TecSB: An Open Web Tool of Energy Efficiency and Solar Energy Integration in Mexican Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulation Validation
2.2. Data Generated from Simulations
2.2.1. Weather Conditions
2.2.2. Energy Use Intensity by Buildings
2.2.3. Energy Generation by Solar Technology
2.3. TecSB Sustainable Building Calculator
- IF = Inflation rate;
- d = Discount rate;
- co = Initial investment;
- CS = Annual monetary savings.
3. Results
3.1. Different Building Envelopes on Different Types of Buildings
3.2. Heat and Power Generation
3.3. Case Study: Hospital San José
4. Discussion
5. Conclusions
- The best strategy, from the energy point of view, applied to the roof was the combination of PCM, insulating material, and reflective paint. The use of PCM was only recommended if combined with insulating material. Only applying reflective paint did not result in significant savings.
- The payback time for insulating materials was always the lowest due to their high availability in the market. When PCM was evaluated, the payback time notably increased because it is an imported product; even so, there were results with a payback time of fewer than three years.
- The options for windows were not beneficial, neither thermally nor economically, for residential buildings, and, in the case of non-residential buildings, the result was much more effective when the WWR was 100%.
- Among the possibilities of substituting fuels to generate thermal energy with some of the available technologies, substituting diesel with LCPVT resulted in the greatest emission savings.
- The use of the tool was demonstrated by analyzing a real building (hospital) as a case study. An energy saving of 6.79% was obtained when PCM and XPS insulation were applied to the roof. In addition to the possibility of supplying 15.19% of the demand for electrical energy and 62.61% of the heat if an LCPVT system is installed covering the 4530 m2 of the roof.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urbanization—Our World in Data. Available online: https://ourworldindata.org/urbanization (accessed on 11 October 2022).
- International Energy Agency. Tracking Buildings 2020—Analysis. 2020. Available online: https://www.iea.org/topics/buildings (accessed on 1 November 2021).
- International Energy Agency (IEA). Available online: https://www.iea.org/reports/buildings (accessed on 3 October 2022).
- Al-Rakhami, M.; Gumaei, A.; Alsanad, A.; Alamri, A.; Hassan, M.M. An Ensemble Learning Approach for Accurate Energy Load Prediction in Residential Buildings. IEEE Access 2019, 7, 48328–48338. [Google Scholar] [CrossRef]
- González-Torres, M.; Pérez-Lombard, L.; Coronel, J.F.; Maestre, I.R.; Yan, D. A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Rep. 2022, 8, 626–637. [Google Scholar] [CrossRef]
- SENER. Balance Nacional de Energía. 2020. Available online: https://www.gob.mx/cms/uploads/attachment/file/707654/BALANCE_NACIONAL_ENERGIA_0403.pdf (accessed on 3 October 2022).
- Nearly Zero-Energy Buildings. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en (accessed on 11 October 2022).
- Kurnitski, J.; Allard, F.; Braham, D.; Goeders, G.; Heiselberg, P.; Jagemar, L.; Kosonen, R.; Lebrun, J.; Mazzarella, L.; Railio, J.; et al. How to define nearly net zero energy buildings nZEB-REHVA proposal for uniformed national implementation of EPBD recast. REHVA J. 2011, 48, 6–12. [Google Scholar]
- Kumar, D.; Alam, M.; Memon, R.A.; Bhayo, B.A. A critical review for formulation and conceptualization of an ideal building envelope and novel sustainability framework for building applications. Clean. Eng. Technol. 2022, 11, 100555. [Google Scholar] [CrossRef]
- Dobiás, J.; Macek, D. Leadership in Energy and Environmental Design (LEED) and its impact on building operational expenditures. Procedia Eng. 2014, 85, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Mandel, T.; Pató, Z.; Broc, J.-S.; Eichhammer, W. Conceptualising the energy efficiency first principle: Insights from theory and practice. Energy Effic. 2022, 15, 41. [Google Scholar] [CrossRef]
- Oliveira, S.; Marco, E.; Gething, B. Energy Modelling in Architecture: A Practice Guide; RIBA Publishing: London, UK, 2020. [Google Scholar] [CrossRef]
- Carpio, M.; Martín-Morales, M.; Zamorano, M. Comparative study by an expert panel of documents recognized for energy efficiency certification of buildings in Spain. Energy Build. 2015, 99, 98–103. [Google Scholar] [CrossRef]
- HERS Raters—RESNET. Available online: https://www.resnet.us/raters/hers-raters/ (accessed on 11 October 2022).
