Assessment of Whole Milk Powder Production by a Cumulative Exergy Consumption Approach
Abstract
:1. Introduction
2. Methodology
2.1. Whole Milk Powder Production
2.2. Cumulative Exergy Consumption Method
2.3. Performance Parameters
- (i)
- if Ir is less than 0, the process is defined as a non-renewable process.
- (ii)
- if Ir equals 0, the process is defined as equal to restoration work.
- (iii)
- if Ir is between 1 and 0, the process is defined as partially renewable.
- (iv)
- if Ir is greater than 1, the process is defined as a fully renewable process.
2.4. Evaluating Different Scenarios: Use of Renewable Energy and Pasture Feeding
3. Results and Discussion
3.1. Dairy Farm Stage: Raw Milk Production
3.2. Dairy Factory Stage: Powder Production
3.3. Performance of the Actual Process
3.4. Renewable Energy Sources and Pasture Feeding
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
CDP | cumulative degree of perfection (-) |
CExC | cumulative exergy consumption (MJ/kg) |
CNEx | net cumulative exergy consumption (MJ/kg) |
EEF | environmental effect factor (-) |
Ex | exergy rate (MJ) |
Ir | renewability indicator (-) |
IP | improvement potential rate (MJ) |
m | mass (kg) |
SI | exergetic sustainability index (-) |
Wr | restoration work (MJ) |
WER | waste exergy ratio (-) |
WMP | whole milk powder |
Greek symbols | |
ε | exergy efficiency (%) |
References
- Hepbasli, A.; Erbay, Z.; Colak, N.; Hancioglu, E.; Icier, F. An Exergetic Performance Assessment of Three Different Food Driers. Proc. Inst. Mech. Eng. Part A J. Power Energy 2010, 224, 1–12. [Google Scholar] [CrossRef]
- Finnegan, W.; Goggins, J.; Clifford, E.; Zhan, X. Environmental Impacts of Milk Powder and Butter Manufactured in the Republic of Ireland. Sci. Total Environ. 2017, 579, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Walton, M. Energy Use in Dairy Processing. Int. J. Dairy Technol. 2007, 60, 60–61. [Google Scholar] [CrossRef]
- Erbay, Z.; Koca, N. Exergoeconomic Performance Assessment of a Pilot-Scale Spray Dryer Using the Specific Exergy Costing Method. Biosyst. Eng. 2014, 122, 127–138. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture Statistical Yearbook 2021; FAO: Rome, Italy, 2021. [Google Scholar]
- Juárez-Hernández, S.; Usón, S.; Pardo, C.S. Assessing Maize Production Systems in Mexico from an Energy, Exergy, and Greenhouse-Gas Emissions Perspective. Energy 2019, 170, 199–211. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. A Review on Exergy Analysis of Drying Processes and Systems. Renew. Sustain. Energy Rev. 2013, 22, 1–22. [Google Scholar] [CrossRef]
- Saygı, G.; Erbay, Z.; Koca, N.; Pazır, F. Energy and Exergy Analyses of Spray Drying of a Fruit Puree (Cornelian Cherry Puree). Int. J. Exergy 2015, 16, 315–336. [Google Scholar] [CrossRef]
- Tinoco-Caicedo, D.L.; Lozano-Medina, A.; Blanco-Marigorta, A.M. Conventional and Advanced Exergy and Exergoeconomic Analysis of a Spray Drying System: A Case Study of an Instant Coffee Factory in Ecuador. Energies 2020, 13, 5622. [Google Scholar] [CrossRef]
- Bühler, F.; Zühlsdorf, B.; Van Nguyen, T.; Elmegaard, B. A Comparative Assessment of Electrification Strategies for Industrial Sites: Case of Milk Powder Production. Appl. Energy 2019, 250, 1383–1401. [Google Scholar] [CrossRef]
- Erbay, Z.; Koca, N. Energetic, Exergetic, and Exergoeconomic Analyses of Spray-Drying Process during White Cheese Powder Production. Dry. Technol. 2012, 30, 435–444. [Google Scholar] [CrossRef]
- Yildirim, N.; Genc, S. Energy and Exergy Analysis of a Milk Powder Production System. Energy Convers. Manag. 2017, 149, 698–705. [Google Scholar] [CrossRef]
- Bühler, F.; Van Nguyen, T.; Jensen, J.K.; Holm, F.M.; Elmegaard, B. Energy, Exergy and Advanced Exergy Analysis of a Milk Processing Factory. Energy 2018, 162, 576–592. [Google Scholar] [CrossRef]
- Jokandan, M.J.; Aghbashlo, M.; Mohtasebi, S.S. Comprehensive Exergy Analysis of an Industrial-Scale Yogurt Production Plant. Energy 2015, 93, 1832–1851. [Google Scholar] [CrossRef]
