Deriving Land Management Practices for Reduced Nutrient Movement from an Agricultural Watershed Using the AGNPS Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Model
2.2. Watershed Description
2.3. Input Data Preparation
2.4. Simulation with Varying Fertilizer Dose and Land Use Change Scenarios
3. Results
3.1. Calibration and Validation of the Model
3.2. Simulation of Runoff and Soil Loss
3.3. Simulation of Nitrogen and Phosphorus Load
3.4. Response to Alternate Nutrient Management Strategies
3.5. Response to Alternative Land Management Strategy
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gourevitch, J.D.; Keeler, B.L.; Ricketts, T.H. Determining Socially Optimal Rates of Nitrogen Fertilizer Application. Agric. Ecosyst. Environ. 2018, 254, 292–299. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the Intensification of Agriculture for Global Food Security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.M.; Souza, M.F.; Silva, F.; Paula, F.C.; Moraes, M.E.; Strenzel, G.M. Land use effects on nutrient concentration in a small watershed in northeast brazil. Braz. J. Aquat. Sci. Technol. 2015, 19, 102–111. [Google Scholar]
- Nazari-Sharabian, M.; Taheriyoun, M.; Ahmad, S.; Karakouzian, M.; Ahmadi, A. Water Quality Modeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics. Water 2019, 11, 394. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Bu, Z.H.; Wu, Y.H.; Kerr, P.G.; Garre, S.; Xia, L.Z.; Yang, L.Z. An Integrated Quantitative Method to Simultaneously Monitor Soil Erosion and Non-Point Source Pollution in an Intensive Agricultural Area. Pedosphere 2014, 24, 674–682. [Google Scholar] [CrossRef]
- Pimentel, D.; Burgess, M. Soil erosion threatens food production. Agriculture 2013, 3, 443–463. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.O.; Krumhardt, K.M.; Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 2009, 28, 27–28. [Google Scholar] [CrossRef]
- Germer, S.; Neill, C.; Vetter, T.; Chaves, J.; Krusche, A.V.; Elsenbeer, H. Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. J. Hydrol. 2009, 364, 349–363. [Google Scholar] [CrossRef]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, S.; Harris, J.; Kadiyala, S. The agriculture-nutrition disconnect in India: What do we know? Gates Open Res. 2019, 3, 1115. [Google Scholar]
- Guo, Y.; Wang, J. Spatiotemporal Changes of Chemical Fertilizer Application and Its Environmental Risks in China from 2000 to 2019. Int. J. Environ. Res. Public Health 2021, 18, 11911. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhou, Z.; Du, J. An evolutionary game model for the multi-agent Co-governance of agricultural non-point source pollution control under intensive management pattern in China. Int. J. Environ. Res. Public Health 2020, 7, 2472. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.G.M.; Veith, T.L.; Collick, A.S.; Karsten, H.D.; Buda, A.R. Simulating hydrological and non-point source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agr. Water Manag. 2017, 180, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Zeng, F.; Zuo, Z.; Mo, J.; Chen, C.; Yang, X.; Wang, J.; Wang, Y.; Zhao, Z.; Chen, T.; Li, Y.; et al. Runoff Losses in Nitrogen and Phosphorus From Paddy and Maize Cropping Systems: A Field Study in Dongjiang Basin, South China. Front. Plant Sci. 2021, 12, 1593. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Jin, C.; Wu, Y.; Hou, Z.; Gao, S.; Chu, Z.; Zheng, B. Modeling Non-Point Source Nutrient Loads with Different Cropping Systems in an Agricultural Lake Watershed in Southwestern China: From Field to Watershed Scale. Mathematics 2022, 10, 4047. [Google Scholar] [CrossRef]
- Aksoy, H.; Kavvas, M.L. A review of hillslope and watershed scale erosion and sediment transport models. Catena 2005, 64, 247–271. [Google Scholar] [CrossRef]