- Chen, S.; Zhao, L.; Zheng, L.; Bi, G. A rapid evaluation method for design strategies of high-rise office buildings achieving nearly zero energy in Guangzhou. J. Build. Eng. 2021, 44, 103297. [Google Scholar] [CrossRef]
- Rahmadyani, H.; Suhendri. Energy Efficient Low-Cost Housing in Ho Chi Minh using EDGE Buildings. IOP Conf. Series Earth Environ. Sci. 2020, 532, 012018. [Google Scholar] [CrossRef]
- Kang, Y.; Ma, N.; Bunster, V.; Chang, V.W.-C.; Zhou, J. Optimizing the Passive House Planning Package simulation tool: A bottom-up dynamic approach to reduce building performance gap. Energy Build. 2022, 276, 112512. [Google Scholar] [CrossRef]
- Salehin, S.; Ferdaous, M.; Chowdhury, R.M.; Shithi, S.S.; Rofi, M.B.; Mohammed, M.A. Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis. Energy Energy 2016, 112, 729–741. [Google Scholar] [CrossRef]
- Building Rating Tools|YourHome. Available online: https://www.yourhome.gov.au/buy-build-renovate/building-rating-tools (accessed on 6 November 2022).
- James, M.; Ambrose, M.; Lane, B.; Wright, A. The NatHERS dataset: An exploration of its content, provenance, and usefulness in the characterization of new residential building. Energy Procedia 2017, 121, 142–149. [Google Scholar] [CrossRef]
- Fosas, D.; Mitchell, R.; Nikolaidou, E.; Roberts, M.; Allen, S.; Walker, I.; Coley, D. Novel super-reduced, pedagogical model for scoping net zero buildings. Build. Environ. 2022, 208, 108570. [Google Scholar] [CrossRef]
- Herramienta Cálculo NOM-008|Comisión Nacional para el Uso Eficiente de la Energía|Gobierno. Available online: https://www.gob.mx/conuee/acciones-y-programas/herramienta-calculo-nom_008 (accessed on 11 October 2022).
- Ener-Habitat. Available online: http://www.enerhabitat.unam.mx/Cie2/ (accessed on 11 October 2022).
- Sadineni, S.B.; Madala, S.; Boehm, R.F. Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 2011, 15, 3617–3631. [Google Scholar] [CrossRef]
- Mousavi, S.; Gijón-Rivera, M.; Rivera-Solorio, C.; Rangel, C.G. Energy, comfort, and environmental assessment of passive techniques integrated into low-energy residential buildings in semi-arid climate. Energy Build. 2022, 263, 112053. [Google Scholar] [CrossRef]
- Henninger, R.H.; Witte, M.J. EnergyPlus Testing with ANSI/ASHRAE Standard 140-2001 (BESTEST). U.S. Department of Energy. 2004. Available online: www.gard.com (accessed on 2 November 2021).
- DesignBuilder. DesignBuilder Software Ltd—Home. Available online: https://designbuilder.co.uk/ (accessed on 28 November 2021).
- Acosta-Pazmiño, I.; Rivera-Solorio, C.; Gijón-Rivera, M. Energetic and Economic Analyses of an LCPV/T Solar Hybrid Plant for a Sports Center Building in Mexico. Energies 2020, 13, 5681. [Google Scholar] [CrossRef]
- Reyes, R.V. Modificaciones al Sistema de Clasificación Climática de Köppen: Para Adaptarlo a las Condiciones de la República Mexicana. Enriqueta García. 2004. Available online: https://www.academia.edu/12911044/Modificaciones_al_sistema_de_clasificaci%C3%B3n_clim%C3%A1tica_de_K%C3%B6ppen_para_adaptarlo_a_las_condiciones_de_la_Rep%C3%BAblica_Mexicana_2004_Enriqueta_Garc%C3%ADa (accessed on 16 November 2021).
- Liggett, R.; Milne, M. Climate Consultant. Monterrey; UCLA Energy Design Tools Group: Los Angeles, CA, USA, 2020. [Google Scholar]
- Inegi. Climas. Available online: https://www.cuentame.inegi.org.mx/territorio/climas.aspx?tema=T (accessed on 30 November 2022).
- NOM 020 ENER2011. Eficiencia Energética en Edificaciones. Envolvente de Edificios para Uso Habitacional. Secretaría de Energía and Comité Consultivo Nacional de Normalización para la Preservación y Uso Racional de los Recursos Energéticos: Mexico City, Mexico, 2011.
- NOM 008 ENER 2001. Eficiencia Energética en Edificaciones, Envolventes de Edificios no Residenciales. Secretaría de Energía and Comité Consultivo Nacional de Normalización para la Preservación y Uso Racional de los Recursos Energéticos: Mexico City, Mexico, 2001.
