Organic Soils: Formation, Classification and Environmental Changes Records in the Highlands of Southeastern Brazil
Abstract
:1. Introduction
2. Peat, Peatland, or Organic Soil?
3. Formation of Organic Soils
- -
- Bogs: peatlands elevated above the surrounding landscape. After peat extraction, which was usually carried out in dry conditions after drainage, a mineral subsoil suitable for agriculture often remained.
- -
- Fens: peatlands situated in depressions. After peat extraction, carried out by dredging, water is observed to remain.
- -
- Minerotrophic: formed under the influence of water from the outer limits of the accumulation basin and/or groundwater. As they receive solutes from the surrounding area (added ferromagnesian minerals, oxides and/or hydroxides, etc.), the hydrolysis of added minerals will influence the pH.
- -
- Ombrotrophic: not influenced by local groundwater (water table), only by atmospheric sources (rain and/or snow). Living, decomposing vegetation dominates the environment, and the pH is basically determined by the dissociation of carboxylic functional groups in the dead organic matter.
4. Classification of Organic Soils
- Thickness greater than or equal to 20 cm; or
- Thickness greater than or equal to 40 cm when 75% or more of the volume of the horizon consists of plant tissue in the form of fine branch remains, fine roots, and bark, excluding living parts; or
- Thickness of 10 cm or more when overlying a lithic or fragmentary lithic contact or a horizon and/or layer consisting of 90% or more (by volume) of mineral material greater than 2 mm in diameter (gravels, pebbles, and boulders).
- -
- Hístico O horizon—formed from materials deposited in free drainage condition (saturated with water for less than 30 consecutive days in the rainy season), without water stagnation, conditioned mainly by the humid, cold climate and high-montane vegetation. It can sit on lithic contact, fragmentary lithic contact, or any type of horizon (A, B, or C).
- -
- Hístico H horizon—formed from materials deposited under excess water conditions, for long periods or throughout the year, even if, at present, it has been artificially drained. They are usually settled over the C horizon, but also in some cases, due to the influence of artificial drainage, over A and B horizons. They can occur on the surface or be buried by mineral material.
- -
- Folic horizon (from Latin folium, “leaf”) consists of well-aerated organic material. Occur predominantly in cold climates or at higher altitudes. Saturated with water for <30 consecutive days/year, without artificial drainage.
- -
- Histic horizon (from Greek histos, “fabric”) consists of poorly-aerated organic material. They occur predominantly in wetlands or peatlands. Saturated with water for ≥30 consecutive days/year or drained artificially.
- -
- Folistic is a layer saturated with water for < 30 days (cumulative) in normal years, not artificially drained, that meets one of the following criteria:
- It consists of organic soil material that:
- is 20 cm or more thick and contains 75% or more (by volume) Sphagnum fibers or has a bulk density, wet, of less than 0.1 g·cm−3; or
- is 15 cm or more in thickness; or
- Is an Ap horizon that, when mixed to a depth of 25 cm, has an organic carbon content (by weight) of:
- CO ≥ 16% if the mineral fraction contains 60% or more clay; or
- CO ≥ 8% if the mineral fraction contains no clay; or
- CO ≥ 8% + (percent clay divided by 7.5) if the mineral fraction contains less than 60% clay.
- -
- Histic is a layer saturated with water for 30 days or more (cumulative) in normal years, or drained artificially, that meets one of the following criteria:
- It consists of organic soil material that:
- is 20 to 60 cm thick and contains 75% or more (by volume) Sphagnum fibers or has a bulk density, wet, of less than 0.1 g·cm−3; or
- is 20 to 40 cm thick; or
- Is an Ap horizon that, when mixed to a depth of 25 cm, has an organic carbon content (by weight) of:
- CO ≥ 16% if the mineral fraction contains 60% or more clay; or
- CO ≥ 8% if the mineral fraction contains no clay; or
- CO ≥ 8% + (percent clay divided by 7.5) if the mineral fraction contains less than 60% clay.
