Effects of Organic Fertilizer Supply on Soil Properties, Tomato Yield, and Fruit Quality: A Global Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Meta-Analysis
2.3. Mapping Software and Correlation Analysis
3. Results
3.1. Heterogeneity Test and Analysis of Organic Fertilizer Application on Tomato Yield and Quality and Soil Properties
3.2. Meta-Analysis of Organic Fertilizer Application on Soil Properties
3.2.1. Meta-Analysis of Organic Fertilizer Application on Soil Electrical Conductivity and pH
3.2.2. Meta-Analysis of Organic Fertilizer Application on Soil Nutrient Index
3.2.3. Meta-Analysis of Organic Fertilizer Application on Soil Microbial Quantity and Enzyme Activity
3.3. Meta-Analysis of Organic Fertilizer Application on Tomato Yield and Quality
3.4. Regression Analysis of Yield after Organic Fertilizer Application
3.5. Correlation Analysis of Soil Properties and Tomato Yield, Fruit Quality after Application of Organic Fertilizer
4. Discussion
4.1. Effects of Organic Fertilizer Application on Soil Properties
4.2. Effects of Organic Fertilizer Application on Tomato Yield
4.3. Effects of Organic Fertilizer Application on Tomato Quality
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barros, L.; Dueñas, M.; Pinela, J.; Carvalho, A.M.; Buelga, C.S.; Ferreira, I.C.F.R. Characterization and Quantification of Phenolic Compounds in Four Tomato (Lycopersicon esculentum L.) Farmers’ Varieties in Northeastern Portugal Homegardens. Plant Foods Hum. Nutr. 2012, 67, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Toor, R.K.; Savage, G.P.; Heeb, A. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J. Food Compos. Anal. 2006, 19, 20–27. [Google Scholar] [CrossRef]
- FAO. Crop Data; Food and Agriculture Organization of the United Nations (FAO): Roma, Italy, 2018; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 25 August 2022).
- Huo, J.; Liu, J.; Feng, H.; Wang, Y. Research progress on flavor quality of tomato fruit. J. Chin. Veg. 2005, 2005, 38–40. [Google Scholar]
- Thompson, R.B.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M.D. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric. Water Manag. 2007, 89, 261–274. [Google Scholar] [CrossRef]
- Carrara, J.E.; Walter, C.A.; Hawkins, J.S.; Peterjohn, W.T.; Averill, C.; Brzostek, E.R. Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities under long-term N fertilization. Glob. Chang. Biol. 2018, 24, 2721–2734. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, X.; Zhang, J.; Wei, H.; Li, M.; Lan, N.; Luo, H. Intercropping perennial aquatic plants with rice improved paddy field soil microbial biomass, biomass carbon and biomass nitrogen to facilitate soil sustainability. Soil Tillage Res. 2021, 208, 104908. [Google Scholar] [CrossRef]
- Min, J.; Zhang, H.; Shi, W. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production. Agric. Water Manag. 2012, 111, 53–59. [Google Scholar] [CrossRef]
- Thompson, R.B.; Incrocci, L.; van Ruijven, J.; Massa, D. Reducing contamination of water bodies from European vegetable production systems. Agric. Water Manag. 2020, 240, 106258. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant Acidification in Major Chinese Croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Liang, L.Z.; Zhao, X.Q.; Yi, X.Y.; Chen, Z.C.; Dong, X.Y.; Chen, R.F.; Shen, R.F. Excessive application of nitrogen and phosphorus fertilizers induces soil acidification and phosphorus enrichment during vegetable production in Yangtze River Delta, China. Soil Use Manag. 2013, 29, 161–168. [Google Scholar] [CrossRef]
