How Does Intelligent Manufacturing Affect the ESG Performance of Manufacturing Firms? Evidence from China
Abstract
:1. Introduction
2. Literature Review and Hypotheses Development
2.1. IM and ESG Performance
2.2. IM, Innovation Investment and ESG Performance
2.3. IM, Information Environment and ESG Performance
3. Research Design
3.1. Econometric Model
3.2. Variable Measurement and Description
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Mediating Variables
3.2.4. Control Variables
3.3. Data Sources
4. Results
4.1. Descriptive Statistics
4.2. Baseline Regression Results
4.3. Robustness Test
4.3.1. Parallel Trend Test
4.3.2. PSM—DID
4.3.3. Replace the Evaluation Index of ESG Performance
4.3.4. Placebo Test
5. Heterogeneity Test
5.1. Micro-Heterogeneity: Corporate Ownership
5.2. Macro-Heterogeneity: Corporate Location
6. Further Analysis
6.1. Impact Channels: Innovation Investment and Information Environment
6.2. Moderating Effects: Internal and External Supervision
7. Conclusions
8. Implications and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, K.; Zhu, N.; Jiang, W.; Zhu, C. Efficiency Evaluation of Chinese Provincial Industrial System Based on Network DEA Method. Sustainability 2022, 14, 5264. [Google Scholar] [CrossRef]
- Geng, Y.; Fu, J.; Sarkis, J.; Xue, B. Towards a national circular economy indicator system in China: An evaluation and critical analysis. J. Clean. Prod. 2012, 23, 216–224. [Google Scholar] [CrossRef]
- Gao, J.; Chu, D.; Zheng, J.; Ye, T. Environmental, social and governance performance: Can it be a stock price stabilizer? J. Clean. Prod. 2022, 379, 134705. [Google Scholar] [CrossRef]
- Shaikh, I. Environmental, social, and governance (ESG) practice and firm performance: An international evidence. J. Bus. Econ. Manag. 2022, 23, 218–237. [Google Scholar] [CrossRef]
- Kim, S.; Li, Z. Understanding the impact of ESG practices in corporate finance. Sustainability 2021, 13, 3746. [Google Scholar] [CrossRef]
- Flammer, C.; Bansal, P. Does a Long-Term Orientation Create Value? Evidence from a Regression Discontinuity. Strateg. Manag. J. 2017, 38, 1827–1847. [Google Scholar] [CrossRef]
- Pedersen, L.H.; Fitzgibbons, S.; Pomorski, L. Responsible investing: The ESG-efficient frontier. J. Financ. Econ. 2021, 142, 572–597. [Google Scholar] [CrossRef]
- Christensen, D.M.; Serafeim, G.; Sikochi, A. Why is Corporate Virtue in the Eye of The Beholder? The Case of ESG Ratings. Account. Rev. 2021, 97, 147–175. [Google Scholar] [CrossRef]
- Atif, M.; Ali, S. Environmental, social and governance disclosure and default risk. Bus. Strategy Environ. 2021, 30, 3937–3959. [Google Scholar] [CrossRef]
- Kumar, N.C.A.; Smith, C.; Badi, L.; Wang, N.; Ambrosy, P.; Tavares, R. ESG factors and risk-adjusted performance: A new quantitative model. J. Sustain. Financ. Invest. 2016, 6, 292–300. [Google Scholar] [CrossRef]
- Wu, S.; Yang, D.; Xia, F.; Zhang, X.; Huo, J.; Cai, T.; Sun, J. The Effect of Labor Reallocation and Economic Growth in China. Sustainability 2022, 14, 4312. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Liu, A.; Kusiak, A. Data-driven smart manufacturing. J. Manuf. Syst. 2018, 48, 157–169. [Google Scholar] [CrossRef]
- Li, B.; Hou, B.; Yu, W.; Lu, X.; Yang, C. Applications of artificial intelligence in intelligent manufacturing: A review. Front. Inf. Technol. Electron. Eng. 2017, 18, 86–96. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Zhou, Y.; Wang, B.; Zang, J.; Meng, L. Toward new-generation intelligent manufacturing. Engineering 2018, 4, 11–20. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhon, W. Intelligence and green total factor productivity based on China’s province-level manufacturing data. Sustainability 2021, 13, 4989. [Google Scholar] [CrossRef]
