Response of Contrasting Nutrient Management Regimes on Soil Aggregation, Aggregate-Associated Carbon and Macronutrients in a 43-Year Long-Term Experiment
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description, Field Treatments and Crop Management
2.2. Fractionation of Particle Size Aggregates
2.3. Chemical and Biological Analysis of Soil
2.4. Statistical Analysis
3. Results
3.1. Effects of Long-Term Manure and Inorganic Fertiliser Application on Aggregates Distribution
3.2. Effects of Long-Term Manure and Inorganic Fertilisers on Mean Weight Diameter (MWD) and Water-Stable Aggregates (WSA)
3.3. Effects of Long-Term Manure and Inorganic Fertiliser on Aggregate-Associated-C
3.3.1. Large Macroaggregate-Associated Carbon
3.3.2. Small Macroaggregate-Associated Carbon
3.3.3. Microaggregate-Associated Carbon
3.3.4. Silt + Clay Fraction Associated Carbon
3.4. Effects of Long-Term Manure and Inorganic Fertiliser on Soil Carbon Fractions and Microbial Indices
3.4.1. Walkley and Black Bulk Soil Organic Carbon and Total Soil Carbon
3.4.2. Permanganate Oxidisable Carbon
3.4.3. Soil Microbial Biomass Carbon
3.4.4. Carbon Mineralisation
3.4.5. Metabolic Quotient
3.4.6. Microbial Quotient
3.5. Effects of Long-Term Manure and Inorganic Fertiliser on Total Macronutrients
3.6. Correlation among Soil Carbon, Nutrients, Biological and Physical Properties of Soil
4. Discussion
4.1. Aggregation and Associated Indices
4.2. Aggregate-Associated Carbon
4.3. Soil Carbon Fractions and Microbial Indices
4.4. Total Nutrient Content
4.5. Relation among Different Soil Carbon Pools, Nutrients, MWD, WSA and Soil Biological Properties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bandyopadhyay, P.K.; Saha, S.; Mani, P.K.; Mandal, B. Effect of Organic Inputs on Aggregate Associated Organic Carbon Concentration under Long-Term Rice–Wheat Cropping System. Geoderma 2010, 154, 379–386. [Google Scholar] [CrossRef]
- Ghosh, A.; Bhattacharyya, R.; Agarwal, B.K.; Mahapatra, P.; Shahi, D.K.; Singh, G.; Agnihorti, R.; Sawlani, R.; Sharma, C. Long-Term Fertilization Effects on 13C Natural Abundance, Soil Aggregation, and Deep Soil Organic Carbon Sequestration in an Alfisol. Land Degrad. Dev. 2019, 30, 391–405. [Google Scholar] [CrossRef]
- Du, Z.; Han, X.; Wang, Y.; Gu, R.; Li, Y.; Wang, D.; Yun, A.; Guo, L. Changes in Soil Organic Carbon Concentration, Chemical Composition, and Aggregate Stability as Influenced by Tillage Systems in the Semi-Arid and Semi-Humid Area of North China. Can. J. Soil. Sci. 2018, 98, 91–102. [Google Scholar] [CrossRef]
- Yu, H.; Ding, W.; Luo, J.; Geng, R.; Cai, Z. Long-Term Application of Organic Manure and Mineral Fertilizers on Aggregation and Aggregate-Associated Carbon in a Sandy Loam Soil. Soil Tillage Res. 2012, 124, 170–177. [Google Scholar] [CrossRef]
