empirical growth models. Centre for Economic Policy Research (CEPR); Discussion Paper Series, No. 3048; CEPR: London, UK, 2001; Available online: https://ssrn.com/abstract=290522 (accessed on 6 April 2022).
- Windmeijer, F. A finite sample correction for the variance of linear efficient two-step GMM estimators. J. Econom. 2005, 126, 25–51. [Google Scholar] [CrossRef]
- Ofori, I.K.; Dossou, T.A.M.; Akadiri, S.S. Towards the quest to reduce income inequality in Africa: Is there a synergy between tourism development and governance? Curr. Issues Tour. 2022, 1–21. [Google Scholar] [CrossRef]
- Cartwright, A. Better growth, better cities: Rethinking and redirecting urbanisation in Africa. In The New Climate Economy Working Paper; New Climate Economy: Washington, DC, USA, 2015. [Google Scholar]
- Wang, J.; Dong, K. What drives environmental degradation? Evidence from 14 Sub-Saharan African countries. Sci. Total Environ. 2019, 656, 165–173. [Google Scholar] [CrossRef]
- Danish; Wang, Z. Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Sci. Total Environ. 2019, 670, 1075–1083. [Google Scholar] [CrossRef]
- Suberu, M.Y.; Mustafa, M.W.; Bashir, N.; Muhamad, N.A.; Mokhtar, A.S. Power sector renewable energy integration for expanding access to electricity in sub-Saharan Africa. Renew. Sustain. Energy Rev. 2013, 25, 630–642. [Google Scholar] [CrossRef]
- Bekun, F.V.; Alola, A.A.; Sarkodie, S.A. Toward a sustainable environment: Nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries. Sci. Total Environ. 2019, 657, 1023–1029. [Google Scholar] [CrossRef]
- Zhu, H.; Duan, L.; Guo, Y.; Yu, K. The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression. Econ. Model. 2016, 58, 237–248. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhou, X. Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China. Renew. Sustain. Energy Rev. 2016, 58, 943–951. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, Z.; Liu, W.; Li, T.; Cong, W.; Zhang, H.; Shi, J. A principal component analysis based three-dimensional sustainability assessment model to evaluate corporate sustainable performance. J. Clean. Prod. 2018, 187, 625–637. [Google Scholar]
- Hakimi, A.; Hamdi, H. Trade liberalization, FDI inflows, environmental quality and economic growth: A comparative analysis between Tunisia and Morocco. Renew. Sustain. Energy Rev. 2016, 58, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hao, Y.; Gao, Y. The environmental consequences of domestic and foreign investment: Evidence from China. Energy Policy 2017, 108, 271–280. [Google Scholar] [CrossRef]
- Solarin, S.A.; Al-Mulali, U.; Musah, I.; Ozturk, I. Investigating the pollution haven hypothesis in Ghana: An empirical investigation. Energy 2017, 124, 706–719. [Google Scholar] [CrossRef]
- Demena, B.A.; Afesorgbor, S.K. The effect of FDI on environmental emissions: Evidence from a meta-analysis. Energy Policy 2020, 138, 111192. [Google Scholar] [CrossRef]
- Aboagye, S. Economic expansion and environmental sustainability nexus in Ghana. Afr. Dev. Rev. 2017, 29, 155–168. [Google Scholar] [CrossRef]
- Asongu, S.A.; Nnanna, J. Foreign aid, instability, and governance in Africa. Polit. Policy 2019, 47, 807–848. [Google Scholar] [CrossRef] [Green Version]