- Kumar, D.; Alam, M.; Zou, P.X.W.; Sanjayan, J.G.; Memon, R.A. Comparative analysis of building insulation material properties and performance. Renew. Sustain. Energy Rev. 2020, 131, 110038. [Google Scholar] [CrossRef]
- Hernandez-Perez, I.; Alvarez, G.; Xaman, J.; Zavala-Guillen, I.; Arce, J.; Sima, E. Thermal performance of reflective materials applied to exterior building components—A review. Energy Build. 2014, 80, 81–105. [Google Scholar] [CrossRef]
- Liu, L.; Hammami, N.; Trovalet, L.; Bigot, D.; Habas, J.-P.; Malet-Damour, B. Description of phase change materials (PCMs) used in buildings under various climates: A review. J. Energy Storage 2022, 56, 105760. [Google Scholar] [CrossRef]
- Owens Corning. FOAMULAR ® 250 Product Data Sheet; Owens Corning: Toledo, OH, USA, 2001. [Google Scholar]
- Placas de Lana de Roca—Rolan. Available online: https://www.rolan.com/placas-de-lana-de-roca/#1511758387490-cad25595-b02c (accessed on 6 November 2022).
- Poliestirenos|Placa de EPS. Available online: https://poliestirenosmexico.com/productos/placa-de-eps (accessed on 6 November 2022).
- TOP Wall® 19 Litros|Undefined|Comex. Available online: https://tienda.comex.com.mx/producto/impermeabilizantes/19A0284300 (accessed on 6 November 2022).
- Infinite R Phase Change Material|Infinite R Phase Change Material. Available online: https://infiniterpcm.com/home (accessed on 6 November 2022).
- Hee, W.J.; Alghoul, M.A.; Bakhtyar, B.; Elayeb, O.; Shameri, M.A.; Alrubaih, M.S.; Sopian, K. The role of window glazing on daylighting and energy saving in buildings. Renew. Sustain. Energy Rev. 2015, 42, 323–343. [Google Scholar] [CrossRef]
- Catalogo de productos de Vitro Vidrio Arquitectónico|Undefined|Vitro. Available online: https://www.vitroglazings.com/media/a44dozdb/catalogo-vitro-vidrio-arquitectonico-2019.pdf (accessed on 6 November 2022).
- Comisión Federal de Electricidad (CFE). Tarifas-Negocios. 2022. Available online: https://app.cfe.mx/Aplicaciones/CCFE/Tarifas/TarifasCRENegocio/Tarifas/PequenaDemandaBT.aspx (accessed on 14 February 2022).
- Kalogirou, S. Solar Energy Engineering Processes and Systems, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Diario Oficial de la Federación (DOF). Available online: https://dof.gob.mx/nota_detalle_popup.php?codigo=5406149 (accessed on 2 December 2022).
Software/Tool | Applicable in | Initiative | Focus On | Main Users | Type of Access |
---|---|---|---|---|---|
Calener VYP | Spain | Government | Energy Efficiency in Buildings | Raters, Government | Free |
Green Energy Compass | USA | Private | Renewable energy infrastructure | Government agencies | Paid |
RESNET | USA | Not-for-profit corporation | Net-Zero Energy Homes | Raters, providers, builders | Free |
Academic tool developed in China | China | Academic | Net-Zero Energy Buildings | Academic | - |
EDGE Buildings | World | Private | Zero Carbon Buildings | Raters, Builders | Free |
Passive House standard | Germany-World | Independent Research Institute | Energy Efficiency in Buildings | Raters, Builders | Paid |
RETScreen | Canada-World | Government | Renewable energy management | Designers, Government | Paid |