- Qaswar, M.; Li, D.; Huang, J.; Han, T.; Ahmed, W.; Ali, S.; Khan, M.N.; Khan, Z.H.; Xu, Y.; Li, Q.; et al. Dynamics of Organic Carbon and Nitrogen in Deep Soil Profile and Crop Yields under Long-Term Fertilization in Wheat-Maize Cropping System. J. Integr. Agric. 2022, 21, 826–839. [Google Scholar] [CrossRef]
- Meena, V.S.; Mondal, T.; Pandey, B.M.; Mukherjee, A.; Yadav, R.P.; Choudhary, M.; Singh, S.; Bisht, J.K.; Pattanayak, A. Land Use Changes: Strategies to Improve Soil Carbon and Nitrogen Storage Pattern in the Mid-Himalaya Ecosystem, India. Geoderma 2018, 321, 69–78. [Google Scholar] [CrossRef]
- Tanner, S.; Ben-Hur, M.; Argaman, E.; Katra, I. The Effects of Soil Properties and Aggregation on Sensitivity to Erosion by Water and Wind in Two Mediterranean Soils. Catena 2023, 221, 106787. [Google Scholar] [CrossRef]
- Schweizer, S.A.; Bucka, F.B.; Graf-Rosenfellner, M.; Kögel-Knabner, I. Soil Microaggregate Size Composition and Organic Matter Distribution as Affected by Clay Content. Geoderma 2019, 355, 113901. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A History of Research on the Link between (Micro)Aggregates, Soil Biota, and Soil Organic Matter Dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Bossuyt, H.; Denef, K.; Six, J.; Frey, S.D.; Merckx, R.; Paustian, K. Influence of Microbial Populations and Residue Quality on Aggregate Stability. Appl. Soil Ecol. 2001, 16, 195–208. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, R.; Yang, X.; Sun, B.; Li, Q. Soil Aggregation and Aggregating Agents as Affected by Long Term Contrasting Management of an Anthrosol. Sci.Rep. 2016, 6, 39107. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Huang, L.; Li, X.; Lu, J.; Gao, R.; Kamran, M.; Fahad, S. Effect of Clay Mineralogy and Soil Organic Carbon in Aggregates under Straw Incorporation. Agronomy 2022, 12, 534. [Google Scholar] [CrossRef]
- Hati, K.M.; Chaudhary, R.S.; Mandal, K.G.; Bandyopadhyay, K.K.; Singh, R.K.; Sinha, N.K.; Mohanty, M.; Somasundaram, J.; Saha, R. Effects of Tillage, Residue and Fertilizer Nitrogen on Crop Yields, and Soil Physical Properties Under Soybean–Wheat Rotation in Vertisols of Central India. Agric. Res. 2015, 4, 48–56. [Google Scholar] [CrossRef]
- Somasundaram, J.; Chaudhary, R.S.; AwanishKumar, D.; Biswas, A.K.; Sinha, N.K.; Mohanty, M.; Hati, K.M.; Jha, P.; Sankar, M.; Patra, A.K.; et al. Effect of Contrasting Tillage and Cropping Systems on Soil Aggregation, Carbon Pools and Aggregate-Associated Carbon in Rainfed Vertisols. Eur. J. Soil Sci. 2018, 69, 879–891. [Google Scholar] [CrossRef]
- Somasundaram, J.; Salikram, M.; Sinha, N.K.; Mohanty, M.; Chaudhary, R.S.; Dalal, R.C.; Mitra, N.G.; Blaise, D.; Coumar, M.V.; Hati, K.M.; et al. Corrigendum to: Conservation Agriculture Effects on Soil Properties and Crop Productivity in a Semiarid Region of India. Soil Res. 2019, 57, 200. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil Macroaggregate Turnover and Microaggregate Formation: A Mechanism for C Sequestration under No-Tillage Agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Painuli, D.K.; Mohanty, M.; Sinha, N.K.; Misra, A.K. Crack Formation in a Swell–Shrink Soil Under Various Managements. Agric. Res. 2017, 6, 66–72. [Google Scholar] [CrossRef]