- Soufiyan, M.M.; Aghbashlo, M. Application of Exergy Analysis to the Dairy Industry: A Case Study of Yogurt Drink Production Plant. Food Bioprod. Process. 2017, 101, 118–131. [Google Scholar] [CrossRef]
- Nasiri, F.; Aghbashlo, M.; Rafiee, S. Exergy Analysis of an Industrial-Scale Ultrafiltrated (UF) Cheese Production Plant: A Detailed Survey. Heat Mass Transf. Stoffuebertragung 2017, 53, 407–424. [Google Scholar] [CrossRef]
- Soufiyan, M.M.; Aghbashlo, M.; Mobli, H. Exergetic Performance Assessment of a Long-Life Milk Processing Plant: A Comprehensive Survey. J. Clean. Prod. 2017, 140, 590–607. [Google Scholar] [CrossRef]
- Singh, G.; Tyagi, V.V.; Chopra, K.; Pandey, A.K.; Sharma, R.K.; Sari, A. Energetic and Exergetic Assessment of Two- and Three-Stage Spray Drying Units for Milk Processing Industry. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 359. [Google Scholar] [CrossRef]
- Özilgen, M.; Sorgüven, E. Energy and Exergy Utilization, and Carbon Dioxide Emission in Vegetable Oil Production. Energy 2011, 36, 5954–5967. [Google Scholar] [CrossRef]
- Sorgüven, E.; Özilgen, M. Energy Utilization, Carbon Dioxide Emission, and Exergy Loss in Flavored Yogurt Production Process. Energy 2012, 40, 214–225. [Google Scholar] [CrossRef]
- Degerli, B.; Nazir, S.; Sorgüven, E.; Hitzmann, B.; Özilgen, M. Assessment of the Energy and Exergy Efficiencies of Farm to Fork Grain Cultivation and Bread Making Processes in Turkey and Germany. Energy 2015, 93, 421–434. [Google Scholar] [CrossRef] [Green Version]
- Pelvan, E.; Özilgen, M. Assessment of Energy and Exergy Efficiencies and Renewability of Black Tea, Instant Tea and Ice Tea Production and Waste Valorization Processes. Sustain. Prod. Consum. 2017, 12, 59–77. [Google Scholar] [CrossRef]
- Koknaroglu, H. Cultural Energy Analyses of Dairy Cattle Receiving Different Concentrate Levels. Energy Convers. Manag. 2010, 51, 955–958. [Google Scholar] [CrossRef]
- Fox, P.F. Bovine Milk. In Encyclopedia of Dairy Sciences; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Elsevier Academic Press: London, UK, 2011; Volume 3, pp. 478–483. [Google Scholar]
- McCarthy, O.J. Centrifuges and Separators: Applications in the Dairy Industry. In Encyclopedia of Dairy Sciences; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Elsevier Academic Press: London, UK, 2011; Volume 4, pp. 175–183. [Google Scholar]
- Smiddy, M.A.; Kelly, A.L.; Huppertz, T. Cream and Related Products. In Dairy Fats and Related Products; Tamime, A.Y., Ed.; Wiley-Blackwell: West Sussex, UK, 2009; pp. 61–85. [Google Scholar]
- Westergaard, V. Milk Powder Technology: Evaporation and Spray Drying, 5th ed.; Niro A/S: Copenhagen, Denmark, 2004. [Google Scholar]
- Nabavi-Pelesaraei, A.; Bayat, R.; Hosseinzadeh-Bandbafha, H.; Afrasyabi, H.; Chau, K.W. Modeling of Energy Consumption and Environmental Life Cycle Assessment for Incineration and Landfill Systems of Municipal Solid Waste Management—A Case Study in Tehran Metropolis of Iran. J. Clean. Prod. 2017, 148, 427–440. [Google Scholar] [CrossRef]
- Mostashari-Rad, F.; Ghasemi-Mobtaker, H.; Taki, M.; Ghahderijani, M.; Kaab, A.; Chau, K.W.; Nabavi-Pelesaraei, A. Exergoenvironmental Damages Assessment of Horticultural Crops Using ReCiPe2016 and Cumulative Exergy Demand Frameworks. J. Clean. Prod. 2021, 278, 123788. [Google Scholar] [CrossRef]
- Khanali, M.; Ghasemi-Mobtaker, H.; Varmazyar, H.; Mohammadkashi, N.; Chau, K.W.; Nabavi-Pelesaraei, A. Applying Novel Eco-Exergoenvironmental Toxicity Index to Select the Best Irrigation System of Sunflower Production. Energy 2022, 250, 123822. [Google Scholar] [CrossRef]
- Szargut, J.; Morris, D.R.; Stewart, F.R. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes; Hemisphere Publishing Corp.: New York, NY, USA, 1988. [Google Scholar]
- Szargut, J. Exergy Method: Technical and Ecological Applications; WIT Press: London, UK, 2005. [Google Scholar]
- Sainz, R.D. Livestock-Environment Initiative Fossil Fuels Component: Framework for Calculation Fossil Fuel Use in Livestock Systems. 2003. Available online: https://www.researchgate.net/publication/242579280 (accessed on 20 October 2022).