HOMER | USA-World | Private | Hybrid Power system | Designers, builders | Paid |
NatHERS rating tools | Australia | Government | Energy Efficiency in Buildings | Raters, Builders | Free |
ZEBRA | UK | Academic | Zero Carbon Design | Academic | - |
NOM 008 ENER 2001 NOM 020 ENER 2010 | Mexico | Government | Energy Efficiency in Buildings | Raters, designers, builders | Free |
Ener-Habitat | Mexico | Academic | Energy Efficiency in Buildings | Designers, Builders | Free |
Type of Building | Occupancy Density (People/m2) | Schedule | Power Density (W/m2) |
---|---|---|---|
Residential 1 | 0.0530 | Weekdays fractioned | 5.00 |
Office | 0.0890 | Weekdays fractioned | 11.77 |
Hospital | 0.0700 | Weekdays and weekends fractioned | 10.0 |
Restaurant | 0.7535 | Weekdays and Saturday | 10.0 |
Educational | 0.2034 | Weekdays | 4.74 |
Partition | Thickness (m) | R Value (m2K/W) | SHGC | VT (%) |
---|---|---|---|---|
Roof | 0.175 | 0.350 | - | - |
Floor | 0.200 | 0.353 | - | - |
Walls | 0.150 | 0.365 | - | - |
Window | 0.006 | 0.173 | 0.85 | 0.88 |
Material | Thermal Conductivity (W/mK) | R Value (m2K/W) | Emittance | Melting Temperature (°C) | Latent Heat (kJ/kg) |
---|---|---|---|---|---|
Insulation 1: XPS [37] | - | 1.41 | - | - | - |
Insulation 2: LDR [38] | - | 0.74 | - | - | - |
Insulation 3: EPS [39] | - | 0.65 | - | - | - |
Reflective paint [40] | 0.29 | - | 0.89 | - | - |
PCM [41] | 0.54 | - | - | 21 | 200 |
Glass | Thickness (m) | U-Factor (W/m2K) | SHGC | VT (%) |
---|---|---|---|---|
Bronze tinted (BR) | 0.006 | 5.801 | 0.633 | 53 |
Blue tinted (BL) | 0.006 | 5.801 | 0.532 | 68 |
Reflective (RF) | 0.006 | 4.975 | 0.608 | 50 |
Double Low E | 0.006 | 1.345 | 0.217 | 42 |
Average Annual Thermal Efficiency (%) | Average Annual Electrical Efficiency (%) | Rated Electrical Efficiency (%) | DC-AC Conversion Efficiency (%) | |
---|---|---|---|---|
PV | - | 13 | 18 | 92 |
ST | 58 | - | - | - |
PVT | 35 | 10.5 | 15 | 92 |
LCPVT | 38 | 8 | 22.5 | 92 |
Residential | Restaurant | Office | School | Hospital | |
---|---|---|---|---|---|
% Electricity | 75 | 54 | 100 | 100 | 77 |
% Heat | 25 | 46 | 0 | 0 | 23 |
Total Carbon Intensity (tCO2e/kWh) | 0.00058 | 0.00060 | 0.00057 | 0.00057 | 0.00058 |
R.P. | XPS | LDR | EPS | R.P. + XPS | R.P. + LDR | R.P. + EPS | PCM | PCM + R.P. | PCM + XPS | PCM + LDR | PCM + EPS | PCM + XPS + R.P. | PCM + LDR+ R.P. | PCM + EPS + R.P. | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rs. | 1C | 9.39 | 1.98 | 1.61 | 1.18 | 2.23 | 1.91 | 1.5 | 16.55 | 16.29 | 7.41 | 7.99 | 7.93 | 7.57 | 8.15 | 8.1 |
DAC | 3.56 | 0.67 | 0.54 | 0.39 | 0.76 | 0.65 | 0.5 | 6.95 | 6.82 | 2.73 | 2.97 | 2.95 | 2.8 | 3.04 | 3.02 | |
Off. | GDMTH | 11.38 | 5.22 | 4.3 | 3.2 | 5.81 | 5.03 | 4.0 | 18.98 | 18.94 | 12.1 | 12.68 | 12.54 | 12.34 | 12.94 | 12.81 |
PDBT | 5.14 | 2.17 | 1.77 | 1.29 | 2.44 | 2.09 | 1.64 | 9.4 | 9.37 | 5.51 | 5.82 | 5.74 | 5.64 | 5.96 | 5.89 | |
Hosp. | GDMTH | 8.0 | 2.05 | 1.67 | 1.22 | 2.3 | 1.98 | 1.56 | 14.26 | 14.15 | 7.86 | 8.32 | 8.22 | 8.02 | 8.49 | 8.41 |