- Garten, C.T., Jr.; Iversen, C.M.; Norby, R.J. Litterfall 15N Abundance Indicates Declining Soil Nitrogen Availability in a Free-Air CO2 Enrichment Experiment. Ecology 2011, 92, 133–139. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; Wei, D.; Zhu, P.; Cui, X.; Zhou, B.; Chen, X.; Jin, J.; Liu, X.; Wang, G. Effects of over 30-Year of Different Fertilization Regimes on Fungal Community Compositions in the Black Soils of Northeast China. Agric. Ecosyst. Environ. 2017, 248, 113–122. [Google Scholar] [CrossRef]
- Mohanty, M.; Sinha, N.K.; Somasundaram, J.; McDermid, S.S.; Patra, A.K.; Singh, M.; Dwivedi, A.K.; Reddy, K.S.; Rao, C.S.; Prabhakar, M.; et al. Soil Carbon Sequestration Potential in a Vertisol in Central India- Results from a 43-Year Long-Term Experiment and APSIM Modeling. Agric. Syst. 2020, 184, 102906. [Google Scholar] [CrossRef]
- He, Y.; Xu, C.; Gu, F.; Wang, Y.; Chen, J. Soil Aggregate Stability Improves Greatly in Response to Soil Water Dynamics under Natural Rains in Long-Term Organic Fertilization. Soil Tillage Res. 2018, 184, 281–290. [Google Scholar] [CrossRef]
- Anandakumar, S.; Bakhoum, N.; Chinnadurai, C.; Malarkodi, M.; Arulmozhiselvan, K.; Karthikeyan, S.; Balachandar, D. Impact of Long-Term Nutrient Management on Sequestration and Dynamics of Soil Organic Carbon in a Semi-Arid Tropical Alfisol of India. Appl. Soil Ecol. 2022, 177, 104549. [Google Scholar] [CrossRef]
- Mustafa, A.; Frouz, J.; Naveed, M.; Ping, Z.; Nan, S.; Minggang, X.; Núñez-Delgado, A. Stability of Soil Organic Carbon under Long-Term Fertilization: Results from 13C NMR Analysis and Laboratory Incubation. Environ. Res. 2022, 205, 112476. [Google Scholar] [CrossRef] [PubMed]
- Obalum, S.E.; Chibuike, G.U.; Peth, S.; Ouyang, Y. Soil Organic Matter as Sole Indicator of Soil Degradation. Environ.Monit. Assess. 2017, 189, 176. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.; Ortas, I.; Kilic, S. Effects of Compost, Mycorrhiza, Manure and Fertilizer on Some Physical Properties of a Chromoxerert Soil. Soil Tillage Res. 2004, 78, 59–67. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the Intensification of Agriculture for Global Food Security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, D.; Zhou, B.; Zhang, L.; Hao, X.; Zhao, S.; Xu, X.; He, P.; Zhao, Y.; Qiu, S.; et al. Responses of Soil Aggregation and Aggregate-Associated Carbon and Nitrogen in Black Soil to Different Long-Term Fertilization Regimes. Soil Tillage Res. 2021, 213, 105157. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, N.; Ge, T.; Kuzyakov, Y.; Wang, Z.-L.; Li, Z.; Tang, Z.; Chen, Y.; Wu, C.; Lou, Y. Soil Aggregation Regulates Distributions of Carbon, Microbial Community and Enzyme Activities after 23-Year Manure Amendment. Appl. Soil Ecol. 2017, 111, 65–72. [Google Scholar] [CrossRef]