- Huysveld, S.; Van linden, V.; De Meester, S.; Peiren, N.; Muylle, H.; Lauwers, L.; Dewulf, J. Resource Use Assessment of an Agricultural System from a Life Cycle Perspective—A Dairy Farm as Case Study. Agric. Syst. 2015, 135, 77–89. [Google Scholar] [CrossRef]
- Daneshi, A.; Esmaili-Sari, A.; Daneshi, M.; Baumann, H. Greenhouse Gas Emissions of Packaged Fluid Milk Production in Tehran. J. Clean. Prod. 2014, 80, 150–158. [Google Scholar] [CrossRef]
- Granovskii, M.; Dincer, I.; Rosen, M.A. Exergetic Life Cycle Assessment of Hydrogen Production from Renewables. J. Power Sources 2007, 167, 461–471. [Google Scholar] [CrossRef]
- Macián, V.; Tormos, B.; Ruíz, S.; Ramírez, L. Potential of Low Viscosity Oils to Reduce CO2 Emissions and Fuel Consumption of Urban Buses Fleets. Transp. Res. Part D Transp. Environ. 2015, 39, 76–88. [Google Scholar] [CrossRef]
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Muhd, M.Z. A Global Review of Energy Consumption, CO2 Emissions and Policy in the Residential Sector (with an Overview of the Top Ten CO2 Emitting Countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Schyns, V. Towards a Simple, Robust and Predictable EU Emissions Trading Scheme: Benchmarks from Concrete to Practice; Utility Support Group: Geleen, The Netherlands, 2006. [Google Scholar]
- Dewulf, J.; Van Langenhove, H. Thermodynamic Optimization of the Life Cycle of Plastics by Exergy Analysis. Int. J. Energy Res. 2004, 28, 969–976. [Google Scholar] [CrossRef]
- De Beer, J.; Worrell, E.; Blok, K. Long-Term Energy-Efficiency Improvements in the Paper and Board Industry. Energy 1998, 23, 21–42. [Google Scholar] [CrossRef]
- Laurijssen, J.; Marsidi, M.; Westenbroek, A.; Worrell, E.; Faaij, A. Paper and Biomass for Energy? The Impact of Paper Recycling on Energy and CO2 Emissions. Resour. Conserv. Recycl. 2010, 54, 1208–1218. [Google Scholar] [CrossRef]
- Özilgen, M. Nutrition and Production Related Energies and Exergies of Foods. Renew. Sustain. Energy Rev. 2018, 96, 275–295. [Google Scholar] [CrossRef]
- Draganovic, V.; Jørgensen, S.E.; Boom, R.; Jonkers, J.; Riesen, G.; Van Der Goot, A.J. Sustainability Assessment of Salmonid Feed Using Energy, Classical Exergy and Eco-Exergy Analysis. Ecol. Indic. 2013, 34, 277–289. [Google Scholar] [CrossRef]
- Berthiaume, R.; Bouchard, C. Exergy Analysis of the Environmental Impact of Paving Material Manufacture. Trans. CSME 1999, 23, 187–196. [Google Scholar] [CrossRef]
- Berthiaume, R.; Bouchard, C.; Rosen, M.A. Exergetic Evaluation of the Renewability of a Biofuel. Exergy Int. J. 2001, 1, 256–268. [Google Scholar] [CrossRef]
- Van Gool, W. Energy Policy: Fairly Tales and Factualities. In Innovation and Technology: Strategies and Policies; Soares, O.D.D., da Cruz, A.M., Pereira, G.C., Soares, I.M.R.T., Reis, A.J.P.S., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 93–105. [Google Scholar]