- Qiu, S.J.; Ju, X.T.; Ingwersen, J.; Qin, Z.C.; Li, L.; Streck, T.; Christie, P.; Zhang, F.S. Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production. Soil Tillage Res. 2010, 107, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Yu, L.; Chang, S.-H.; Yin, C.; Wang, H.; Zhang, Z. The effects of China’s Organic-Substitute-Chemical-Fertilizer (OSCF) policy on greenhouse vegetable farmers. J. Clean. Prod. 2021, 297, 126677. [Google Scholar] [CrossRef]
- Zhou, J.; Li, B.; Xia, L.; Fan, C.; Xiong, Z. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production. J. Clean. Prod. 2019, 225, 984–994. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, Y.; Cayuela, M.L.; Sánchez-Monedero, M.A.; Wang, Q. Compost biochemical quality mediates nitrogen leaching loss in a greenhouse soil under vegetable cultivation. Geoderma 2020, 358, 113984. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Impacts of protected vegetable cultivation on climate change and adaptation strategies for cleaner production—A review. J. Clean. Prod. 2019, 225, 324–339. [Google Scholar] [CrossRef]
- van Bruggen, A.H.C.; Sharma, K.; Kaku, E.; Karfopoulos, S.; Zelenev, V.V.; Blok, W.J. Soil health indicators and Fusarium wilt suppression in organically and conventionally managed greenhouse soils. Appl. Soil Ecol. 2015, 86, 192–201. [Google Scholar] [CrossRef]
- Luan, H.; Gao, W.; Huang, S.; Tang, J.; Li, M.; Zhang, H.; Chen, X. Partial substitution of chemical fertilizer with organic amendments affects soil organic carbon composition and stability in a greenhouse vegetable production system. Soil Tillage Res. 2019, 191, 185–196. [Google Scholar] [CrossRef]
- Kang, J.; Amoozegar, A.; Hesterberg, D.; Osmond, D.L. Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources. Geoderma 2011, 161, 194–201. [Google Scholar] [CrossRef]
- Kiruba, N.J.M.; Saeid, A. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable “Bio-Organic” Fertilizers: A Bibliometric Analysis and Systematic Literature Review. Int. J. Mol. Sci. 2022, 23, 13049. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, J.; Sun, Z.; Ji, C.; Huang, M.; Zhang, Y.; Xu, P.; Li, S.; Pawlett, M.; Zou, J. Soil N-oxide emissions decrease from intensive greenhouse vegetable fields by substituting synthetic N fertilizer with organic and bio-organic fertilizers. Geoderma 2021, 383, 114730. [Google Scholar] [CrossRef]
- Bender, D.J.; Contreras, T.A.; Fahrig, L. Habitat loss and population decline: A meta-analysis of the patch size effect. Ecology 1998, 79, 517–533. [Google Scholar] [CrossRef]
- Ellenberg, S.S. Meta-analysis: The quantitative approach to research review. Semin. Oncol. 1988, 15, 472–481. [Google Scholar]
- Liu, B.; Wang, X.; Ma, L.; Chadwick, D.; Chen, X. Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis. Environ. Pollut. 2021, 269, 116143. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Subramanian, D.; Yoon, E.; Kwon, T.; Chun, S.-C. Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum. Plant Pathol. J. 2016, 32, 216–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; Scialabba, N.E.-H.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Kurian, J.; Raghavan, V. Biochar influences on agricultural soils, crop production, and the environment: A review. Environ. Rev. 2016, 24, 495–502. [Google Scholar] [CrossRef]
- He, M.; Xiong, X.; Wang, L.; Hou, D.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Tsang, D.C.W. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. J. Hazard. Mater. 2021, 414, 125378. [Google Scholar] [CrossRef]