5. Organic Soils and Records of Environmental Changes: A Summary of Studies in the Atlantic Forest of Southeastern Brazil Highlands
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IUSS Working Group WRB. International soil classification system for naming soils and creating legends for soil maps. In World Reference Base for Soil Resources, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; 192p. [Google Scholar]
- United States. Department of Agriculture. Natural Resources Conservation Service. Soil Survey Staff. In Keys to Soil Taxonomy, 12th ed.; Department of Agriculture: Washington, DC, USA, 2014; 360p. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018; p. 356. [Google Scholar]
- Limpens, J.; Berendse, F.; Blodau, C.; Canadell, J.G.; Freeman, C.; Holden, J.; Schaepman-Strub, G. Peatlands and the carbon cycle: From local processes to global implications—A synthesis. Biogeosciences 2008, 5, 1475–1491. [Google Scholar] [CrossRef]
- Anjos, L.H.C.; Jacomine, P.K.T.; Santos, H.G.; Oliveira, V.A.; Oliveira, J.B. Sistema Brasileiro de Classificação de Solos; Ker, J.C., Curi, N., Schaefer, C.E.G.R., VidaTorrado, P., Eds.; Pedologia Fundamentos: Viçosa, Brazil, 2012; pp. 303–343. [Google Scholar]
- Silva, M.L.; Silva, A.C. Gênese e Evolução de Turfeiras nas Superfícies Geomórficas da Serra do Espinhaço Meridional–MG. Rev. Bras. Geomorfol. 2017, 18, 65–79. [Google Scholar] [CrossRef]
- Gonçalves, T.S. Origem e evolução fitogeográfica dos capões de mata associados aos ecossistemas de turfeiras da Serra do Espinhaço Meridional—MG. Tese. In Programa de Pós-Graduação em Produção Vegetal; UFVJM: Sao Paulo, Brazil, 2021; 274p. [Google Scholar]
- Silva Neto, E.C. Solos Orgânicos em Ambientes Altomontanos no Sudeste do Brasil: Formação, Classificação e Relações com a História da Vegetação. Tese. In Programa de Pós-Graduação em Agronomia—Ciência do Solo; UFRRJ: Seropédica, Brazil, 2022; 141p. [Google Scholar]
- Charman, D. Peatlands and Environmental Change; John Wiley Sons, Ltd.: New York, NY, USA; Chichester, UK, 2002; p. 320. [Google Scholar]
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands—Background and Principles Including a Framework for Decision-Making; International Mire Conservation Group and International Peat Society: Saarijärvi, Finland, 2002; p. 304. [Google Scholar]
- Chesworth, W. Encyclopedia of Soil Science, Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2008; p. 902. [Google Scholar]
- Rydin, H.; Jeglum, J.K.; Bennett, K.D. The Biology of Peatlands; Oxford University Press: London, UK, 2013; p. 432. [Google Scholar]
- Buol, S.W.; Southard, R.J.; Graham, R.C.; McDaniel, P.A. Soil Genesis and Classification; John and Wiley and Sons: New York, NY, USA, 2011; p. 544. [Google Scholar]
- Martini, I.P.; Martínez Cortizas, A.; Chesworth, W. Peatlands: A Concise Guide to the Volume; Developments in Earth Surface Processes: New York, NY, USA, 2006; pp. 1–13. [Google Scholar]
- Franchi, J.G.; Sígolo, J.B.; Motta, J.F.M. Diagnóstico das turfas no Brasil: Histórico da utilização, classificação, geologia e dados econômicos. Rev. Bras. Geociências 2006, 36, 179–190. [Google Scholar] [CrossRef]
- Hempel, J.; Micheli, E.; Owens, P.; McBratney, A. Universal Soil Classification System Report from the International Union of Soil Sciences Working Group. Soil Horiz. 2013, 54, 1–6. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Natature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Churchill, S.P.; Balslev, H.; Forero, E.; Luteyn, J.L. Biodiversity and Conservation of Neotropical Montane Forests; The New York Botanical Garden: Bronx, NY, USA, 1995; p. 550. [Google Scholar]