- Midilli, A.; Dincer, I. Development of Some Exergetic Parameters for PEM Fuel Cells for Measuring Environmental Impact and Sustainability. Int. J. Hydrogen Energy 2009, 34, 3858–3872. [Google Scholar] [CrossRef]
- Sorguven, E.; Özilgen, M. Thermodynamic Assessment of Algal Biodiesel Utilization. Renew. Energy 2010, 35, 1956–1966. [Google Scholar] [CrossRef]
- Kraatz, S.; Berg, W.E. Energy Efficiency in Raising Livestock at the Example of Dairy Farming. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting 2009, Reno, NV, USA, 21–24 June 2009; Volume 8, pp. 5021–5039. [Google Scholar] [CrossRef]
- Arslan, M.; Erdurmuş, C. Ülkemizde Hayvancılığa ve Kaba Yem Sorununa Genel Bir Bakış. Ziraat Mühendisliği Derg. 2012, 539, 32–37. [Google Scholar]
- Singh, G.; Chopra, K.; Tyagi, V.V.; Pandey, A.K.; Ma, Z.; Ren, H. A Comprehensive Energy, Exergy and Enviroeconomic (3-E) Analysis with Carbon Mitigation for Multistage Evaporation Assisted Milk Powder Production Unit. Sustain. Energy Technol. Assess. 2021, 43, 100925. [Google Scholar] [CrossRef]
- Erbay, Z.; Koca, N.; Kaymak-Ertekin, F.; Ucuncu, M. Optimization of Spray Drying Process in Cheese Powder Production. Food Bioprod. Process. 2015, 93, 156–165. [Google Scholar] [CrossRef]
- Golman, B.; Julklang, W. Analysis of Heat Recovery from a Spray Dryer by Recirculation of Exhaust Air. Energy Convers. Manag. 2014, 88, 641–649. [Google Scholar] [CrossRef]
- Patel, S.K.; Bade, M.H. Energy Analysis and Heat Recovery Opportunities in Spray Dryers Applied for Effluent Management. Energy Convers. Manag. 2019, 186, 597–609. [Google Scholar] [CrossRef]
- Erbay, Z.; Koca, N. Investigating the Effects of Operating Conditions on the Exergetic Performance of a Pilot-Scale Spray-Drying System. Int. J. Exergy 2012, 11, 302–321. [Google Scholar] [CrossRef]
- Erbay, Z.; Icier, F.; Hepbasli, A. Exergetic Performance Assessment of a Pilot-Scale Heat Pump Belt Conveyor Dryer. Int. J. Energy Res. 2010, 34, 249–264. [Google Scholar] [CrossRef]
- Alayi, R.; Zishan, F.; Seyednouri, S.R.; Kumar, R.; Ahmadi, M.H.; Sharifpur, M. Optimal Load Frequency Control of Island Microgrids via a Pid Controller in the Presence of Wind Turbine and Pv. Sustainability 2021, 13, 728. [Google Scholar] [CrossRef]
- Alayi, R.; Mohkam, M.; Seyednouri, S.R.; Ahmadi, M.H.; Sharifpur, M. Energy/Economic Analysis and Optimization of on-Grid Photovoltaic System Using CPSO Algorithm. Sustainability 2021, 13, 2420. [Google Scholar] [CrossRef]
- Mohammadnezami, M.H.; Ehyaei, M.A.; Rosen, M.A.; Ahmadi, M.H. Meeting the Electrical Energy Needs of a Residential Building with a Wind-Photovoltaic Hybrid System. Sustainability 2015, 7, 2554–2569. [Google Scholar] [CrossRef]
- Effatpanah, S.K.; Ahmadi, M.H.; Aungkulanon, P.; Maleki, A.; Sadeghzadeh, M.; Sharifpur, M.; Chen, L. Comparative Analysis of Five Widely-Used Multi-Criteria Decision-Making Methods to Evaluate Clean Energy Technologies: A Case Study. Sustainability 2022, 14, 1403. [Google Scholar] [CrossRef]