- Mishra, H.; Denis, D.M.; Suryavanshi, S.; Kumar, M.; Srivastava, S.K.; Denis, A.F.; Kumar, R. Hydrological simulation of a small ungauged agricultural watershed Semrakalwana of Northern India. Appl. Water Sci. 2017, 7, 2803–2815. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.S.; Usery, E.L.; Finn, M.P.; Bosch, D.D. An assessment of the effects of cell size on AGNPS modeling of watershed runoff. Cartogr. Geogr. Inf. Sci. 2008, 35, 265–278. [Google Scholar] [CrossRef]
- Haverkamp, S.; Fohrer, N.; Frede, H.G. Assessment of the effect of land-use patterns on hydrologic landscape functions: A comprehensive GIS-based tool to minimize model uncertainty resulting from spatial aggregation. Hydro Process. 2005, 19, 715–727. [Google Scholar] [CrossRef]
- Young, R.A.; Onstad, C.A.; Bosch, D.D.; Anderson, W.P. Agricultural Non-Point Source Pollution Model. AGNPS User’s Guide, Version 4.03; US Geological Survey: Washington, DC, USA, 1994. [Google Scholar]
- Panjabi, K.; Rudra, R.; Goel, P.; Daggupati, P.; Shrestha, N.K.; Shukla, R.; Zhang, B.; Allataifeh, N. Mapping runoff generating areas using AGNPS-VSA model. Hydrol. Sci. J. 2020, 65, 2224–2232. [Google Scholar] [CrossRef]
- Chowdary, V.M.; Yatindranath, K.S.; Adiga, S. Modelling of non-point source pollution in a watershed using remote sensing and GIS. J. Indian Soc. Remote Sens. 2004, 32, 59–73. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, J.; Peng, S. Assessing the effects of landscape pattern on river water quality at multiple scales: A case study of the Dongjiang River watershed, China. Ecol. Indic. 2012, 23, 166–175. [Google Scholar] [CrossRef]
- Assfaw, A.T. Modeling Impact of Land Use Dynamics on Hydrology and Sedimentation of Megech Dam Watershed, Ethiopia. Sci. World J. 2020, 6530278. [Google Scholar] [CrossRef] [PubMed]
- León, L.F.; Booty, W.G.; Bowen, G.S.; Lam, D.C.L. Validation of an agricultural non-point source model in a watershed in southern Ontario. Agr. Water Manage. 2004, 65, 59–75. [Google Scholar] [CrossRef]
- Sekar, C.; Ramasamy, C. Economics of soil conservation structures in the Nilgiris. Indian J. Agric. Econ. 1998, 53, 614–626. [Google Scholar]
- Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.; Hati, K.M.; et al. Soil degradation in india: Challenges and potential solutions. Sustainability 2015, 7, 3528–3570. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Ni, J.; Fleskens, L.; Wang, H.; Xuan, Y. Modelling Fertilizer Use in Relation to Farmers’ Household Characteristics in Three Gorges Reservoir Area, China. Agriculture 2021, 11, 472. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Zhou, L.; Han, T.; Wu, L.; Ke, M.; Zhang, H.; Li, X.; Ao, T. Water quality assessment and control countermeasures of rural non-point source pollution: A case study on Xichong River. Modeling and Computation in Engineering III. In Proceedings of the 3rd International Conference on Modeling and Computation in Engineering, CMCE, Wuxi, China, 28–29 June 2014; pp. 111–116. [Google Scholar]
- Environment Protection Agency (EPA). Protecting Water Quality from Agricultural Runoff EPA 841-F-05-001. Available online: https://www.epa.gov/nps (accessed on 20 December 2022).
- Yuan, X.; Jun, Z. Water Resource Risk Assessment Based on Non-Point Source Pollution. Water 2021, 13, 13141907. [Google Scholar] [CrossRef]
- Young, R.A.; Onstand, C.A.; Bosch, D.D.; Anderson, W.P. AGNPS. A non-point source pollution model for evaluating agricultural watersheds. J. Soil Water Conserv. 1989, 44, 168–173. [Google Scholar]
- Young, R.A.; Onstad, C.A.; Bosch, D.D.; Anderson, W.P. Agricultural Non-Point Source Pollution Model (AGNPS). 1987 A Watershed Analysis Tool; USDA Conservation Research Report 35; Agricultural Research Service: Albany, CA, USA.
- AgriMetSoft (2019). Online Calculators. Available online: https://agrimetsoft.com (accessed on 13 December 2022).