- Farooq, U. Foreign direct investment, foreign aid, and CO2 emissions in Asian economies: Does governance matter? Environ. Sci. Pollut. Res. 2022, 29, 7532–7547. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, H. Economic growth, industrial structure and nitrogen oxide emissions reduction and prediction in China. Atmos. Pollut. Res. 2020, 11, 1042–1050. [Google Scholar] [CrossRef]
Variables | Symbol | Descriptions | Sources |
---|---|---|---|
Outcome variables | |||
Greenhouse gas emissions | ghgs | Total greenhouse gas emissions in kiloton of CO2 equivalent. This comprises carbon emissions and other pollutants, such as methane, biomass, nitrous oxide and fluorinated greenhouse gases, such as hydrofluorocarbons, perfluorocarbons, sulphur hexafluoride and nitrogen trifluoride | WDI |
CO2 emissions | CO2 | Carbon emissions per capita produced during consumption of solid, liquid and gas fuels and gas flaring. | WDI |
Nitrous emissions | N2O | Nitrous oxide emissions in thousands of CO2 emissions from agricultural biomass burning, industrial activities and livestock management | WDI |
Variables of interest | |||
Energy consumption | ener | Denotes primary energy consumption from combustible renewables and waste—solid biomass and animal products, gas and liquid from biomass and industrial and municipal waste | WDI |
Renewable energy | rener | Renewable energy consumption (% of total final energy consumption) | WDI |
Non-renewable energy | nonre | Fossil fuel consumption comprising coal, oil, petroleum and natural gas products. | WDI |
Moderating variable | |||
Energy efficiency | EE | Energy efficiency index calculated following the Kumbhakar et al. (2014) approach | Authors |
Control variables | |||
FDI | Fdi | Net inflow of foreign direct investment as a percentage of gross domestic product | WDI |
Foreign aid | oda | The inflow of official development assistance as a share of gross national income. | WDI |
Economic growth | gpc | GDP per capita growth | WDI |
Economic growth squared | GDP per capita growth squared | Authors |
Skewness | Kurtosis | Pr(Skewness) | Pr(Kurtosis) | Joint Chi−Square Test |
---|---|---|---|---|
−0.677 | 2.449 | 0.000 | 0.001 | 33.2 *** |
Variables | N | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
Outcome variables | |||||
Greenhouse gas emissions | 281 | 118.853 | 184.514 | −85.278 | 828.871 |
CO2 emissions | 437 | 34,766 | 83,058.39 | 660 | 447,980 |
Nitrous emissions | 437 | 12,755.652 | 14,798.338 | 220 | 62,990 |
Key independent variables | |||||
Energy consumption (primary) | 462 | 20.836 | 34.425 | 0.710 | 157.511 |
Renewable energy consumption | 437 | 56.944 | 30.394 | 0.059 | 98.343 |
Non-renewable energy consumption | 345 | 40.944 | 30.138 | 1.640 | 99.978 |
Moderating variable | |||||
Energy efficiency | 483 | 0.550 | 0.213 | 0.124 | 0.984 |
Control variables | |||||
Foreign aid | 460 | 4.666 | 5.750 | −0.251 | 62.187 |
Foreign direct investment | 460 | 3.725 | 5.487 | −6.370 | 39.760 |
Economic Growth | 483 | 1.725 | 3.622 | −14.87 | 12.457 |
Economic Growth squared | 483 | 16.065 | 25.048 | 0.000 | 221.111 |