- Choudhary, M.; Panday, S.C.; Meena, V.S.; Singh, S.; Yadav, R.P.; Pattanayak, A.; Mahanta, D.; Bisht, J.K.; Stanley, J. Long-Term Tillage and Irrigation Management Practices: Strategies to Enhance Crop and Water Productivity under Rice-Wheat Rotation of Indian Mid-Himalayan Region. Agric. Water Manag. 2020, 232, 106067. [Google Scholar] [CrossRef]
- Liu, E.; Yan, C.; Mei, X.; Zhang, Y.; Fan, T. Long-Term Effect of Manure and Fertilizer on Soil Organic Carbon Pools in Dryland Farming in Northwest China. PLoS ONE 2013, 8, e56536. [Google Scholar] [CrossRef] [Green Version]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29. [Google Scholar] [CrossRef]
- Islam, K.R.; Weil, R.R. Land Use Effects on Soil Quality in a Tropical Forest Ecosystem of Bangladesh. Agric. Ecosyst. Environ. 2000, 79, 9–16. [Google Scholar] [CrossRef]
- Anderson, J.P.E. Soil Respiration. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1983; pp. 831–871. ISBN 978-0-89118-977-0. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Anderson, T.-H.; Domsch, K.H. Application of Eco-Physiological Quotients (QCO2 and QD) on Microbial Biomasses from Soils of Different Cropping Histories. Soil Biol. Biochem. 1990, 22, 251–255. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1983; pp. 539–579. ISBN 978-0-89118-977-0. [Google Scholar]
- Xie, H.; Li, J.; Zhang, B.; Wang, L.; Wang, J.; He, H.; Zhang, X. Long-Term Manure Amendments Reduced Soil Aggregate Stability via Redistribution of the Glomalin-Related Soil Protein in Macroaggregates. Sci. Rep. 2015, 5, 14687. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, R.; Prakash, V.; Kundu, S.; Srivastva, A.K.; Gupta, H.S.; Mitra, S. Long Term Effects of Fertilization on Carbon and Nitrogen Sequestration and Aggregate Associated Carbon and Nitrogen in the Indian Sub-Himalayas. Nutr.Cycl.Agroecosyst. 2010, 86, 1–16. [Google Scholar] [CrossRef]
- Kumar, D.; Purakayastha, T.J.; Das, R.; Yadav, R.K.; Shivay, Y.S.; Jha, P.K.; Singh, S.; Aditi, K.; Prasad, P.V.V. Long-Term Effects of Organic Amendments on Carbon Stability in Clay–Organic Complex and Its Role in Soil Aggregation. Agronomy 2023, 13, 39. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic Matter and Water-Stable Aggregates in Soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Prakash, V.; Kundu, S.; Srivastva, A.K.; Gupta, H.S. Soil Aggregation and Organic Matter in a Sandy Clay Loam Soil of the Indian Himalayas under Different Tillage and Crop Regimes. Agric. Ecosyst. Environ. 2009, 132, 126–134. [Google Scholar] [CrossRef]
- Liao, J.D.; Boutton, T.W.; Jastrow, J.D. Storage and Dynamics of Carbon and Nitrogen in Soil Physical Fractions Following Woody Plant Invasion of Grassland. Soil Biol. Biochem. 2006, 38, 3184–3196. [Google Scholar] [CrossRef]