- Wang, Y.; Han, M. Research on the impact mechanism of organizational-based psychological ownership on the intelligent transformation of manufacturing enterprises: Based on the perspective of technological change. Psychol. Res. Behav. Manag. 2020, 13, 775–786. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Xu, Y.; Zhao, G. Environmental regulations, green innovation and intelligent upgrading of manufacturing enterprises: Evidence from China. Sci. Rep. 2021, 10, 14485. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhu, J.; Wang, Z. Green taxation promotes the intelligent transformation of Chinese manufacturing enterprises: Tax leverage theory. Sustainability 2022, 13, 13321. [Google Scholar] [CrossRef]
- Loonam, J.; Eaves, S.; Kumar, V.; Parry, G. Towards digital transformation: Lessons learned from traditional organizations. Strateg. Chang. 2018, 27, 101–109. [Google Scholar] [CrossRef]
- Abdallah, Y.O.; Shehab, E.; Al-Ashaab, A. Digital transformation challenges in the manufacturing industry. In Advances in Transdisciplinary Engineering; IOS Press: Amsterdam, The Netherlands, 2021; Volume 15, pp. 9–14. [Google Scholar] [CrossRef]
- Zhou, Y.; Zang, J.; Miao, Z.; Minshall, T. Upgrading pathways of intelligent manufacturing in China: Transitioning across technological paradigms. Engineering 2019, 5, 691–701. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, X. Research on influencing factors and multiple driving paths of intelligent transformation in China’s manufacturing industry. J. Comput. Methods Sci. Eng. 2021, 21, 1561–1573. [Google Scholar] [CrossRef]
- De Esposito, F.S.; Renzi, A.; Orlando, B.; Cucari, N. Open collaborative innovation and digital platforms. Prod. Plan. Control 2017, 28, 1344–1353. [Google Scholar] [CrossRef]
- Cenamor, J.; Parida, V.; Wincent, J. How entrepreneurial SMEs compete through digital platforms: The roles of digital platform capability, network capability and ambidexterity. J. Bus. Res. 2019, 100, 196–206. [Google Scholar] [CrossRef]
- Gaglio, C.; Kraemer-Mbula, E.; Lorenz, E. The effects of digital transformation on innovation and productivity: Firm-level evidence of South African manufacturing micro and small enterprises. Technol. Forecast. Soc. Chang. 2022, 182, 121785. [Google Scholar] [CrossRef]
- Ahmed, A.; Bhatti, S.H.; Gölgeci, I.; Arslan, A. Digital platform capability and organizational agility of emerging market manufacturing SMEs: The mediating role of intellectual capital and the moderating role of environmental dynamism. Technol. Forecast. Soc. Chang. 2022, 177, 121513. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Y.; Cao, Y.; Forrest, J.Y. Stimulating effects of intelligent policy on the performance of listed manufacturing companies in China. J. Policy Model. 2021, 43, 558–573. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, W.; Dou, Z. Can intelligent manufacturing empower manufacturing?—An empirical study considering ambidextrous capabilities. Ind. Manag. Data Syst. 2022, 123. ahead of print. [Google Scholar] [CrossRef]
- Sedera, D.; Lokuge, S.; Grover, V.; Sarker, S.; Sarker, S. Innovating with enterprise systems and digital platforms: A contingent resource-based theory view. Inf. Manag. 2016, 53, 366–379. [Google Scholar] [CrossRef]
- Yang, J.; Ying, L.; Gao, M. The influence of intelligent manufacturing on financial performance and innovation performance: The case of China. Enterp. Inf. Syst. 2022, 14, 812–832. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Fu, X.; Chen, S. Institutional ownership heterogeneity and ESG performance: Evidence from China. Financ. Res. Lett. 2023, 51, 103448. [Google Scholar] [CrossRef]
- McGuinness, P.B.; Vieito, J.P.; Wang, M. The role of board gender and foreign ownership in the CSR performance of Chinese listed firms. J. Corp. Financ. 2017, 42, 75–99. [Google Scholar] [CrossRef]
- Menicucci, E.; Paolucci, G. Board Diversity and ESG Performance: Evidence from the Italian Banking Sector. Sustainability 2022, 14, 13447. [Google Scholar] [CrossRef]
- Huang, W.; Luo, Y.; Wang, X. Controlling shareholder pledging and corporate ESG behavior. Res. Int. Bus. Financ. 2022, 61, 101655. [Google Scholar] [CrossRef]
- Barros, V.; Matos, P.V.; Sarmento, J.M.; Vieira, P.R. M&A activity as a driver for better ESG performance. Technol. Forecast. Soc. Chang. 2022, 175, 121338. [Google Scholar] [CrossRef]