Variable | Coefficient | Standard Error | t−Value |
---|---|---|---|
Trade openness | −0.0343 | 0.0244 | −1.40 |
Urbanization | −0.439 | 0.0973 | −4.52 |
Economic growth | 0.0641 | 0.0411 | 1.56 |
Crude oil price | −0.0273 | 0.0112 | −2.45 |
Industrialisation | 0.0713 | 0.0328 | 2.17 |
Human capital | 0.654 | 0.159 | 4.11 |
T | −0.0051 | 0.0020 | −2.51 |
t2 | 0.0001 | 0.0001 | 0.16 |
Constant | 13.116 | 3.287 | −0.15 |
Observations | 451 | – | – |
Countries | 23 | – | – |
F−stats [p−value] | 205.9 [0.000] | – | – |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
) | 483 | 0.550 | 0.213 | 0.124 | 0.984 |
) | 483 | 0.570 | 0.215 | 0.125 | 1.000 |
) | 483 | 0.963 | 0.040 | 0.797 | 0.992 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
Greenhouse gas emissions (−1) | 0.9456 *** | 0.8255 *** | 0.9521 *** | 0.9395 *** | 0.9185 *** | 0.6499 *** | 0.5799 *** | 0.7156 *** |
(0.0066) | (0.0666) | (0.0144) | (0.0196) | (0.0287) | (0.0640) | (0.0820) | (0.0777) | |
FDI | −0.0015 *** | −0.0015 | −0.0023 *** | −0.0006 | −0.0038 *** | −0.0058 ** | −0.0103 *** | −0.0053 |
(0.0005) | (0.0019) | (0.0006) | (0.0019) | (0.0011) | (0.0026) | (0.0020) | (0.0031) | |
Foreign aid | 0.0009 | 0.0061 | −0.0057 ** | −0.0052 * | −0.0058 * | 0.0003 | 0.0053 | 0.0069 |
(0.0007) | (0.0041) | (0.0026) | (0.0027) | (0.0030) | (0.0028) | (0.0038) | (0.0041) | |
Economic growth | 0.0078 *** | 0.0055 * | 0.0090 *** | 0.0103 ** | 0.0073 *** | 0.0018 | 0.0059 ** | −0.0024 |
(0.0012) | (0.0028) | (0.0020) | (0.0043) | (0.0014) | (0.0029) | (0.0026) | (0.0047) | |
Economic growth squared | −0.0002 | 0.0009 | 0.0000 | −0.0009 | 0.0003 | 0.0006 | 0.0004 | 0.0014 |
(0.0004) | (0.0007) | (0.0006) | (0.0007) | (0.0006) | (0.0007) | (0.0007) | (0.0011) | |
Primary energy consumption | 0.0041 | 0.0043 | ||||||
(0.0054) | (0.0123) | |||||||
Renewable energy consumption | −0.0025 ** | −0.0138 ** | ||||||
(0.0011) | (0.0066) | |||||||
Non-renewable energy consumption | 0.0022 * | 0.0109 | ||||||
(0.0012) | (0.0088) | |||||||
Energy efficiency (EE) | −0.2647 | −0.7716 | −5.3022 *** | −2.0507 *** | ||||
(0.2848) | (0.6327) | (0.8499) | (0.6854) | |||||
Primary energy consumption * EE | −0.0007 | |||||||
(0.0220) | ||||||||
Renewable energy consumption EE | −0.0211 ** | |||||||
(0.0084) | ||||||||
Non-renewable energy consumption EE | 0.0136 | |||||||
(0.0214) | ||||||||
Constant | 0.5845 *** | 1.6567 ** | 0.4045 ** | 0.5449 ** | 0.7830 *** | 3.1134 *** | 3.0915 *** | 1.1815 * |
(0.0684) | (0.6156) | (0.1921) | (0.2477) | (0.2114) | (0.6109) | (0.7845) | (0.6658) | |
Observations | 414 | 414 | 414 | 322 | 414 | 414 | 414 | 322 |
Countries | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
Instruments | 22 | 22 | 22 | 18 | 22 | 22 | 22 | 18 |
Wald chi statistics | 6.506 × 106 *** | 157281 *** | 4.511 × 106 *** | 1.140 × 106 *** | 2.517 × 106 *** | 49610 *** | 54166 *** | 28,130 *** |
Wald p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Net effect | Na | na | na | Na | na | – | −0.0984 | – |
Joint significance test | Na | na | na | Na | na | – | 13.16 ** | – |
p-value | Na | na | na | Na | na | – | 0.0018 | – |