PDBT | 3.46 | 0.81 | 0.66 | 0.48 | 0.92 | 0.79 | 0.61 | 6.68 | 6.61 | 3.39 | 3.61 | 3.56 | 3.47 | 3.69 | 3.65 | |
Rt. | GDMTH | 7.81 | 2.81 | 2.27 | 1.66 | 3.15 | 2.67 | 2.1 | 17.94 | 17.56 | 8.76 | 9.24 | 9.14 | 8.93 | 9.43 | 9.33 |
PDBT | 3.36 | 1.13 | 0.9 | 0.66 | 1.27 | 1.07 | 0.84 | 8.78 | 8.55 | 3.82 | 4.06 | 4.01 | 3.91 | 4.15 | 4.1 | |
Sch. | GDMTH | 10.26 | 4.11 | 3.38 | 2.5 | 4.6 | 3.97 | 3.15 | 19.33 | 19.35 | 11.25 | 11.87 | 11.74 | 11.48 | 12.12 | 12.0 |
PDBT | 4.56 | 1.68 | 1.37 | 1.0 | 1.9 | 1.62 | 1.27 | 9.61 | 9.62 | 5.07 | 5.39 | 5.33 | 5.19 | 5.52 | 5.46 |
BR. | BL. | RF. | Low E | ||||||
---|---|---|---|---|---|---|---|---|---|
40% | 100% | 40% | 100% | 40% | 100% | 40% | 100% | ||
Rs. | 1C | 66.79 | 50.4 | 71.51 | 53.95 | 76.48 | 60.06 | 103.03 | 87.55 |
DAC | 44.78 | 30.35 | 49.14 | 33.36 | 53.81 | 39.59 | 79.5 | 64.4 | |
Off. | GDMTH | 33.21 | 11.98 | 27.31 | 2.82 | 24.62 | 13.02 | 44.91 | 23.38 |
PDBT | 19.05 | 5.45 | 14.8 | 1.14 | 12.98 | 6.0 | 28.35 | 15.55 | |
Hosp. | GDMTH | 14.31 | 7.41 | 16.6 | 8.79 | 16.25 | 8.99 | 32.57 | 20.65 |
PDBT | 6.7 | 3.18 | 7.99 | 3.84 | 7.79 | 3.93 | 18.58 | 10.43 | |
Rt. | GDMTH | 16.19 | 8.15 | 18.77 | 9.72 | 39.95 | 9.69 | 37.13 | 23.5 |
PDBT | 7.76 | 3.53 | 9.27 | 4.29 | 24.28 | 4.28 | 22.05 | 12.24 | |
Sch. | GDMTH | 22.24 | 11.62 | 25.15 | 13.6 | 20.75 | 12.05 | 39.18 | 25.45 |
PDBT | 11.43 | 5.3 | 13.33 | 6.31 | 10.48 | 5.49 | 23.66 | 13.54 |
Solar Technologies for Power and Heat Generation | |||||
---|---|---|---|---|---|
Fuel | Electricity Tariff | ST | PVT | LCPVT | PV |
Diesel | - | 3.46 | - | - | - |
GN | - | 19.61 | - | - | - |
GLP | - | 3.9 | - | - | - |
Diesel | 1C | - | 17.1 | 4.12 | - |
DAC | - | 12.85 | 3.16 | - | |
GDMTH | - | 17.74 | 4.26 | - | |
PDBT | - | 14.67 | 3.58 | - | |
GN | 1C | - | 33.31 | 12.7 | - |
DAC | - | 19.65 | 6.51 | - | |
GDMTH | - | 36.34 | 14.19 | - | |
PDBT | - | 24.57 | 8.61 | - | |
GLP | 1C | - | 18.26 | 4.53 | - |
DAC | - | 13.48 | 3.4 | - | |
GDMTH | - | 19.01 | 4.7 | - | |
PDBT | - | 15.51 | 3.89 | - | |
- | 1C | - | - | - | 9.54 |
DAC | - | - | - | 3.63 | |
GDMTH | - | - | - | 11.63 | |
PDBT | - | - | - | 5.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godoy-Rangel, C.; Rivera-Solorio, C.I.; Gijón-Rivera, M. TecSB: An Open Web Tool of Energy Efficiency and Solar Energy Integration in Mexican Buildings. Sustainability 2023, 15, 3630. https://doi.org/10.3390/su15043630
Godoy-Rangel C, Rivera-Solorio CI, Gijón-Rivera M. TecSB: An Open Web Tool of Energy Efficiency and Solar Energy Integration in Mexican Buildings. Sustainability. 2023; 15(4):3630. https://doi.org/10.3390/su15043630
Chicago/Turabian StyleGodoy-Rangel, Caribay, Carlos. I. Rivera-Solorio, and Miguel Gijón-Rivera. 2023. "TecSB: An Open Web Tool of Energy Efficiency and Solar Energy Integration in Mexican Buildings" Sustainability 15, no. 4: 3630. https://doi.org/10.3390/su15043630
APA StyleGodoy-Rangel, C., Rivera-Solorio, C. I., & Gijón-Rivera, M. (2023). TecSB: An Open Web Tool of Energy Efficiency and Solar Energy Integration in Mexican Buildings. Sustainability, 15(4), 3630. https://doi.org/10.3390/su15043630