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, Part-1: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Mohammed, H.; Yohannes, F.; Zeleke, G. Validation of agricultural non-point source (AGNPS) pollution model in Kori watershed, South Wollo, Ethiopia. Int. J. Appl. Earth. Obs. 2004, 6, 97–109. [Google Scholar] [CrossRef]
- Rode, M.; Frede, H.G. Modification of AGNPS for agricultural land and climate conditions in Central Germany. J. Environ. Qual. 1997, 26, 165–173. [Google Scholar] [CrossRef]
- Chalise, D.; Kumar, L.; Shriwastav, C.P.; Lamichhane, S. Spatial assessment of soil erosion in a hilly watershed of Western Nepal. Environ. Earth Sci. 2018, 77, 1–11. [Google Scholar] [CrossRef]
- Mishra, P.K.; Rai, A.; Abdelrahman, K.; Rai, S.C.; Tiwari, A. Land Degradation, Overland Flow, Soil Erosion, and Nutrient Loss in the Eastern Himalayas, India. Land 2022, 11, 179. [Google Scholar] [CrossRef]
- Singh., R.; Tiwari, K.N.; Mal, B.C. Hydrological studies for small watershed in India using the ANSWERS model. J. Hydrol. 2006, 318, 184–199. [Google Scholar] [CrossRef]
- Prasannakumar, V.; Vijith, H.; Abinod, S.; Geetha, N. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geosci. Front. 2012, 3, 209–215. [Google Scholar] [CrossRef] [Green Version]
- Emmett, W.W. The Hydraulics of Overland Flow on Hillslopes; USGS (United States Geological Survey): Washington, DC, USA, 1970; Volume 662A, p. 68. [Google Scholar]
- Chen, X.; Liu, X.; Peng, W.; Dong, F.; Huang, Z.; Wang, R. Non-Point Source Nitrogen and Phosphorus Assessment and Management Plan with an Improved Method in Data-Poor Regions. Water 2018, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Dai, J.; Li, Z.; Liu, Y.; Xu, J.; Zhang, Z.; Xu, B. Simulation Study on the Effect of Non-Point Source Pollution on Water Quality in the Upper Reaches of the Lijiang River. Water 2022, 14, 3995. [Google Scholar] [CrossRef]
- Khare, Y.P.; Paudel, R.; Wiederholt, R.; Abiy, A.Z.; Van Lent, T.; Davis, S.E.; Her, Y. Watershed Response to Legacy Phosphorus and Best Management Practices in an Impacted Agricultural Watershed in Florida, U.S.A. Land 2021, 10, 977. [Google Scholar] [CrossRef]
- FAO; ITPS. The Status of the World’s Soil Resources (Main Report); FAO: Rome, Italy, 2015. [Google Scholar]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidane, M.; Bezie, A.; Kesete, N.; Tolessa, T. The impact of land use and land cover (LULC) dynamics on soil erosion and sediment yield in Ethiopia. Heliyon 2019, 5, e02981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.J.; Hu, M.P.; Guo, Y.; Dahlgren, R.A. Influence of legacy phosphorus, land use and climate change on anthropogenic phosphorus inputs and riverine export dynamics. Biogeochemistry 2015, 123, 99–116. [Google Scholar] [CrossRef]
- Haygarth, P.M.; Jarvie, H.P.; Powers, S.M.; Sharpley, A.N.; Elser, J.J.; Shen, J.B.; Peterson, H.M.; Chan, N.I.; Howden, N.J.K.; Burt, T.; et al. Sustainable Phosphorus Management and the Need for a Long-Term Perspective: The Legacy Hypothesis. Environ. Sci. Technol. 2014, 48, 8417–8419. [Google Scholar] [CrossRef]
- Venishetty, V.; Parajuli, P.B. Assessment of BMPs by Estimating Hydrologic and Water Quality Outputs Using SWAT in Yazoo River Watershed. Agriculture 2022, 12, 477. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Yohannes, F. Testing and evaluation of the agricultural non-point source pollution model (AGNPS) on Augucho catchment, western Hararghe, Ethiopia. Agric. Ecosyst. Environ. 2003, 99, 201–212. [Google Scholar] [CrossRef]
- Gayathri, A.; Vadivel, A.; Santhi, R.; Boopathi, P.M.; Natesan, R. Soil Test Based Fertilizer Recommendation Under Integrated Plant Nutrition System for Potato (Solanum Tuberosum. L) in Hilly Tracts of Nilgiris District. Indian J. Agr. Res. 2009, 43, 52–56. [Google Scholar]
- STCR–IPNS Technology for Various Crops and Soils of Tamil Nadu. Available online: https://tnau.ac.in/nrmgt/dept-of-soil-science-and-agricultural-chemistry-technologies-developed (accessed on 12 December 2022).