- Safford, H.D.; Brazilian Páramos, I. An introduction to the physical environment and vegetation of the campos de altitude. J. Biogeogr. 1999, 26, 693–712. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Metzger, J.P.; Martensen, A.C.; Ponzoni, F.J.; Hirota, M.M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 2009, 142, 1141–1153. [Google Scholar] [CrossRef]
- Joly, C.A.; Metzger, J.P.; Tabarelli, M. Experiences from the Brazilian Atlantic Forest: Ecological findings and conservation initiatives. New Phytol. 2014, 204, 459–473. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Filho, A.T.; Fontes, M.A.L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate 1. Biotropica 2000, 32, 793–810. [Google Scholar] [CrossRef]
- Ledru, M.P.; Montade, V.; Blanchard, G.; Hély, C. Long-term spatial changes in the distribution of the Brazilian Atlantic Forest. Biotropica 2016, 48, 159–169. [Google Scholar] [CrossRef]
- Tabarelli, M.; Pinto, L.P.; Silva, J.M.C.; Hirota, M.; Bede, L. Challenges and Opportunities for Biodiversity Conservation in the Brazilian Atlantic Forest. Conserv. Biol. 2005, 19, 695–700. [Google Scholar] [CrossRef]
- Coelho, R.M.; Rossi, M.; Mattos, I.F.A. Pedologia: Solos dos Biomas Brasileiros. In Solos da Mata Atlântica, 1st ed.; Curi, N., Vidal-Torrado, P., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2017; pp. 261–302. [Google Scholar]
- Mantovani, L.E.; Fritzsons, E.; Paranhos Filho, A.C.; Monteiro, C.S. A evolução dinâmica das savanas subtropicais sul americanas. Rev. Est. Ambien. 2003, 5, 42–55. [Google Scholar]
- Safford, H.D.; Martinelli, G. Inselbergs: Biotic diversity of isolated rock outcrops. In Southeast Brazilin; Barthlott, W., Porembski, S., Eds.; Tropical and Temperate Regions; Ecological Studies No. 146; Springer: Berlin/Heidelberg, Germany, 2000; pp. 339–389. [Google Scholar]
- De Oliveira, P.E. A Palynological Record of Late Quaternary Vegetational and Climatic Change in Southeastern Brazil; The Ohio State University Columbus: Columbus, OH, USA, 1992; 244p. [Google Scholar]
- Ledru, M.P. Late Quaternary environmental and climatic changes in Central Brazil. Quat. Res. 1993, 39, 90–98. [Google Scholar] [CrossRef]
- Behling, H.; Lichte, M. Evidence of dry and cold climatic conditions at glacial times in tropical SE Brazil. Quat. Res. 1997, 48, 348–358. [Google Scholar] [CrossRef]
- Behling, H. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 129, 407–422. [Google Scholar] [CrossRef]
- Behling, H. Late Quaternary vegetational and climatic changes in Brazil. Rev. Palaeobot. Palynol. 1998, 99, 143–156. [Google Scholar] [CrossRef]
- Ledru, M.P.; Rousseau, D.D.; Cruz, F.W.; Riccomini, C.; Karmann, I.; Martin, L. Paleoclimate changes during the last 100,000 yr from a record in the Brazilian Atlantic rainforest region and interhemispheric comparison. Quat. Res. 2005, 64, 444–450. [Google Scholar] [CrossRef]
- Ledru, M.P.; Mourguiart, P.; Riccomini, C. Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 271, 140–152. [Google Scholar] [CrossRef]
- Behling, H.; Dupont, L.; Safford, H.D.; Wefer, G. Late Quaternary vegetation and climate dynamics in the Serra da Bocaina, southeastern Brazil. Quat. Int. 2007, 161, 22–31. [Google Scholar] [CrossRef]
- Saia, S.E.M.G.; Pessenda, L.C.R.; Gouveia, S.E.M.; Aravena, R.; Bendassolli, J.A. Last glacial maximum (LGM) vegetation changes in the Atlantic Forest, southeastern Brazil. Quat. Int. 2008, 184, 195–201. [Google Scholar] [CrossRef]
- Pessenda, L.C.R.; De Oliveira, P.E.; Mofatto, M.; Medeiros, V.B.; Garcia, R.J.F.; Aravena, R.; Etchebehere, M.L. The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records. Quat. Res. 2009, 71, 437–452. [Google Scholar] [CrossRef]
- Behling, H.; Safford, H.D. Late-glacial and Holocene vegetation, climate and fire dynamics in the Serra dos Órgãos, Rio de Janeiro State, SE Brazil. Glob. Chang. Biol. 2010, 16, 1661–1671. [Google Scholar] [CrossRef]