- Ikram, A.; Li, Z.; Minor, D. CSR-contingent executive compensation contracts. J. Bank. Financ. 2019, 149, 105655. [Google Scholar] [CrossRef]
- McCarthy, S.; Oliver, B.; Song, S. Corporate social responsibility and CEO confidence. J. Bank. Financ. 2017, 75, 280–291. [Google Scholar] [CrossRef]
- Baraibar-Diez, E.; Odriozola, M.D. CSR Committees and Their Effect on ESG Performance in UK, France, Germany, and Spain. Sustainability 2019, 11, 5077. [Google Scholar] [CrossRef]
- Jang, G.; Kang, H.; Kim, W. Corporate executives’ incentives and ESG performance. Financ. Res. Lett. 2022, 49, 103187. [Google Scholar] [CrossRef]
- Ying, L.; Liu, X.; Li, M.; Sun, L.; Xiu, P.; Yang, J. How does intelligent manufacturing affects enterprise innovation? The mediating role of organisational learning. Enterp. Inf. Syst. 2022, 16, 630–667. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, L.; Jiang, P.; Meng, F.; Sun, Q. Can digital transformation improve the information environment of the capital market? Evidence from the analysts’ prediction behaviour. Account. Financ. 2022, 62, 2543–2578. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, N.; Ulah, K.; Gao, S. Enhancing Digital Innovation for the Sustainable Transformation of Manufacturing Industry: A Pressure-State-Response System Framework to Perceptions of Digital Green Innovation and Its Performance for Green and Intelligent Manufacturing. Systems 2022, 10, 72. [Google Scholar] [CrossRef]
- Yang, H.; Li, L.; Liu, Y. The effect of manufacturing intelligence on green innovation performance in China. Technol. Forecast. Soc. Chang. 2022, 178, 121569. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, H.; Yin, T. Resource Bundling: How Does Enterprise Digital Transformation Affect Enterprise ESG Development? Sustainability 2023, 15, 1319. [Google Scholar] [CrossRef]
- Freeman, R.E. Strategic Management: A Stakeholder Approach; Pitman: Boston, MA, USA, 1984. [Google Scholar]
- Valentinov, V.; Roth, S.; Will, M.G. Stakeholder Theory: A Luhmannian Perspective. Adm. Soc. 2019, 51, 826–849. [Google Scholar] [CrossRef]
- Ramoglou, S.; Zyglidopoulos, S.; Papadopoulou, F. Is There Opportunity Without Stakeholders? A Stakeholder Theory Critique and Development of Opportunity-Actualization. Entrep. Theory Pract. 2023, 47, 113–141. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, X.; He, Y. Does it pay to be responsible? The performance of ESG investing in China. Emerg. Mark. Financ. Trade 2022, 58, 3048–3075. [Google Scholar] [CrossRef]
- Rocío, R.A.; Mariz, F. How Can European Regulation on ESG Impact Business Globally? J. Risk Financ. Manag. 2022, 15, 291. [Google Scholar] [CrossRef]
- Singhania, M.; Saini, N. Quantification of ESG Regulations: A Cross-Country Benchmarking Analysis. Vision 2022, 26, 163–171. [Google Scholar] [CrossRef]
- Okuma, K. Potential mechanisms for the social regulation of economies on global and local scales: An institutional analysis of ESG investment and community renewables. Evol. Inst. Econ. Rev. 2019, 16, 523–541. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Liu, Y. The impact of environmental regulation or bargaining power on green total factor productivity: Evidence from Taiwan-funded enterprises in Chinese mainland. Front. Environ. Sci. 2022, 10, 982430. [Google Scholar] [CrossRef]
- Amit, R.; Han, X. Value creation through novel resource configurations in a digitally enabled world. Strateg. Entrep. J. 2017, 11, 228–242. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Zuo, Y.; Zhao, D. Digital twin service towards smart manufacturing. Procedia CIRP 2018, 72, 237–242. [Google Scholar] [CrossRef]
- Chen, Y. Integrated and intelligent manufacturing: Perspectives and enablers. Engineering 2017, 3, 588–595. [Google Scholar] [CrossRef]
- Cockburn, L.M.; Henderson, R.; Stern, S. The Impact of Artificial Intelligence on Innovation; Working Paper 24449; National Bureau of Economic Research: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Fu, N. Innovation Efficiency and the Spatial Correlation Network Characteristics of Intelligent-Manufacturing Enterprises. Complexity 2021, 2021, 4299045. [Google Scholar] [CrossRef]