- Kasthuri Thilagam, V.; Natesan, R. Fertilizer prescription equations for desired yield targets of cauliflower under integrated plant nutrient system based on targeted yield model. Agric. Sci. Digest 2009, 29, 250–253. [Google Scholar]
- Gravelle, J.A.; Ice, G.; Link, T.E.; Cook, D.L. Nutrient concentration dynamics in an inland Pacific Northwest watershed before and after timber harvest. For. Ecol. Manag. 2009, 257, 1663–1675. [Google Scholar] [CrossRef]
- Yusof, F.M.; Jamil, N.R.; Aini, N.; Manaf, L.A. Land use change and soil loss risk assessment by using geographical information system (GIS): A case study of lower part of Perak River. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Ancona, Italy, 1–2 October 2018; IOP Publishing LTD: Bristol, UK, 2019. [Google Scholar]
- Patric, J.H. Soil erosion in the eastern forest. J. For. 1976, 74, 671–677. [Google Scholar]
- Rai, S.C.; Sharma, E. Comparative assessment of runoff characteristics under different land-use pattern within a Himalayan watershed. Hydrol. Process 1998, 12, 2235–2248. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, L.D.; Sun, R.H. Modeling the non-point source pollution risks by combing pollutant sources, precipitation, and landscape structure. Environ. Sci. Pollut. Res. 2019, 26, 11856–11863. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Jacinth, J.J.; Singh, L.; Saranya, T.; Sivaranjani, S. Impact of land-use change on soil erosion in the Coonoor Watershed, Nilgiris Mountain Range, Tamil Nadu, India. In Proceedings of the 1st Springer Conference Arabian Journal of Geosciences, Hammamet, Tunisia, 12–15 November 2018; pp. 109–111. [Google Scholar]
- Olaoye, I.A.; Confesor, R.B., Jr.; Ortiz, J.D. Impact of Agricultural Practices on Water Quality of Old Woman Creek Watershed, Ohio. Agriculture 2021, 11, 426. [Google Scholar] [CrossRef]
- Shrestha, S.; Babel, M.S.; Gupta, A.D.; Kazama, F. Evaluation of annualized agricultural non-point source model for a watershed in the Siwalik Hills of Nepal. Environ. Model. Softw. 2006, 21, 961–975. [Google Scholar] [CrossRef]
Process | Accuracy tested | Runoff | Soil loss |
---|---|---|---|
Calibration | R2 | 0.94 | 0.93 |
NSE | 0.73 | 0.79 | |
Validation | R2 | 0.89 | 0.87 |
NSE | 0.75 | 0.72 |
Date | Rainfall (mm) | Runoff (mm) | Soil Loss (tha−1) | ||
---|---|---|---|---|---|
Measured | Predicted | Measured | Predicted | ||
20 June 2003 | 17.8 | 6.6 | 7.8 | 2.2 | 2.9 |
20 June 2003 | 24.2 | 10.4 | 13.5 | 4.8 | 7.2 |
4 July 2003 | 10.4 | 3.5 | 3 | 2.1 | 1.7 |
5 July 2003 | 12.4 | 3.8 | 4.6 | 3.3 | 4.3 |
16 July 2003 | 10.9 | 2.9 | 2.4 | 1.5 | 1.1 |
17 July 2003 | 10.8 | 2.5 | 1.8 | 0.4 | 0.3 |
31 July 2003 | 15.8 | 4.6 | 5.6 | 1.5 | 1.8 |
12 August 2003 | 17.6 | 2.6 | 2.1 | 0.8 | 0.9 |