- Veríssimo, N.; Safford, H.D.; Behling, H. Holocene vegetation and fire history of the Serra do Caparaó, SE Brazil. Holocene 2012, 22, 1243–1250. [Google Scholar]
- Calegari, M.R.; Madella, M.; Vidal-Torrado, P.; Pessenda, L.C.R.; Marques, F.A. Combining phytoliths and soil organic matter in Holocene palaeoenvironmental studies of tropical soils: The example of an oxisol in Brazil. Quat. Int. 2013, 287, 47–55. [Google Scholar] [CrossRef]
- Augustin, C.H.R.R.; Coe, H.H.G.; Chueng, K.F.; Gomes, J.G. Analysis of geomorphic dynamics in ancient quartzite landscape using phytolith and carbon isotopes, Espinhaço Mountain Range, Minas Gerais, Brazil. Géomorphologie 2014, 4, 355–376. [Google Scholar] [CrossRef]
- Chueng, K.F.; Coe, H.H.G.; Augustin, C.H.R.R.; Macario, K.D.; Ricardo, S.D.F.; Vasconcelos, A.M.C. Landscape paleodynamics in siliciclastic domains with the use of phytoliths, sponge spicules and carbon isotopes: The case of southern Espinhaço Mountain Range, Minas Gerais, Brazil. J. South Am. Earth Sci. 2019, 95, 102232. [Google Scholar] [CrossRef]
- Horák-Terra, I.; Martínez-Cortizas, A.; Luz, C.F.P.; Rivas-López, P.; Silva, A.C.; Vidal-Torrado, P. Holocene climate change in central-eastern Brazil reconstructed using pollen and geochemical records of Pau de Fruta mire (Serra do Espinhaço Meridional, Minas Gerais). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 437, 117–131. [Google Scholar] [CrossRef]
- Horák-Terra, I.; Cortizas, A.M.; Da Luz, C.F.P.; Silva, A.C.; Mighall, T.; De Camargo, P.B.; Vidal-Torrado, P. Late Quaternary vegetation and climate dynamics in central-eastern Brazil: Insights from a~ 35k cal a BP peat record in the Cerrado biome. J. Quat. Sci. 2022, 35, 664–676. [Google Scholar] [CrossRef]
- Kirchner, A.; Nehren, U.; Behling, H.; Heinrich, J. Mid-and late Holocene fluvial dynamics in the tropical Guapi-Macacu catchment, Southeast Brazil: The role of climate change and human impact. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 426, 308–318. [Google Scholar] [CrossRef]
- Portes, M.C.G.O.; Safford, H.; Behling, H. Humans and climate as designers of the landscape in Serra da Bocaina National Park, southeastern Brazil, over the last seven centuries. Anthropocene 2018, 24, 61–71. [Google Scholar]
- Silva Neto, E.C.; Pereira, M.G.; Anjos, L.H.C.; Calegari, M.R.; Azevedo, A.C.; Schiavo, J.A.; Pessenda, L.C.R. Phytoliths as paleopedological records of an histosol-cambisol-ferralsol sequence in Southeastern Brazil. Catena 2020, 193, 104642. [Google Scholar] [CrossRef]
- Silva Neto, E.C.; Pereira, M.G.; Carvalho, M.A.; Calegari, M.R.; Schiavo, J.A.; Sa, N.P.; Anjos, L.H.C.; Pessenda, L.C.R. Palaeoenvironmental records of Histosol pedogenesis in upland area, Espírito Santo State (SE, Brazil). J. South Am. Earth Sci. 2019, 95, 102301. [Google Scholar] [CrossRef]
- Silva, A.C.; Horák-Terra, I.; Barral, U.M.; Costa, C.R.; Gonçalves, S.T.; Pinto, T.; Silva, B.P.C.; Fernandes, J.S.C.; Mendonca Filho, C.V.; Vidal-Torrado, P. Altitude, vegetation, paleoclimate, and radiocarbon age of the basal layer of peatlands of the Serra do Espinhaço Meridional, Brazil. J. South Am. Earth Sci. 2020, 103, 102728. [Google Scholar] [CrossRef]
- Portes, M.C.G.; Safford, H.D.; Montade, V.; Behling, H. Pollen rain–vegetation relationship along an elevational gradient in the Serra dos Órgãos National Park, southeastern Brazil. Rev. Palaeobot. Palynol. 2020, 283, 104314. [Google Scholar]
- Behling, H.; Jantz, N.; Safford, H.D. Mid-and late Holocene vegetation, climate and fire dynamics in the Serra do Itatiaia, Rio de Janeiro State, southeastern Brazil. Rev. Palaeobot. Palynol. 2020, 274, 104152. [Google Scholar] [CrossRef]