- Su, J.; Su, K.; Wang, S. Does the digital economy promote industrial structural upgrading? a test of mediating effects based on heterogeneous technological innovation. Sustainability 2021, 13, 10105. [Google Scholar] [CrossRef]
- Zhao, J.; Chi, M.; Zhu, Z.; Hu, L. From digital business strategy to e-business value creation: A three-stage process model. Int. J. Netw. Virtual Organ. 2015, 15, 215–241. [Google Scholar] [CrossRef]
- Blichfeldt, H.; Faullant, R. Performance effects of digital technology adoption and product & service innovation—A process-industry perspective. Technovation 2021, 105, 102275. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, J. Research on a compound dual innovation capability model of intelligent manufacturing enterprises. Sustainability 2021, 13, 12521. [Google Scholar] [CrossRef]
- Chen, X.; Tan, Y.; Lin, M.; Zhang, G.; Ma, W.; Yang, S.; Peng, Y. How Information Technology Investment Affects Green Innovation in Chinese Heavy Polluting Enterprises. Front. Energy Res. 2022, 9, 719052. [Google Scholar] [CrossRef]
- Ren, S.; Hao, Y.; Xu, L.; Ba, N. Digitalization and energy: How does internet development affect China’s energy consumption? Energy Econ. 2021, 98, 105220. [Google Scholar] [CrossRef]
- Cillo, V.; Petruzzelli, A.M.; Ardito, L.; Giudice, M.D. Understanding sustainable innovation: A systematic literature review. Corp. Soc. Responsib. Environ. Manag. 2019, 26, 1012–1025. [Google Scholar] [CrossRef]
- Kane, G.C.; Phillips, A.N.; Copulsky, J.R.; Andrus, G.R. The Technology Fallacy: How People Are the Real Key to Digital Transformation; MIT Press: Cambridge, MA, USA, 2019. [Google Scholar]
- He, B.; Bai, K. Digital twin-based sustainable intelligent manufacturing: A review. Adv. Manuf. 2021, 9, 1–21. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Göçer, F. Digital Supply Chain: Literature review and a proposed framework for future research. Comput. Ind. 2018, 97, 157–177. [Google Scholar] [CrossRef]
- Lenz, J.; MacDonald, E.; Harik, R.; Wuest, T. Optimizing smart manufacturing systems by extending the smart products paradigm to the beginning of life. J. Manuf. Syst. 2018, 57, 274–286. [Google Scholar] [CrossRef]
- Hariyani, D.; Mishra, S.; Sharma, M.K.; Hariyani, P. Organizational barriers to the sustainable manufacturing system: A literature review. Environ. Chall. 2022, 9, 100606. [Google Scholar] [CrossRef]
- Elliott, W.B.; Hobson, J.L.; Jackson, K.E. Disaggregating management forecasts to reduce investors’ susceptibility to earnings fixation. Account. Rev. 2011, 86, 185–208. [Google Scholar] [CrossRef]
- Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2018, 56, 508–517. [Google Scholar] [CrossRef]
- Mittal, S.; Khan, M.A.; Romero, D.; Wuest, T. Smart manufacturing: Characteristics, technologies and enabling factors. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1342–1361. [Google Scholar] [CrossRef]
- Niu, Y.; Wen, W.; Wang, S.; Li, S. Breaking barriers to innovation: The power of digital transformation. Financ. Res. Lett. 2023, 51, 103457. [Google Scholar] [CrossRef]
- Pulino, S.C.; Ciaburri, M.; Magnanelli, B.S. Does ESG disclosure influence firm performance? Sustainability 2022, 14, 7595. [Google Scholar] [CrossRef]
- Bai, X.; Han, J.; Ma, Y.; Zhang, W. ESG performance, institutional investors’ preference and financing constraints: Empirical evidence from China. Borsa Istanb. Rev. 2022, in press. [Google Scholar] [CrossRef]
- Beck, T.; Levine, R.; Levkov, A. Big bad banks? The winners and losers from bank deregulation in the United States. J. Financ. 2010, 65, 1637–1667. [Google Scholar] [CrossRef]
- Tang, H. The Effect of ESG performance on corporate innovation in China: The mediating role of financial constraints and agency cost. Sustainability 2022, 14, 3769. [Google Scholar] [CrossRef]