- Sommerfeldt, T.G.; Chang, C. Changes in Soil Properties Under Annual Applications of Feedlot Manure and Different Tillage Practices. Soil Sci. Soc. Am. J. 1985, 49, 983–987. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Annabi, M.; Le Bissonnais, Y.; Le Villio-Poitrenaud, M.; Houot, S. Improvement of Soil Aggregate Stability by Repeated Applications of Organic Amendments to a Cultivated Silty Loam Soil. Agric. Ecosyst. Environ. 2011, 144, 382–389. [Google Scholar] [CrossRef]
- Shirani, H.; Hajabbasi, M.A.; Afyuni, M.; Hemmat, A. Effects of Farmyard Manure and Tillage Systems on Soil Physical Properties and Corn Yield in Central Iran. Soil Tillage Res. 2002, 68, 101–108. [Google Scholar] [CrossRef]
- Golchin, A.; Clarke, P.; Oades, J.M.; Skjemstad, J.O. The Effects of Cultivation on the Composition of Organic-Matter and Structural Stability of Soils. Soil Res. 1995, 33, 975–993. [Google Scholar] [CrossRef]
- Elliott, E.T. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Liu, Y.-R.; Delgado-Baquerizo, M.; Wang, J.-T.; Hu, H.-W.; Yang, Z.; He, J.-Z. New Insights into the Role of Microbial Community Composition in Driving Soil Respiration Rates. Soil Biol. Biochem. 2018, 118, 35–41. [Google Scholar] [CrossRef]
- Liu, C.-A.; Zhou, L.-M. Soil Organic Carbon Sequestration and Fertility Response to Newly-Built Terraces with Organic Manure and Mineral Fertilizer in a Semi-Arid Environment. Soil Tillage Res. 2017, 172, 39–47. [Google Scholar] [CrossRef]
- Guo, Z.C.; Zhang, Z.B.; Zhou, H.; Rahman, M.T.; Wang, D.Z.; Guo, X.S.; Li, L.J.; Peng, X.H. Long-Term Animal Manure Application Promoted Biological Binding Agents but Not Soil Aggregation in a Vertisol. Soil Tillage Res. 2018, 180, 232–237. [Google Scholar] [CrossRef]
- Tripathi, R.; Nayak, A.K.; Bhattacharyya, P.; Shukla, A.K.; Shahid, M.; Raja, R.; Panda, B.B.; Mohanty, S.; Kumar, A.; Thilagam, V.K. Soil Aggregation and Distribution of Carbon and Nitrogen in Different Fractions after 41years Long-Term Fertilizer Experiment in Tropical Rice–Rice System. Geoderma 2014, 213, 280–286. [Google Scholar] [CrossRef]
- Mikha, M.M.; Hergert, G.W.; Benjamin, J.G.; Jabro, J.D.; Nielsen, R.A. Long-Term Manure Impacts on Soil Aggregates and Aggregate-Associated Carbon and Nitrogen. Soil Sci. Soc. Am. J. 2015, 79, 626–636. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Ravankar, H.N.; Mishra, B.; Saha, M.N.; Singh, Y.V.; Sahi, D.K.; Sarap, P.A. Long-Term Effect of Fertilizer and Manure Application on Soil Organic Carbon Storage, Soil Quality and Yield Sustainability under Sub-Humid and Semi-Arid Tropical India. Field Crops Res. 2005, 93, 264–280. [Google Scholar] [CrossRef]
- Kanchikerimath, M.; Singh, D. Soil Organic Matter and Biological Properties after 26 Years of Maize–Wheat–Cowpea Cropping as Affected by Manure and Fertilization in a Cambisol in Semiarid Region of India. Agric. Ecosyst. Environ. 2001, 86, 155–162. [Google Scholar] [CrossRef]