- Wang, X.-X.; Zhao, F.; Zhang, G.; Zhang, Y.; Yang, L. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study. Front. Plant Sci. 2017, 8, 1978. [Google Scholar] [CrossRef] [Green Version]
- Patra, R.K.; Behera, D.; Mohapatra, K.K.; Sethi, D.; Mandal, M.; Patra, A.K.; Ravindran, B. Juxtaposing the quality of compost and vermicompost produced from organic wastes amended with cow dung. Environ. Res. 2022, 214, 114119. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Guo, W.; Liu, H.; Cai, M. The synergistic effect between biofertility properties and biological activities in vermicomposting: A comparable study of pig manure. J. Environ. Manag. 2022, 324, 116280. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. the meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, C.; Huang, M.; Sun, N.; Zhang, W.; Xu, M. Integrated analysis of the effects of biochar on soil properties and fruit and vegetable yields in facility greenhouses. J. Plant Nutr. Fertil. 2018, 24, 228–236. [Google Scholar]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Viator, R.P.; Kovar, J.L.; Hallmark, W.B. Gypsum and Compost Effects on Sugarcane Root Growth, Yield, and Plant Nutrients. Agron. J. 2002, 94, 1332–1336. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Factories 2014, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Hashemimajd, K.; Kalbasi, M.; Golchin, A.; Shariatmadari, H. Comparison of Vermicompost and Composts as Potting Media for Growth of Tomatoes. J. Plant Nutr. 2004, 27, 1107–1123. [Google Scholar] [CrossRef]
- Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J.G.; Domínguez, J. Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Span. J. Agric. Res. 2009, 7, 944–951. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.G.; Li, W.J.; Qiu, J.J.; Ma, Y.L.; Wang, Y.C. Effect of biological organic fertilizer on crops growth, soil fertility and yield. Soils Fertil. 2004, 5, 12–16. [Google Scholar]
- Shi, H.; Tan, J.; Qin, X.; Wang, R.J. Effects of Different Bio-organic Fertilizers on Growth and Development, Yield and Quality of Flue-cured Tobacco. China Tob. Sci. 2014, 2, 74–78. [Google Scholar]
- Nagaraju, A.; Sudisha, J.; Murthy, S.M.; Ito, S.-I. Seed priming with Trichoderma harzianum isolates enhances plant growth and induces resistance against Plasmopara halstedii, an incitant of sunflower downy mildew disease. Australas. Plant Pathol. 2012, 41, 609–620. [Google Scholar] [CrossRef]
- Li, R.; Tao, R.; Ling, N.; Chu, G. Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil Tillage Res. 2017, 167, 30–38. [Google Scholar] [CrossRef]
- Zhai, Z.G.; Hu, Q.L.; Chen, J.R.; Liu, C.X.; Guo, S.; Huang, S.Q.; Zeng, W.A. Effects of combined application of organic fertilizer and microbial agents on tobacco soil and tobacco agronomic traits. In Proceedings of the 6th International Conference on Agricultural and Biological Sciences (ABS), Online, 23–26 August 2020. [Google Scholar]
- Liu, F.; Han, D.; Zhao, M.; Xiaoyong, L.; Guan, C. Effects of application of microbial agents along with humic acid potassium on tobacco-planted soil and economic benefit of flue-cured tobacco. Acta Agric. Zhejiangensis 2017, 29, 1064–1069. [Google Scholar]
- Li, L.I.; Han, Z.; Zhang, Y.; Yan, X.M.; Zhang, G.C.; Gao, X.D.; Zhang, Y.N.; Chao, Y.E.; Shao-Bo, L.I. Effects of Reducing Nitrogen Fertilizer Combined with Microbial Agents on Rice Root Growth and Soil Enzyme Activities. J. Chin. Soil. Sci. 2019, 50, 932–939. [Google Scholar]
- Bending, G.D.; Turner, M.K.; Rayns, F.; Marx, M.-C.; Wood, M. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol. Biochem. 2004, 36, 1785–1792. [Google Scholar] [CrossRef]