- Wan, G.; Dawod, A.Y. ESG Rating and Northbound Capital Shareholding Preferences: Evidence from China. Sustainability 2022, 14, 9152. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, L.; He, X.; Liu, Z.; Chen, D.; Wang, W. Green financial reform and corporate ESG performance in China: Empirical evidence from the green financial reform and innovation pilot zone. Sustainability 2022, 19, 14981. [Google Scholar] [CrossRef]
- Qu, Y.; Shi, Y.; Guo, K.; Zheng, Y. Has “Intelligent Manufacturing” Promoted the Productivity of Manufacturing Sector?–Evidence from China’s Listed Firms. Procedia Comput. Sci. 2018, 139, 299–305. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, X.; Zhang, G.; Zheng, S. Trust and corporate R&D investment: Cross-country evidence. Financ. Res. Lett. 2021, 40, 101696. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, X.; Lai, J. Does Confucian culture influence corporate R&D investment? Evidence from Chinese private firms. Financ. Res. Lett. 2021, 40, 101719. [Google Scholar] [CrossRef]
- Ho, K.; Yang, L.; Luo, S. Information disclosure ratings and continuing overreaction: Evidence from the Chinese capital market. J. Bus. Res. 2022, 140, 638–656. [Google Scholar] [CrossRef]
- Garcia, A.S.; Mendes-Da-Silva, W.; Orsato, R.J. Sensitive industries produce better ESG performance: Evidence from emerging markets. J. Clean. Prod. 2017, 150, 135–147. [Google Scholar] [CrossRef]
- Aabo, T.; Giorici, I.C. Do female CEOs matter for ESG scores? Glob. Financ. J. 2022, 100722. [Google Scholar] [CrossRef]
- Jia, F.; Li, Y.; Cao, L.; Hu, L.; Xu, B. Institutional shareholders and firm ESG performance: Evidence from China. Sustainability 2022, 14, 14674. [Google Scholar] [CrossRef]
- Zheng, J.; Khurram, M.U.; Chen, L. Can green innovation affect ESG ratings and financial performance? Evidence from Chinese GEM listed companies. Sustainability 2022, 14, 8677. [Google Scholar] [CrossRef]
- Dicuonzo, G.; Donofrio, F.; Ranaldo, S.; Atti, V.D. The effect of innovation on environmental, social and governance (ESG) practices. Meditari Account. Res. 2022, 30, 1191–1209. [Google Scholar] [CrossRef]
- Mu, W.; Liu, K.; Tao, Y.; Ye, Y. Digital finance and corporate ESG. Financ. Res. Lett. 2023, 51, 103426. [Google Scholar] [CrossRef]
- Pozzoli, M.; Pagani, A.; Paolone, F. The impact of audit committee characteristics on ESG performance in the European Union member states: Empirical evidence before and during the COVID-19 pandemic. J. Clean. Prod. 2022, 371, 133411. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, W. Research on the effect and path of local government debt affecting corporate ESG. Mod. Econ. Res. 2022, 6, 10–21. [Google Scholar] [CrossRef]
- Li, P.; Lu, Y.; Wang, J. Does flattening government improve economic performance? Evidence from China. J. Dev. Econ. 2016, 123, 18–37. [Google Scholar] [CrossRef]
- Cantoni, D.; Chen, Y.; Yang, D.Y.; Yuchtman, N.; Zhang, Y.J. Curriculum and Ideology. J. Political Econ. 2017, 125, 338–392. [Google Scholar] [CrossRef]
- Dong, W.; Dong, X.; Lv, X. How does ownership structure affect corporate environmental responsibility? Evidence from the manufacturing sector in China. Energy Econ. 2022, 112, 106112. [Google Scholar] [CrossRef]
- Su, Z.; Guo, Q.; Lee, H. Green finance policy and enterprise energy consumption intensity: Evidence from a quasi-natural experiment in China. Energy Econ. 2022, 115, 106374. [Google Scholar] [CrossRef]
- Liu, K.; Liu, X.; Long, H.; Wang, D.; Zhang, G. Spatial agglomeration and energy efficiency: Evidence from China’s manufacturing enterprises. J. Clean. Prod. 2022, 380, 135109. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, M.; Zhang, B. Do state-owned enterprises really have better environmental performance in China? Environmental regulation and corporate environmental strategies. Resour. Conserv. Recycl. 2022, 185, 106500. [Google Scholar] [CrossRef]
- Zahid, R.M.A.; Saleem, A.; Maqsood, U.S. ESG performance, capital financing decisions, and audit quality: Empirical evidence from Chinese state-owned enterprises. Environ. Sci. Pollut. Res. 2023, in press. [Google Scholar] [CrossRef]