- Moharana, P.C.; Sharma, B.M.; Biswas, D.R.; Dwivedi, B.S.; Singh, R.V. Long-Term Effect of Nutrient Management on Soil Fertility and Soil Organic Carbon Pools under a 6-Year-Old Pearl Millet–Wheat Cropping System in an Inceptisol of Subtropical India. Field Crops Res. 2012, 136, 32–41. [Google Scholar] [CrossRef]
- Kaur, S.; Dheri, G.S.; Benbi, D.K. Effect of Long-Term Fertilization in Maize-Wheat Cropping System on Carbon Mineralization in Soil. Carbon Manag. 2019, 10, 523–532. [Google Scholar] [CrossRef]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of Microbial Biomass Phosphorus in Soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Chakraborty, A.; Chakrabarti, K.; Chakraborty, A.; Ghosh, S. Effect of Long-Term Fertilizers and Manure Application on Microbial Biomass and Microbial Activity of a Tropical Agricultural Soil. Biol. Fertil. Soils 2011, 47, 227–233. [Google Scholar] [CrossRef]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating Active Carbon for Soil Quality Assessment: A Simplified Method for Laboratory and Field Use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar] [CrossRef]
- Blair, N.; Faulkner, R.D.; Till, A.R.; Korschens, M.; Schulz, E. Long-Term Management Impacts on Soil C, N and Physical Fertility: Part II: Bad Lauchstadt Static and Extreme FYM Experiments. Soil Tillage Res. 2006, 91, 39–47. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, K.; Toor, A.S.; Singh, P. Total and Labile Pools of Soil Organic Carbon in Cultivated and Undisturbed Soils in Northern India. Geoderma 2015, 237–238, 149–158. [Google Scholar] [CrossRef]
- Choudhary, M.; Meena, V.S.; Panday, S.C.; Mondal, T.; Yadav, R.P.; Mishra, P.K.; Bisht, J.K.; Pattanayak, A. Long-Term Effects of Organic Manure and Inorganic Fertilization on Biological Soil Quality Indicators of Soybean-Wheat Rotation in the Indian Mid-Himalaya. Appl. Soil Ecol. 2021, 157, 103754. [Google Scholar] [CrossRef]
- Mohanty, M.; Sinha, N.K.; Hati, K.M.; Painuli, D.K.; Chaudhary, R.S. Stability of Soil Aggregates under Different Vegetation Covers in a Vertisol of Central India. J. Agric. Phys. 2012, 12, 133–142. [Google Scholar]
- Cai, A.; Xu, M.; Wang, B.; Zhang, W.; Liang, G.; Hou, E.; Luo, Y. Manure Acts as a Better Fertilizer for Increasing Crop Yields than Synthetic Fertilizer Does by Improving Soil Fertility. Soil Tillage Res. 2019, 189, 168–175. [Google Scholar] [CrossRef]
- Ding, X.; Han, X.; Liang, Y.; Qiao, Y.; Li, L.; Li, N. Changes in Soil Organic Carbon Pools after 10 Years of Continuous Manuring Combined with Chemical Fertilizer in a Mollisol in China. Soil Tillage Res. 2012, 122, 36–41. [Google Scholar] [CrossRef]
- Li, L.-J.; Han, X.-Z. Changes of Soil Properties and Carbon Fractions after Long-Term Application of Organic Amendments in Mollisols. Catena 2016, 143, 140–144. [Google Scholar] [CrossRef]