- Yildizhan, H.; Taki, M.; Özilgen, M.; Gorjian, S. Renewable Energy Utilization in Apple Production Process: A Thermodynamic Approach. Sustain. Energy Technol. Assess. 2021, 43, 100956. [Google Scholar] [CrossRef]
Performance Parameter | Carbohydrate | Protein | Fat | Ash |
---|---|---|---|---|
Raw Milk | 4.65 | 3.37 | 4.00 | 0.82 |
Sludge 1 | 5.25 | 5.00 | 0.30 | 4.45 |
Clarified Milk | 4.65 | 3.37 | 4.00 | 0.82 |
Cream | 1.45 | 0.69 | 35.28 | 0.10 |
Standardized Milk | 4.69 | 3.41 | 3.57 | 0.83 |
Condensed Milk | 18.02 | 13.08 | 13.71 | 3.18 |
Whole Milk Powder | 36.80 | 26.70 | 28.00 | 6.50 |
Organic Manure [20] | 60 | 12 | 5 | 9 |
Calves [20] | 5 | 19 | 3 | 2 |
Input Type | Inputs | Specific Energy Consumption | Specific Exergy Consumption | Specific CO2 Emission |
---|---|---|---|---|
Renewable | Alfalfa | 1.59 MJ/kg [33] | 7.90 MJ/kg [34] | 0.240 kg/kg [35] |
Maize Silage | 2.33 MJ/kg [33] | 7.90 MJ/kg [34] | 0.060 kg/kg [35] | |
Hay | 2.77 MJ/kg [33] | 7.90 MJ/kg [34] | 0.140 kg/kg [35] | |
Non-Renewable | Diesel Oil | 41.8 MJ/kg [36] | 44.7 MJ/kg [36] | 3.180 kg/kg [37] |
Electricity | 1.00 MJ/MJ [20] | 4.17 MJ/MJ [20] | 0.173 kg/MJ [38] | |
Natural Gas | 50.1 MJ/kg [36] | 52.1 MJ/kg [36] | 0.050 kg/MJ [38] | |
Polyethylene | 8.53 MJ/kg [39] | 86.0 MJ/kg [40] | 0.450 kg/kg [20] | |
Paper | 12.1 MJ/kg [41] | 34.6 MJ/kg [41] | 0.300 kg/kg [42] | |
Products | Carbohydrate | - | 17.5 MJ/kg [43] | - |
Protein | - | 25.4 MJ/kg [43] | - | |
Fat | - | 39.6 MJ/kg [43] | - | |
Ash | - | 1.006 MJ/kg [44] | - | |
Water | - | 0.53 MJ/kg [44] | - |
Performance Parameter | Actual Process * | Renewable Energy | Pasture Feeding |
---|---|---|---|
ε (%) | 40.5 | 52.1 | 68.9 |
Non-Renewable Fuel (MJ) | 29,869.2 | 10,226.0 | 8533.1 |
CDP (-) | 0.282 | 0.330 | 0.433 |
Ir (-) | −0.22 | 0.58 | 0.65 |
WER (-) | 0.60 | 0.48 | 0.31 |
EEF (-) | 1.47 | 0.91 | 0.45 |
SI (-) | 0.68 | 1.10 | 2.21 |
IP (MJ) | 30,594.5 | 15,119.4 | 4926.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uçal, E.; Yildizhan, H.; Ameen, A.; Erbay, Z. Assessment of Whole Milk Powder Production by a Cumulative Exergy Consumption Approach. Sustainability 2023, 15, 3475. https://doi.org/10.3390/su15043475
Uçal E, Yildizhan H, Ameen A, Erbay Z. Assessment of Whole Milk Powder Production by a Cumulative Exergy Consumption Approach. Sustainability. 2023; 15(4):3475. https://doi.org/10.3390/su15043475
Chicago/Turabian StyleUçal, Esmanur, Hasan Yildizhan, Arman Ameen, and Zafer Erbay. 2023. "Assessment of Whole Milk Powder Production by a Cumulative Exergy Consumption Approach" Sustainability 15, no. 4: 3475. https://doi.org/10.3390/su15043475
APA StyleUçal, E., Yildizhan, H., Ameen, A., & Erbay, Z. (2023). Assessment of Whole Milk Powder Production by a Cumulative Exergy Consumption Approach. Sustainability, 15(4), 3475. https://doi.org/10.3390/su15043475