Hansen p−value | 0.195 | 0.573 | 0.181 | 0.603 | 0.564 | 0.399 | 0.826 | 0.568 |
AR(1) | 0.049 | 0.035 | 0.026 | 0.013 | 0.034 | 0.058 | 0.061 | 0.073 |
AR(2) | 0.325 | 0.372 | 0.321 | 0.231 | 0.335 | 0.339 | 0.373 | 0.626 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
CO2 emissions (−1) | 0.9738 *** | 0.9890 *** | 0.9686 *** | 1.0196 *** | 0.9765 *** | 0.9919 *** | 0.9386 *** | 0.9463 *** |
(0.0102) | (0.0213) | (0.0177) | (0.0318) | (0.0190) | (0.0297) | (0.0471) | (0.0454) | |
FDI | −0.0002 | −0.0004 | 0.0004 | 0.0015 | 0.0001 | 0.0006 | −0.0026 | 0.0004 |
(0.0007) | (0.0008) | (0.0005) | (0.0015) | (0.0011) | (0.0021) | (0.0017) | (0.0017) | |
Foreign aid | 0.0003 | 0.0011 | 0.0049 | 0.0001 | 0.0013 | 0.0011 | −0.0010 | −0.0023 |
(0.0011) | (0.0015) | (0.0032) | (0.0072) | (0.0049) | (0.0056) | (0.0049) | (0.0081) | |
Economic growth | 0.0098 *** | 0.0098 *** | 0.0108 *** | 0.0074 | 0.0104 *** | 0.0148 *** | 0.0157 *** | 0.0052 |
(0.0011) | (0.0012) | (0.0014) | (0.0051) | (0.0015) | (0.0022) | (0.0024) | (0.0066) | |
Economic growth squared | −0.0010 ** | −0.0011 ** | −0.0012 ** | −0.0005 | −0.0011 ** | −0.0007 | −0.0002 | 0.0004 |
(0.0005) | (0.0005) | (0.0005) | (0.0009) | (0.0005) | (0.0006) | (0.0006) | (0.0011) | |
Primary energy consumption | 0.0008 | 0.0077 | ||||||
(0.0013) | (0.0104) | |||||||
Renewable energy consumption | −0.0020 | 0.0074 | ||||||
(0.0019) | (0.0055) | |||||||
Non-renewable energy consumption | 0.0017 | −0.0056 | ||||||
(0.0025) | (0.0071) | |||||||
Energy efficiency (EE) | −0.0310 | −0.3269 | −1.7672 *** | 0.3959 | ||||
(0.2361) | (0.4028) | (0.5723) | (0.5071) | |||||
Primary energy consumption * EE | −0.0146 | |||||||
(0.0129) | ||||||||
Renewable energy consumption * EE | −0.0210 *** | |||||||
(0.0065) | ||||||||
Non-renewable energy consumption * EE | 0.0240 | |||||||
(0.0166) | ||||||||
Constant | 0.2787 ** | 0.1551 | 0.4122 | −0.0694 | 0.2643 ** | −0.0873 | −0.0294 | 0.1126 |
(0.1001) | (0.1787) | (0.2447) | (0.3338) | (0.1112) | (0.3256) | (0.4908) | (0.4349) | |
Observations | 414 | 414 | 414 | 322 | 414 | 414 | 414 | 322 |
Countries | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
Wald chi statistics | 2.630 × 107 *** | 2.750 × 107 *** | 1.030 × 107 *** | 162117 *** | 1.870 × 107 *** | 1.746 × 106 *** | 808,827 *** | 154,430 *** |
Wald p−value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Net effect | na | na | na | na | na | – | – | – |
Joint significance test | na | na | na | na | na | – | – | – |
p−value | na | na | na | na | na | – | – | – |
Hansen p−value | 0.714 | 0.670 | 0.663 | 0.896 | 0.708 | 0.581 | 0.691 | 0.949 |
AR(1) | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.000 | 0.001 |
AR(2) | 0.561 | 0.548 | 0.529 | 0.891 | 0.572 | 0.577 | 0.511 | 0.652 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
Nitrous oxide (−1) | 0.8893 *** | 0.7067 *** | 0.9704 *** | 0.9165 *** | 0.8098 *** | 0.1576 | 0.4199 *** | 0.7355 *** |
(0.0293) | (0.0734) | (0.0462) | (0.0800) | (0.0430) | (0.1535) | (0.1433) | (0.1052) | |
FDI | −0.0002 | 0.0008 ** | 0.0006 *** | 0.0005 | −0.0006 *** | 0.0002 | −0.0014 ** | −0.0003 |
(0.0002) | (0.0004) | (0.0002) | (0.0004) | (0.0002) | (0.0007) | (0.0006) | (0.0005) | |