- Zou, C.; Li, Y.; Huang, W.; Zhao, G.; Pu, G.; Su, J.; Coyne, M.S.; Chen, Y.; Wang, L.; Hu, X.; et al. Rotation and Manure Amendment Increase Soil Macro-Aggregates and Associated Carbon and Nitrogen Stocks in Flue-Cured Tobacco Production. Geoderma 2018, 325, 49–58. [Google Scholar] [CrossRef]
- Zhou, G.; Gao, S.; Lu, Y.; Liao, Y.; Nie, J.; Cao, W. Co-Incorporation of Green Manure and Rice Straw Improves Rice Production, Soil Chemical, Biochemical and Microbiological Properties in a Typical Paddy Field in Southern China. Soil Tillage Res. 2020, 197, 104499. [Google Scholar] [CrossRef]
- Tian, G.; Bi, Y.; Sun, Z.; Zhang, L. Phenolic Acids in the Plow Layer Soil of Strawberry Fields and Their Effects on the Occurrence of Strawberry Anthracnose. Eur. J. Plant Pathol. 2015, 143, 581–594. [Google Scholar] [CrossRef]
- Wang, R.; Dorodnikov, M.; Yang, S.; Zhang, Y.; Filley, T.R.; Turco, R.F.; Zhang, Y.; Xu, Z.; Li, H.; Jiang, Y. Responses of Enzymatic Activities within Soil Aggregates to 9-Year Nitrogen and Water Addition in a Semi-Arid Grassland. Soil Biol. Biochem. 2015, 81, 159–167. [Google Scholar] [CrossRef]
- Yang, X.; Ren, W.; Sun, B.; Zhang, S. Effects of Contrasting Soil Management Regimes on Total and Labile Soil Organic Carbon Fractions in a Loess Soil in China. Geoderma 2012, 177–178, 49–56. [Google Scholar] [CrossRef]
- Lehmann, J.; Lan, Z.; Hyland, C.; Sato, S.; Solomon, D.; Ketterings, Q.M. Long-Term Dynamics of Phosphorus Forms and Retention in Manure-Amended Soils. Environ. Sci. Technol. 2005, 39, 6672–6680. [Google Scholar] [CrossRef] [PubMed]
- Taiwo, A.A.; Adetunji, M.T.; Azeez, J.O.; Elemo, K.O. Kinetics of Potassium Release and Fixation in Some Soils of Ogun State, Southwestern, Nigeria as Influenced by Organic Manure. Int. J.Recycl. Org. Waste Agricult. 2018, 7, 251–259. [Google Scholar] [CrossRef] [Green Version]
Soil Parameters | WBSC | KMnO4-C | SMBC | TSC | MetQ | MiQ | TSN | TSP | TSK | MWD |
---|---|---|---|---|---|---|---|---|---|---|
KMnO4-C | 0.72 * | 1 | ||||||||
SMBC | 0.96 ** | 0.74 * | 1 | |||||||
TSC | 0.95 ** | 0.70 * | 0.96 ** | 1 | ||||||
MetQ | −0.90 ** | −0.82 * | −0.96 ** | −0.93 ** | 1 | |||||
MiQ | 0.93 ** | 0.79 * | 0.99 ** | 0.93 ** | −0.99 ** | 1 | ||||
TSN | 0.66 * | 0.30 | 0.58 | 0.76 * | −0.49 | 0.48 | 1 | |||
TSP | 0.80 * | 0.82 * | 0.85 * | 0.85 * | −0.89 ** | 0.88 ** | 0.49 | 1 | ||
TSK | 0.70 * | 0.73 * | 0.82 * | 0.68 * | −0.88 ** | 0.89 ** | 0.07 | 0.79 * | 1 | |
MWD | 0.90 ** | 0.60 * | 0.85 * | 0.92 ** | −0.78 * | 0.79 * | 0.78 * | 0.73 * | 0.44 | 1 |
WSA | 0.41 | 0.64 * | 0.43 | 0.51 | −0.56 | 0.47 | 0.26 | 0.64 * | 0.33 | 0.61 * |
Treatments | WBSC (%) | KMnO4–C (mg kg−1) | SMBC (mg kg−1) | Cumulative-C-Mineralisation (mg CO2–C kg−1 hr−1) | TSC (%) |
---|---|---|---|---|---|
¥T1 | 0.64 ±0.05 bcd | 680 ± 81.5 a | 221 ± 20.6 cd | 0.99 ± 0.04 bc | 0.93 ± 0.08 c |
T2 | 0.71 ± 0.06 bc | 701 ± 13.6 a | 322 ± 21.2 b | 1.06 ± 0.07 bc | 1.03 ± 0.05 b |