23 August 2003 | 11.7 | 2.9 | 2.4 | 0.9 | 1.1 |
Sum | 39.8 | 43.2 | 17.5 | 21.3 | |
Mean | 4.4 | 4.8 | 1.9 | 2.4 |
Date | Rainfall (mm) | Nitrogen (kg ha−1) | Phosphorus (kg ha−1) |
---|---|---|---|
8 May 2017 | 35.8 | 16.30 | 4.2 |
13 May 2017 | 10.4 | 7.65 | 1.2 |
28 June 2017 | 11.2 | 8.00 | 1.3 |
19 August 2017 | 15.8 | 7.90 | 1.6 |
21 August 2017 | 8.9 | 2.50 | 2.0 |
29 August 2017 | 14.9 | 3.65 | 4.0 |
3 September 2017 | 81.0 | 22.80 | 5.0 |
5 September 2017 | 13.4 | 10.35 | 2.4 |
9 September 2017 | 24.3 | 11.25 | 2.0 |
11 September 2017 | 39.4 | 16.40 | 4.2 |
15 September 2017 | 11.8 | 10.05 | 2.0 |
17 September 2017 | 25.8 | 10.15 | 2.0 |
18 September 2017 | 34.6 | 11.05 | 3.8 |
26 September 2017 | 15.4 | 9.15 | 2.0 |
2 October 2017 | 23.2 | 7.80 | 1.8 |
Rainfall mm | Soil Loss (t ha−1) | Nitrogen Load (kg ha−1) | Phosphorus Load (kg ha−1) | |||
---|---|---|---|---|---|---|
Farmers Practice | Scenario 3 | Farmers Practice | Scenario 3 | Farmers Practice | Scenario 3 | |
35.8 | 5.37 | 4.73 | 16.30 | 7.66 | 4.2 | 2.0 |
10.4 | 1.04 | 0.92 | 7.65 | 3.60 | 1.2 | 0.4 |
11.2 | 1.01 | 0.89 | 8.00 | 3.76 | 1.3 | 0.6 |
15.8 | 3.32 | 2.92 | 8.10 | 3.71 | 1.6 | 0.6 |
8.9 | 1.96 | 1.72 | 2.70 | 0.50 | 2.0 | 1.2 |
14.9 | 3.73 | 3.28 | 4.68 | 1.72 | 4.0 | 2.8 |
81 | 8.23 | 7.38 | 22.80 | 10.71 | 5.0 | 3.4 |
13.4 | 3.35 | 2.95 | 10.35 | 4.86 | 2.4 | 1.2 |
24.3 | 4.13 | 3.63 | 11.28 | 5.29 | 2.0 | 1.0 |
39.4 | 7.5 | 6.6 | 16.40 | 7.70 | 4.2 | 2.0 |
11.8 | 2.48 | 2.18 | 10.05 | 4.72 | 2.0 | 1.0 |
25.8 | 5.42 | 4.77 | 10.15 | 4.77 | 2.0 | 1.0 |
34.6 | 6.61 | 6.7 | 11.09 | 5.19 | 3.8 | 2.8 |
15.4 | 2.31 | 2.03 | 9.10 | 4.30 | 2.0 | 1.0 |
23.2 | 3.75 | 3.3 | 7.80 | 3.67 | 1.8 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasthuri Thilagam, V.; Manivannan, S.; Khola, O.P.S. Deriving Land Management Practices for Reduced Nutrient Movement from an Agricultural Watershed Using the AGNPS Model. Sustainability 2023, 15, 4001. https://doi.org/10.3390/su15054001
Kasthuri Thilagam V, Manivannan S, Khola OPS. Deriving Land Management Practices for Reduced Nutrient Movement from an Agricultural Watershed Using the AGNPS Model. Sustainability. 2023; 15(5):4001. https://doi.org/10.3390/su15054001
Chicago/Turabian StyleKasthuri Thilagam, Venkatachalam, Sandrasekaran Manivannan, and Om Pal Singh Khola. 2023. "Deriving Land Management Practices for Reduced Nutrient Movement from an Agricultural Watershed Using the AGNPS Model" Sustainability 15, no. 5: 4001. https://doi.org/10.3390/su15054001
APA StyleKasthuri Thilagam, V., Manivannan, S., & Khola, O. P. S. (2023). Deriving Land Management Practices for Reduced Nutrient Movement from an Agricultural Watershed Using the AGNPS Model. Sustainability, 15(5), 4001. https://doi.org/10.3390/su15054001