- Fang, M.; Nie, H.; Shen, X. Can enterprise digitization improve ESG performance? Econ. Model. 2023, 118, 106101. [Google Scholar] [CrossRef]
- Liu, S.; Liu, C.; Yang, M. The effects of national environmental information disclosure program on the upgradation of regional industrial structure: Evidence from 286 prefecture-level cities in China. Struct. Chang. Econ. Dyn. 2021, 58, 552–561. [Google Scholar] [CrossRef]
- Wen, H.; Liang, W.; Lee, C. China’s progress toward sustainable development in pursuit of carbon neutrality: Regional differences and dynamic evolution. Environ. Impact Assess. Rev. 2023, 98, 106959. [Google Scholar] [CrossRef]
- Wang, M.; Feng, C. The win-win ability of environmental protection and economic development during China’s transition. Technol. Forecast. Soc. Chang. 2021, 166, 120617. [Google Scholar] [CrossRef]
- Li, D.; Zhou, Z.; Cao, L.; Zhao, K.; Li, B.; Ding, C. What drives the change in China’s provincial industrial carbon unlocking efficiency? Evidence from a geographically and temporally weighted regression model. Sci. Total Environ. 2023, 856, 158971. [Google Scholar] [CrossRef]
- Ma, M.; Tang, J. Interactive coercive relationship and spatio-temporal coupling coordination degree between tourism urbanization and eco-environment: A case study in Western China. Ecol. Indic. 2022, 142, 109149. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, W.; Zhou, Q.; Wang, K. Industrial structure, urban governance and haze pollution: Spatiotemporal evidence from China. Sci. Total Environ. 2020, 742, 139228. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, H.; Wei, T. Corporate social responsibility disclosure, media reports, and enterprise innovation: Evidence from chinese listed companies. Sustainability 2021, 13, 8466. [Google Scholar] [CrossRef]
- Wang, M. The relationship between environmental information disclosure and firm valuation: The role of corporate governance. Qual. Quant. Int. J. Methodol. 2016, 50, 1135–1151. [Google Scholar] [CrossRef]
- Xiang, X.; Huang, W. Does distance affect the role of nonlocal subsidiaries on cluster firms’ innovation? An empirical investigation on chinese biotechnology cluster firms. Sustainability 2019, 11, 6725. [Google Scholar] [CrossRef]
- Wang, X.; Luan, X.; Zhang, S. Corporate R&D, ESG performance and market value—The moderating effect of enterprise level. Stud. Sci. Sci. 2022, 6, 1–16. (In Chinese) [Google Scholar] [CrossRef]
- Yuan, X.; Li, Z.; Xu, J.; Shang, L. ESG disclosure and corporate financial irregularities—Evidence from Chinese listed firms. J. Clean. Prod. 2022, 332, 129992. [Google Scholar] [CrossRef]
- Manzaneque, M.; Merino, E.; Priego, A.M. The role of institutional shareholders as owners and directors and the financial distress likelihood. Evidence from a concentrated ownership context. Eur. Manag. J. 2016, 34, 439–451. [Google Scholar] [CrossRef]
Variable | Name | Calculation/Value |
---|---|---|
HESG | Corporate ESG performance | Huazheng ESG rating index, taking values from 1 to 9, where AAA = 9, AA = 8, A = 7, BBB = 6, BB = 5, B = 4, CCC = 3, CC = 2, C = 1 |
BESG | Corporate ESG performance | Bloomberg ESG evaluation index |
E | Corporate E performance | Bloomberg E evaluation index |
S | Corporate S performance | Bloomberg S evaluation index |
G | Corporate G performance | Bloomberg G evaluation index |
IM | Intelligent manufacturing | IM = 1 if the firm has implemented intelligent manufacturing during the year, otherwise IM = 0 |
R&D | Corporate innovation investment | R&D = ln(corporate R&D expenditure) |
INFORM | Quality of corporate information environment | Corporate disclosure ratings published by Shanghai Stock Exchange and Shenzhen Stock Exchange, taking values from 1 to 4, where A = 4, B = 3, C = 2, D = 1 |
SIZE | Corporate size | ln(corporate assets) |
LEV | Financial leverage | Total liabilities/total assets |
ROA | Corporate profitability | Net profit/total assets |
GROWTH | Corporate growth capacity | (operating income in year t—operating income in year t − 1) operating income in year t − 1 |