Foreign aid | 0.0007 *** | 0.0035 ** | 0.0045 *** | 0.0045 *** | 0.0001 | 0.0038 *** | 0.0029 ** | 0.0032 *** |
(0.0002) | (0.0014) | (0.0008) | (0.0011) | (0.0001) | (0.0010) | (0.0011) | (0.0011) | |
Economic growth | 0.0017 *** | 0.0003 | −0.0000 | 0.0015 | 0.0021 *** | 0.0008 | 0.0009 | 0.0011 |
(0.0004) | (0.0006) | (0.0003) | (0.0010) | (0.0004) | (0.0008) | (0.0006) | (0.0008) | |
Economic growth squared | −0.0002 ** | 0.0002 | −0.0000 | −0.0001 | −0.0002 *** | 0.0002 | −0.0002 | −0.0002 |
(0.0001) | (0.0001) | (0.0001) | (0.0002) | (0.0001) | (0.0002) | (0.0002) | (0.0001) | |
Primary energy consumption | 0.0020 *** | 0.0018 | ||||||
(0.0004) | (0.0058) | |||||||
Renewable energy consumption | −0.0014 *** | −0.0040 ** | ||||||
(0.0003) | (0.0016) | |||||||
Non-renewable energy consumption | 0.0016 *** | 0.0027 * | ||||||
(0.0005) | (0.0014) | |||||||
Energy efficiency (EE) | 0.0685 ** | 0.4238 | 0.5626 * | 0.2500 | ||||
(0.0255) | (0.2738) | (0.3135) | (0.1554) | |||||
Primary energy consumption * EE | 0.0013 | |||||||
(0.0086) | ||||||||
Renewable energy consumption * EE | −0.0150 *** | |||||||
(0.0031) | ||||||||
Non-renewable energy consumption * EE | −0.0018 | |||||||
(0.0028) | ||||||||
Constant | 0.2369 *** | 0.5666 *** | 0.1199 | 0.0893 | 0.3778 *** | 1.5033 *** | 1.1094 *** | 0.3443 * |
(0.0633) | (0.1524) | (0.0985) | (0.1808) | (0.0801) | (0.2466) | (0.2425) | (0.1856) | |
Observations | 414 | 414 | 414 | 322 | 414 | 414 | 414 | 322 |
Countries | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
Instruments | 22 | 22 | 22 | 18 | 22 | 22 | 22 | 18 |
Wald chi statistics | 4.170 × 107 *** | 639,448 *** | 339,980 *** | 140,314 *** | 4.718 × 106 *** | 14619 *** | 2.495 ×106 *** | 104,812 *** |
Wald p−value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Net effect | na | na | na | na | na | – | −0.0127 | – |
Joint significance test | na | na | na | na | na | – | 4.55 ** | – |
p−value | na | Nna | na | na | na | – | 0.0462 | – |
Hansen p−value | 0.304 | 0.777 | 0.857 | 0.557 | 0.167 | 0.560 | 0.559 | 0.221 |
AR(1) | 0.097 | 0.047 | 0.046 | 0.028 | 0.078 | 0.018 | 0.033 | 0.034 |
AR(2) | 0.200 | 0.362 | 0.459 | 0.805 | 0.167 | 0.618 | 0.307 | 0.426 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jinapor, J.A.; Suleman, S.; Cromwell, R.S. Energy Consumption and Environmental Quality in Africa: Does Energy Efficiency Make Any Difference? Sustainability 2023, 15, 2375. https://doi.org/10.3390/su15032375
Jinapor JA, Suleman S, Cromwell RS. Energy Consumption and Environmental Quality in Africa: Does Energy Efficiency Make Any Difference? Sustainability. 2023; 15(3):2375. https://doi.org/10.3390/su15032375
Chicago/Turabian StyleJinapor, John A., Shafic Suleman, and Richard Stephens Cromwell. 2023. "Energy Consumption and Environmental Quality in Africa: Does Energy Efficiency Make Any Difference?" Sustainability 15, no. 3: 2375. https://doi.org/10.3390/su15032375
APA StyleJinapor, J. A., Suleman, S., & Cromwell, R. S. (2023). Energy Consumption and Environmental Quality in Africa: Does Energy Efficiency Make Any Difference? Sustainability, 15(3), 2375. https://doi.org/10.3390/su15032375