- Li, B.; Guo, L.; Wang, H.; Li, Y.; Lai, H.; Wang, X.; Wei, X. Bio-Organic Fertilizers Manipulate Abundance Patterns of Rhizosphere Soil Microbial Community Structure To Improve Tomato Productivity. Res. Sq. 2021, 1, 852188. [Google Scholar] [CrossRef]
- Ingram, L.J.; Schuman, G.E.; Stahl, P.D.; Spackman, L.K. Microbial Respiration and Organic Carbon Indicate Nutrient Cycling Recovery in Reclaimed Soils. Soil Sci. Soc. Am. J. 2005, 69, 1737–1745. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, N.; Gutiérrez-Barranquero, J.A.; De Vicente, A.; Cazorla, F.M. Enhancing Soil Quality and Plant Health through Suppressive Organic Amendments. Diversity 2012, 4, 475–491. [Google Scholar] [CrossRef]
- Khan, M.S.; Zaidi, A.; Wani, P.A.; Oves, M. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett. 2009, 7, 1–19. [Google Scholar] [CrossRef]
- Marinari, S.; Masciandaro, G.; Ceccanti, B.; Grego, S. Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresour. Technol. 2000, 72, 9–17. [Google Scholar] [CrossRef]
- Tao, R.; Liang, Y.; Wakelin, S.A.; Chu, G. Supplementing chemical fertilizer with an organic component increases soil biological function and quality. Appl. Soil Ecol. 2015, 96, 42–51. [Google Scholar] [CrossRef]
- Verstraete, W.; Voets, J.P. Soil microbial and biochemical characteristics in relation to soil management and fertility. Soil Biol. Biochem. 1977, 9, 253–258. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, D.; Song, Z.; Ren, L.; Jin, X.; Fang, W.; Yan, D.; Li, Y.; Wang, Q.; Cao, A. Organic fertilizer activates soil beneficial microorganisms to promote strawberry growth and soil health after fumigation. Environ. Pollut. 2022, 295, 118653. [Google Scholar] [CrossRef]
- Toffa, J.; Loko, Y.L.E.; Kpindou, O.K.D.; Zanzana, K.; Adikpeto, J.; Gbenontin, Y.; Koudamiloro, A.; Adandonon, A. Endophytic colonization of tomato plants by Beauveria bassiana Vuillemin (Ascomycota: Hypocreales) and leaf damage in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae. Egypt. J. Biol. Pest Control 2021, 31, 82. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, H.; Hao, B.; Li, Q.; Wu, J.; Zhang, Y.; Fang, W.; Yan, D.; Li, Y.; Wang, Q.; et al. Fresh chicken manure fumigation reduces the inhibition time of chloropicrin on soil bacteria and fungi and increases beneficial microorganisms. Environ. Pollut. 2021, 286, 117460. [Google Scholar] [CrossRef]
- Carricondo-Martínez, I.; Berti, F.; Salas-Sanjuán, M.D.C. Different Organic Fertilisation Systems Modify Tomato Quality: An Opportunity for Circular Fertilisation in Intensive Horticulture. Agronomy 2022, 12, 174. [Google Scholar] [CrossRef]
- Jin, L.; Jin, N.; Wang, S.; Li, J.; Meng, X.; Xie, Y.; Wu, Y.; Luo, S.; Lyu, J.; Yu, J. Changes in the Microbial Structure of the Root Soil and the Yield of Chinese Baby Cabbage by Chemical Fertilizer Reduction with Bio-Organic Fertilizer Application. Microbiol. Spectr. 2022, 10, e01215-22. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, Y.; Gao, J.; Peng, F.; Gao, P. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China. Sci. Rep. 2018, 8, 16554. [Google Scholar] [CrossRef] [Green Version]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef] [Green Version]
- Legrand, F.; Picot, A.; Cobo-Díaz, J.F.; Carof, M.; Chen, W.; Le Floch, G. Effect of tillage and static abiotic soil properties on microbial diversity. Appl. Soil Ecol. 2018, 132, 135–145. [Google Scholar] [CrossRef]