TOP1 | Corporate equity concentration | Percentage of shareholding of the largest shareholder |
AGE | Corporate age | Current year—year of establishment |
TOBIN_Q | Tobin Q value | Stock market value total assets |
OPEN | Regional openness | Regional general public budget expenditure regional GDP |
GOV | Regional government fiscal spending | Regional general public budget expenditure regional GDP |
GDP | Regional GDP | ln(regional GDP) |
INDUSTRY | Relative development of the regional tertiary sector | Value added of regional tertiary industry regional GDP |
INDIRECTOR | Percentage of independent directors | Number of independent directors total number of directors |
FUND | Fund shareholding ratio | Shareholding ratio of the firm by the fund |
ANALYST | Analyst focus | ln(the number of analyst teams following the firm in the current year + 1) |
REPORT | Report disclosure | ln(number of research reports analyzing the firm in the current year + 1) |
Panel A | |||||
---|---|---|---|---|---|
Variable | Obs | Mean | D. | Min | Max |
HESG | 15,669 | 6.389 | 0.973 | 4 | 8 |
BESG | 4254 | 21.145 | 6.758 | 9.091 | 45.041 |
E | 3754 | 11.820 | 8.152 | 2.326 | 45.736 |
S | 4169 | 23.646 | 8.938 | 7.017 | 56.140 |
G | 4254 | 44.299 | 5.030 | 33.929 | 57.143 |
IM | 15,669 | 0.038 | 0.192 | 0 | 1 |
R&D | 15,669 | 18.033 | 1.364 | 5.094 | 25.025 |
INFORM | 15,669 | 2.671 | 1.003 | 1 | 4 |
SIZE | 15,669 | 21.989 | 1.136 | 20.070 | 25.585 |
LEV | 15,669 | 0.366 | 0.181 | 0.049 | 0.769 |
ROA | 15,669 | 0.051 | 0.053 | −0.154 | 0.207 |
GROWTH | 15,669 | 0.220 | 0.477 | −0.555 | 2.878 |
TOP1 | 15,669 | 0.342 | 0.139 | 0.096 | 0.722 |
AGE | 15,669 | 7.513 | 6.490 | 0 | 25 |
TOBIN_Q | 15,669 | 2.107 | 1.222 | 0.889 | 7.820 |
OPEN | 15,669 | 9.642 | 1.357 | 5.761 | 11.463 |
GOV | 15,669 | 8.919 | 0.522 | 7.438 | 9.810 |
GDP | 15,669 | 10.672 | 0.690 | 8.593 | 11.731 |
INDUSTRY | 15,669 | 0.529 | 0.103 | 0.357 | 0.837 |
INDIRECTOR | 15,669 | 0.376 | 0.053 | 0.333 | 0.571 |
FUND | 15,669 | 0.094 | 0.143 | 0 | 0.701 |
ANALYST | 15,669 | 1.545 | 1.189 | 0 | 3.850 |
REPORT | 15,669 | 1.891 | 1.466 | 0 | 4.745 |
Panel B | |||||
Variable | Obs | Mean | D. | Min | Max |
HESG_state-owned firms | 3802 | 6.826 | 1.047 | 4 | 8 |
HESG_non-state-owned firms | 11,867 | 6.249 | 0.905 | 4 | 8 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
HESG | HESG | HESG | HESG | HESG | |
IM | 0.222 *** | 0.208 *** | 0.207 *** | 0.187 *** | 0.292 *** |
(0.043) | (0.043) | (0.043) | (0.047) | (0.092) | |
SIZE | 0.214 *** | 0.220 *** | 0.222 *** | 0.220 *** | |
(0.022) | (0.022) | (0.022) | (0.022) | ||
LEV | −0.484 *** | −0.470 *** | −0.470 *** | −0.464 *** | |
(0.077) | (0.077) | (0.077) | (0.079) | ||
ROA | 0.881 *** | 0.864 *** | 0.862 *** | 0.804 *** | |
(0.177) | (0.177) | (0.178) | (0.181) | ||
GROWTH | −0.012 | −0.012 | −0.012 | −0.015 | |
(0.016) | (0.016) | (0.016) | (0.016) | ||
TOP1 | 0.730 *** | 0.699 *** | 0.701 *** | 0.720 *** | |
(0.126) | (0.127) | (0.128) | (0.133) | ||
AGE | −0.076 ** | −0.077 ** | −0.079 *** | −0.072 ** | |
(0.031) | (0.031) | (0.031) | (0.034) | ||
TOBIN_Q | 0.016 ** | 0.015 ** | 0.016 ** | 0.017 ** | |
(0.007) | (0.007) | (0.007) | (0.007) | ||
OPEN | 0.118 ** | 0.117 ** | 0.111 ** | ||
(0.048) | (0.049) | (0.052) | |||
GOV | −0.295 *** | −0.289 *** | −0.272 ** | ||
(0.103) | (0.104) | (0.107) | |||
GDP | 0.118 | 0.104 | 0.164 | ||
(0.131) | (0.131) | (0.141) | |||
INDUSTRY | −0.372 | −0.377 | −0.626 * | ||
(0.298) | (0.306) | (0.323) | |||
_CONS | 6.380 *** | 2.109 *** | 2.417 ** | 2.485 ** | 1.840 |
(0.006) | (0.528) | (1.066) | (1.073) | (1.154) | |
FIRM FIXED EFFECT | Yes | Yes | Yes | Yes | Yes |
TIME FIXED EFFECT | Yes | Yes | Yes | Yes | Yes |
N | 15,669 | 15,669 | 15,669 | 15,440 | 14,707 |
R2 | 0.547 | 0.556 | 0.556 | 0.553 | 0.545 |
F | 26.731 *** | 27.449 *** | 20.343 *** | 19.471 *** | 17.526 *** |
Variable | Unmatched | Mean | %Bias | %Reduct | t-Test | ||
---|---|---|---|---|---|---|---|
Matched | Treat | Control | |Bias| | t p > |t| | |||