T3 | 0.75± 0.05 b | 722 ± 46.9 a | 352 ± 28.6 b | 1.14 ± 0.19 b | 1.04 ± 0.09 b |
T4 | 0.67 ±0.06 bcd | 686 ± 75.0 a | 232 ± 10.8 c | 1.03 ± 0.05 bc | 0.98 ± 0.10 bc |
T5 | 0.62 ± 0.06 cd | 562 ± 177 b | 196 ± 29.9 cd | 0.92 ± 0.09 c | 0.98 ± 0.04 bc |
T6 | 1.02 ± 0.04 a | 757 ± 40.6 a | 506 ± 52.6 a | 1.31 ± 0.06 a | 1.14 ± 0.10 a |
T7 | 0.56 ± 0.05 d | 441 ± 186 c | 179 ± 14.8 d | 0.92 ± 0.15 c | 0.92 ± 0.07 c |
LSD (p ≤ 0.05) | 0.12 | 85.0 | 47.0 | 0.14 | 0.09 |
Treatments | MetQ (mg CO2–C mg−1 MBC h−1) | MiQ (%) |
---|---|---|
¥ T1 | 4.53 ± 0.56 b | 2.39 ± 0.01 c |
T2 | 3.32 ± 0.30 a | 3.14± 0.01 b |
T3 | 3.27 ± 0.25 a | 3.37± 0.02 b |
T4 | 4.43 ± 0.33 b | 2.38 ± 0.01 c |
T5 | 4.78 ± 0.53 b | 1.99± 0.01 c |
T6 | 2.60± 0.23 a | 4.11± 0.01 a |
T7 | 5.13 ±0.66 b | 1.95± 0.02 c |
LSD (p ≤ 0.05) | 0.82 | 0.47 |
Treatments | TSN | TSP | TSK |
---|---|---|---|
(%) | |||
¥ T1 | 0.11± 0.01 d | 0.19 ± 0.08 b | 1.22 ± 0.12 abc |
T2 | 0.13± 0.02 cd | 0.30 ± 0.06 a | 1.30 ± 0.27 ab |
T3 | 0.14± 0.01 cd | 0.35± 0.04 a | 1.38 ± 0.08 a |
T4 | 0.14± 0.01 bc | 0.31 ± 0.04 a | 1.15 ± 0.05 bc |
T5 | 0.16± 0.01 ab | 0.18 ± 0.02 b | 1.04 ± 0.04 c |
T6 | 0.17± 0.01 a | 0.37± 0.05 a | 1.35 ± 0.07 ab |
T7 | 0.12± 0.02 d | 0.17 ± 0.03 b | 1.14 ± 0.04 bc |
LSD (p ≤ 0.05) | 0.020 | 0.093 | 0.209 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, M.; Sinha, N.K.; Mohanty, M.; Jayaraman, S.; Kumari, N.; Jyoti, B.; Srivastava, A.; Thakur, J.K.; Kumar, N.; Jha, P.; et al. Response of Contrasting Nutrient Management Regimes on Soil Aggregation, Aggregate-Associated Carbon and Macronutrients in a 43-Year Long-Term Experiment. Sustainability 2023, 15, 2679. https://doi.org/10.3390/su15032679
Choudhary M, Sinha NK, Mohanty M, Jayaraman S, Kumari N, Jyoti B, Srivastava A, Thakur JK, Kumar N, Jha P, et al. Response of Contrasting Nutrient Management Regimes on Soil Aggregation, Aggregate-Associated Carbon and Macronutrients in a 43-Year Long-Term Experiment. Sustainability. 2023; 15(3):2679. https://doi.org/10.3390/su15032679
Chicago/Turabian StyleChoudhary, Mahipal, Nishant K. Sinha, Monoranjan Mohanty, Somasundaram Jayaraman, Nikul Kumari, Bikram Jyoti, Ankur Srivastava, Jyoti K. Thakur, Nirmal Kumar, Pramod Jha, and et al. 2023. "Response of Contrasting Nutrient Management Regimes on Soil Aggregation, Aggregate-Associated Carbon and Macronutrients in a 43-Year Long-Term Experiment" Sustainability 15, no. 3: 2679. https://doi.org/10.3390/su15032679
APA StyleChoudhary, M., Sinha, N. K., Mohanty, M., Jayaraman, S., Kumari, N., Jyoti, B., Srivastava, A., Thakur, J. K., Kumar, N., Jha, P., Kumar, D., Kumar, J., Mishra, R., Wanjari, R. H., Chaudhary, R. S., Hati, K. M., Bisht, J. K., & Pattanayak, A. (2023). Response of Contrasting Nutrient Management Regimes on Soil Aggregation, Aggregate-Associated Carbon and Macronutrients in a 43-Year Long-Term Experiment. Sustainability, 15(3), 2679. https://doi.org/10.3390/su15032679