- Silva, A.C.; Barbosa, M.S.; Barral, U.M.; Silva, B.P.C.; Fernandes, J.S.C.; Viana, A.J.S.; Mendonça Filho, C.V.; Bispo, D.F.A.; Christofaro, C.; Ragonezi, C.; et al. Organic matter composition and paleoclimatic changes in tropical mountain peatlands currently under grasslands and forest clusters. Catena 2019, 180, 69–82. [Google Scholar] [CrossRef]
- Costa, C.R.; Horák-Terra, I.; Coe, H.H.G.; Chueng, K.F.; Machado, D.O.B.F.; DECamargo, P.B.; Silva, A.C. Multi-proxy analysis of a Holocene records from a high-altitude tropical peatland in the Serra do Espinhaço Meridional, Brazil. J. South Am. Earth Sci. 2022, 116, 103795. [Google Scholar] [CrossRef]
- Machado, D.O.B.F.; Chueng, K.F.; Coe, H.H.G.; Silva, A.C.; Costa, C.R. Paleoenvironmental reconstruction of the headwaters of the preto river, Minas Gerais state, Brazil, through siliceous bioindicators. J. South Am. Earth Sci. 2021, 108, 103349. [Google Scholar] [CrossRef]
- Pieruschka, V.; Ledru, M.P. A Mata Atlântica no final do Quaternário: Dinâmicas climatobotânicas e antropogênicas desde o Último Máximo Glacial. Metamorfoses florestais: Culturas, ecologias e as transformações históricas da Mata Atlântica. Prism. Curitiba 2016, 1, 37–53. [Google Scholar]
- Behling, H. South and southeast Brazilian grasslands during Late Quaternary times: A synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 177, 19–27. [Google Scholar] [CrossRef]
- Garcia, M.J.; De Oliveira, P.E.; Siqueira, E.; Fernandes, R.S. A Holocene vegetational and climatic record from the Atlantic rainforest belt of coastal State of São Paulo, SE Brazil. Rev. Palaeobot. Palynol. 2004, 131, 181–199. [Google Scholar] [CrossRef]
- Pessenda, L.C.R.; Vidotto, E.; De Oliveira, P.E.; Buso Jr, A.A.; Cohen, M.C.L.; de Fátima Rossetti, D.; Bendassolli, J.A. Late Quaternary vegetation and coastal environmental changes at Ilha do Cardoso mangrove, southeastern Brazil. Rev. Palaeobot. Palynol. 2012, 363, 57–68. [Google Scholar] [CrossRef]
- Enters, D.; Behling, H.; Mayr, C.; Dupont, L.; Zolitschka, B. Holocene environmental dynamics of south-eastern Brazil recorded in laminated sediments of Lago Aleixo. J. Paleolim. 2010, 44, 265–277. [Google Scholar] [CrossRef]
- Behling, H. Carbon storage increases by major forest ecosystems in tropical South America since the Last Glacial Maximum and the early Holocene. Glob. Planet. Chan. 2002, 33, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Pieruschka, V.; Behling, H. Palaeoenvironmental history of the São Francisco de Paula region in southern Brazil during the late Quaternary inferred from the Rincão das Cabritas core. Holocene 2012, 22, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva Neto, E.C.; Coelho-Junior, M.G.; Horák-Terra, I.; Gonçalves, T.S.; Anjos, L.H.C.; Pereira, M.G. Organic Soils: Formation, Classification and Environmental Changes Records in the Highlands of Southeastern Brazil. Sustainability 2023, 15, 3416. https://doi.org/10.3390/su15043416
Silva Neto EC, Coelho-Junior MG, Horák-Terra I, Gonçalves TS, Anjos LHC, Pereira MG. Organic Soils: Formation, Classification and Environmental Changes Records in the Highlands of Southeastern Brazil. Sustainability. 2023; 15(4):3416. https://doi.org/10.3390/su15043416
Chicago/Turabian StyleSilva Neto, Eduardo Carvalho, Marcondes Geraldo Coelho-Junior, Ingrid Horák-Terra, Thamyres Sabrina Gonçalves, Lúcia Helena Cunha Anjos, and Marcos Gervasio Pereira. 2023. "Organic Soils: Formation, Classification and Environmental Changes Records in the Highlands of Southeastern Brazil" Sustainability 15, no. 4: 3416. https://doi.org/10.3390/su15043416
APA StyleSilva Neto, E. C., Coelho-Junior, M. G., Horák-Terra, I., Gonçalves, T. S., Anjos, L. H. C., & Pereira, M. G. (2023). Organic Soils: Formation, Classification and Environmental Changes Records in the Highlands of Southeastern Brazil. Sustainability, 15(4), 3416. https://doi.org/10.3390/su15043416