- Geyer, M.; Mohler, V.; Hartl, L. Genetics of the Inverse Relationship between Grain Yield and Grain Protein Content in Common Wheat. Plants 2022, 11, 2146. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, W.; Xu, Z. Relationship between grain yield and quality in rice germplasms grown across different growing areas. Breed. Sci. 2015, 65, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Ali, Q.; Kurubas, M.S.; Ustun, H.; Balkhi, M.; Erkan, M. Evaluation of Foliar Organic Fertilizer, Biofertilizer and Biological Fungicide on the Antioxidant Compounds and Postharvest Quality Attributes of Strawberry Fruit. Erwerbs-Obstbau 2022, 64, 365–376. [Google Scholar] [CrossRef]
- Maddahi, S.; Rahimi, A.; Moghaddam, S.S.; Pourakbar, L.; Popović-Djordjević, J. Effects of Sowing Time and Chemical, Organic, and Biological Fertilizer Sources on Yield Components and Antioxidant Properties of Dragon’s Head (Lallemantia iberica (M. Bieb.) Fisch. & C. A. Mey). J. Plant Growth Regul. 2022, 41, 1276–1290. [Google Scholar] [CrossRef]
- Rahimi, A.; Amirnia, R.; Moghaddam, S.S.; El Enshasy, H.A.; Hanapi, S.Z.; Sayyed, R.Z. Effect of Different Biological and Organic Fertilizer Sources on the Quantitative and Qualitative Traits of Cephalaria syriaca. Horticulturae 2021, 7, 397. [Google Scholar] [CrossRef]
Different Indicators | n | Heterogeneity | Between | ||
---|---|---|---|---|---|
PQ | Q | I2 (%) | |||
Soil Ec | 115 | 0.00000 | 200.05 | 43.01 | 0.00701 |
Soil pH (<6) | 119 | 0.00000 | 253.17 | 53.39 | 0.38239 |
Soil pH (6~8) | 101 | 0.00000 | 186.34 | 46.34 | 0.92011 |
Soil SOM | 173 | 0.00000 | 913.15 | 81.16 | 0.01363 |
Soil TN | 133 | 0.00000 | 2287.66 | 94.23 | 0.00000 |
Soil TP | 57 | 0.00001 | 114.58 | 51.12 | 0.14923 |
Soil TK | 41 | 0.00000 | 226.46 | 82.34 | 0.00002 |
Soil NH4+-N | 66 | 0.00030 | 111.56 | 41.74 | 0.83171 |
Soil NO3−-N | 80 | 0.00000 | 148.09 | 46.65 | 0.67503 |
Soil AvP | 168 | 0.00000 | 2460.97 | 93.21 | 0.99625 |
Soil AvK | 145 | 0.00000 | 345.67 | 58.34 | 0.79134 |
Soil bacteria | 63 | 0.00000 | 2336.25 | 97.35 | 0.00000 |
Soil fungi | 63 | 0.00000 | 463.93 | 86.64 | 0.26200 |
Soil urease | 18 | 0.05051 | 27.55 | 38.29 | 0.39877 |
Soil catalase | 27 | 0.00000 | 94.22 | 72.40 | 0.00554 |
Yield | 379 | 0.00000 | 1104.63 | 65.78 | 0.00002 |
Nitrate of tomato fruit | 48 | 0.00014 | 90.60 | 48.12 | 0.92353 |
Sugar of tomato fruit | 85 | 0.00000 | 280.61 | 70.06 | 0.00000 |
Lycopene of tomato fruit | 130 | 0.00000 | 254.03 | 49.22 | 0.00000 |
Protein of tomato fruit | 30 | 0.00000 | 82.64 | 64.91 | 0.18312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.; Zhang, Y.; Li, J.; Jiang, J.; Waheed, A.; Wang, S.; Rasheed, S.M.; Zhang, L.; Zhang, R. Effects of Organic Fertilizer Supply on Soil Properties, Tomato Yield, and Fruit Quality: A Global Meta-Analysis. Sustainability 2023, 15, 2556. https://doi.org/10.3390/su15032556
Fan H, Zhang Y, Li J, Jiang J, Waheed A, Wang S, Rasheed SM, Zhang L, Zhang R. Effects of Organic Fertilizer Supply on Soil Properties, Tomato Yield, and Fruit Quality: A Global Meta-Analysis. Sustainability. 2023; 15(3):2556. https://doi.org/10.3390/su15032556
Chicago/Turabian StyleFan, Heling, Yanshu Zhang, Jingchen Li, Jiajun Jiang, Abdul Waheed, Shuguang Wang, Syed Majid Rasheed, Li Zhang, and Rongping Zhang. 2023. "Effects of Organic Fertilizer Supply on Soil Properties, Tomato Yield, and Fruit Quality: A Global Meta-Analysis" Sustainability 15, no. 3: 2556. https://doi.org/10.3390/su15032556
APA StyleFan, H., Zhang, Y., Li, J., Jiang, J., Waheed, A., Wang, S., Rasheed, S. M., Zhang, L., & Zhang, R. (2023). Effects of Organic Fertilizer Supply on Soil Properties, Tomato Yield, and Fruit Quality: A Global Meta-Analysis. Sustainability, 15(3), 2556. https://doi.org/10.3390/su15032556