SIZE | U | 23.472 | 21.929 | 129.4 | 33.8 | 0 | |
M | 23.418 | 23.405 | 1.1 | 99.1 | 0.17 | 0.862 | |
LEV | U | 0.487 | 0.361 | 73.1 | 16.91 | 0 | |
M | 0.483 | 0.484 | −0.6 | 99.2 | −0.1 | 0.92 | |
ROA | U | 0.046 | 0.051 | −9.9 | −2.29 | 0.022 | |
M | 0.046 | 0.049 | −6.4 | 35.1 | −1.11 | 0.269 | |
GROWTH | U | 0.206 | 0.221 | −3.4 | −0.74 | 0.457 | |
M | 0.210 | 0.217 | −1.6 | 52.2 | −0.28 | 0.781 | |
TOP1 | U | 0.338 | 0.342 | −3.1 | −0.75 | 0.455 | |
M | 0.342 | 0.343 | −0.9 | 69.9 | −0.15 | 0.878 | |
AGE | U | 13.394 | 7.278 | 89.3 | 23.04 | 0 | |
M | 13.131 | 13.457 | −4.8 | 94.7 | −0.78 | 0.436 | |
TOBIN_Q | U | 1.750 | 2.121 | −31.7 | −7.3 | 0 | |
M | 1.760 | 1.787 | −2.3 | 92.7 | −0.4 | 0.689 |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
HESG | BESG | E | S | G | |
IM | 0.209 *** | 1.937 *** | 3.637 *** | 1.250 *** | 0.752 *** |
(0.043) | (0.337) | (0.529) | (0.439) | (0.242) | |
CONTROL | Yes | Yes | Yes | Yes | Yes |
_CONS | Yes | Yes | Yes | Yes | Yes |
FIRM FIXED EFFECT | Yes | Yes | Yes | Yes | Yes |
TIME FIXED EFFECT | Yes | Yes | Yes | Yes | Yes |
N | 15,085 | 4220 | 3729 | 4140 | 4220 |
R2 | 0.561 | 0.746 | 0.676 | 0.721 | 0.759 |
F | 19.683 *** | 10.037 *** | 7.823 *** | 8.434 *** | 9.777 *** |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
HESG | HESG | HESG | HESG | HESG | HESG | |
IM_state-owned firms | 0.068 | |||||
(0.058) | ||||||
IM_non-state-owned firms | 0.226 *** | |||||
(0.065) | ||||||
IM_eastern region firms | 0.226 *** | |||||
(0.055) | ||||||
IM_central region firms | 0.116 | |||||
(0.105) | ||||||
IM_western region firms | 0.247 ** | |||||
(0.104) | ||||||
IM_northeastern region firms | 0.130 | |||||
(0.288) | ||||||
CONTROL | Yes | Yes | Yes | Yes | Yes | Yes |
_CONS | Yes | Yes | Yes | Yes | Yes | Yes |
FIRM FIXED EFFECT | Yes | Yes | Yes | Yes | Yes | Yes |
TIME FIXED EFFECT | Yes | Yes | Yes | Yes | Yes | Yes |
N | 3732 | 11,321 | 10,895 | 2090 | 1609 | 484 |
R2 | 0.644 | 0.500 | 0.562 | 0.526 | 0.585 | 0.621 |
F | 2.744 *** | 15.046 *** | 13.417 *** | 2.800 *** | 5.545 *** | 2.392 *** |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
R&D | HESG | INFORM | HESG | |
IM | 0.148 *** | 0.202 *** | 0.363 *** | 0.165 *** |
(0.042) | (0.043) | (0.051) | (0.043) | |
R&D | 0.051 *** | |||
(0.013) | ||||
INFORM | 0.121 *** | |||
(0.008) | ||||
CONTROL | Yes | Yes | Yes | Yes |
_CONS | Yes | Yes | Yes | Yes |
FIRM FIXED EFFECT | Yes | Yes | Yes | Yes |
TIME FIXED EFFECT | Yes | Yes | Yes | Yes |
N | 15,085 | 15,085 | 15,085 | 15,085 |
R2 | 0.877 | 0.561 | 0.456 | 0.569 |
F | 184.824 *** | 19.540 *** | 58.582 *** | 36.945 *** |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
HESG | HESG | HESG | HESG | |
IM × INDIRECTOR | 0.552 *** | |||
(0.113) | ||||
IM × FUND | 0.599 *** | |||
(0.206) | ||||
IM × ANALYST | 0.076 *** | |||
(0.018) | ||||
IM × REPORT | 0.062 *** | |||
(0.014) | ||||
CONTROL | Yes | Yes | Yes | Yes |
_CONS | Yes | Yes | Yes | Yes |
FIRM FIXED EFFECT | Yes | Yes | Yes | Yes |
TIME FIXED EFFECT | Yes | Yes | Yes | Yes |
N | 15085 | 15085 | 15085 | 15085 |
R2 | 0.561 | 0.560 | 0.560 | 0.560 |
F | 19.724 *** | 18.451 *** | 19.297 *** | 19.324 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Saat, N.A.M. How Does Intelligent Manufacturing Affect the ESG Performance of Manufacturing Firms? Evidence from China. Sustainability 2023, 15, 2898. https://doi.org/10.3390/su15042898
Sun L, Saat NAM. How Does Intelligent Manufacturing Affect the ESG Performance of Manufacturing Firms? Evidence from China. Sustainability. 2023; 15(4):2898. https://doi.org/10.3390/su15042898
Chicago/Turabian StyleSun, Lipeng, and Nur Ashikin Mohd Saat. 2023. "How Does Intelligent Manufacturing Affect the ESG Performance of Manufacturing Firms? Evidence from China" Sustainability 15, no. 4: 2898. https://doi.org/10.3390/su15042898
APA StyleSun, L., & Saat, N. A. M. (2023). How Does Intelligent Manufacturing Affect the ESG Performance of Manufacturing Firms? Evidence from China. Sustainability, 15(4), 2898. https://doi.org/10.3390/su15042898