The Efficiency of Value-at-Risk Models during Extreme Market Stress in Cryptocurrencies
Abstract
:1. Introduction
2. Literature Review
2.1. Cryptocurrencies’ Risk and VaR Model
2.2. A Cryptocurrency Market Stress
2.3. General Characteristics of Cryptocurrencies Market
2.4. Bitcoin: The New Order of the Financial World
2.5. Ethereum: The Smart Contract Technology Pioneer
2.6. Binance Coin: Funding of The World’s Largest Cryptocurrencies Platform
2.7. Cardano: The World’s First Proof of Stake Protocol
2.8. Ripple: A New Global Decentralized Currency System
3. Data and Methodology
3.1. Descriptive Statistics
3.2. Historical Simulation VaR Model
- = a quantile at α of ;
- = a return of asset i when the time equals t between to .
3.3. Delta Normal VaR Model
- = the average logarithmic historical return given an interval;
- = the standardized score of normal distribution at α;
- = the standard deviation of logarithmic returns of an investment.
3.4. Monte Carlo Simulation VaR Model
3.5. Backtesting Methodology
3.5.1. Kupiec’s POF Test
3.5.2. Kupiec’s TUFF Test
3.5.3. Independence Test
3.5.4. Christoffersen’s Interval Forecast Test
4. Study Results
4.1. HS VaR Model
4.2. DN VaR Model
4.3. MC VaR Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wright, C.S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3440802 (accessed on 14 January 2023).
- Berentsen, A.; Schär, F. A Short Introduction to the World of Cryptocurrencies. FRB St. Louis Work. Rev. 2018, 100, 1–16. [Google Scholar] [CrossRef]
- Baur, D.; Dimpfl, T. Realized Bitcoin Volatility. SSRN Electron. J. 2017, 2949754, 1–26. [Google Scholar] [CrossRef]
- Vojtko, R.; Cisár, D. Bitcoin in a Time of Financial Crisis. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3557575 (accessed on 14 January 2023).
- Baur, D.G.; Hong, K.; Lee, A.D. Bitcoin: Medium of exchange or speculative assets? J. Int. Financ. Mark. Inst. Money 2018, 54, 177–189. [Google Scholar] [CrossRef]
- Berentsen, A.; Schär, F. Stablecoins: The quest for a low-volatility cryptocurrency. In The Economics of Fintech and Digital Currencies; CEPR Press: London, UK, 2019; pp. 65–75. [Google Scholar]
- Chohan, U.W. Are stable coins stable? Notes on the 21st Century (CBRi). 2019. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3326823 (accessed on 14 January 2023).
- Lyons, R.K.; Viswanath-Natraj, G. What Keeps Stablecoins Stable? J. Int. Money Financ. 2020, 131, 102777. [Google Scholar] [CrossRef]
- Mazur, M.; Dang, M.; Vega, M. COVID-19 and the march 2020 stock market crash. Evidence from S&P1500. Financ. Res. Lett. 2021, 38, 101690. [Google Scholar] [PubMed]
- Ozili, P.K.; Arun, T. Spillover of COVID-19: Impact on the Global Economy. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3562570 (accessed on 14 January 2023).
- Açikgöz, Ö.; Günay, A. The early impact of the COVID-19 pandemic on the global and Turkish economy. Turk. J. Med. Sci. 2020, 50, 520–526. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7195973/pdf/turkjmedsci-50-520.pdf (accessed on 14 January 2023). [CrossRef]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Ramelli, S.; Wagner, A.F. Feverish stock price reactions to COVID-19. Rev. Corp. Financ. Stud. 2020, 9, 622–655. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Davis, S.J.; Kost, K.; Sammon, M.; Viratyosin, T. The Unprecedented Stock Market Reaction to COVID-19. Rev. Asset Pricing Stud. 2020, 10, 742–758. [Google Scholar] [CrossRef]
- French, J.J. #Bitcoin, #COVID-19: Twitter-Based Uncertainty and Bitcoin Before and during the Pandemic. Int. J. Financ. Stud. 2021, 9, 28. [Google Scholar] [CrossRef]
- Béjaoui, A.; Mgadmi, N.; Moussa, W.; Sadraoui, T. A short-and long-term analysis of the nexus between Bitcoin, social media and Covid-19 outbreak. Heliyon 2021, 7, e07539. [Google Scholar] [CrossRef]
- Lahmiri, S.; Bekiros, S. The impact of COVID-19 pandemic upon stability and sequential irregularity of equity and cryptocurrency markets. Chaos Solitons Fractals 2020, 138, 109936. [Google Scholar] [CrossRef] [PubMed]
- Le, T.H. Quantile time-frequency connectedness between cryptocurrency volatility and renewable energy volatility during the COVID-19 pandemic and Ukraine-Russia conflicts. Renew. Energy 2023, 202, 613–625. [Google Scholar] [CrossRef]
- Khalfaoui, R.; Gozgor, G.; Goodell, J.W. Impact of Russia-Ukraine war attention on cryptocurrency: Evidence from quantile dependence analysis. Financ. Res. Lett. 2022, 103365. [Google Scholar] [CrossRef]
- Federal Reserve System. Policy Tools. 2023. Available online: https://www.federalreserve.gov/monetarypolicy/openmarket.htm (accessed on 4 February 2023).
- Aboura, S. A note on the Bitcoin and Fed Funds rate. Empir. Econ. 2022, 63, 2577–2603. [Google Scholar] [CrossRef] [PubMed]
- Jarboui, A.; Mnif, E. Cryptocurrency bubble risk and the FOMC announcements during COVID-19 black swan event. J. Invest. Compliance 2021, 22, 95–108. [Google Scholar] [CrossRef]
- Yu, C.; Chen, Y. The impact of regulatory ban on connectedness of cryptocurrency market. Appl. Econ. Lett. 2022, 1–7. [Google Scholar] [CrossRef]
- Bazán-Palomino, W. Interdependence, contagion and speculative bubbles in cryptocurrency markets. Financ. Res. Lett. 2022, 49, 103132. [Google Scholar] [CrossRef]
- Naeem, M.A.; Lucey, B.M.; Karim, S.; Ghafoor, A. Do financial volatilities mitigate the risk of cryptocurrency indexes? Financ. Res. Lett. 2022, 50, 103206. [Google Scholar] [CrossRef]
- Taskinsoy, J. The Famous New Bubbles of the 21st Century: Cases of Irrational Exuberance. 2021. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3845422 (accessed on 14 January 2023).
- Haykir, O.; Yagli, I. Speculative bubbles and herding in cryptocurrencies. Financ. Innov. 2022, 8, 78. [Google Scholar] [CrossRef]
- Adamko, P.; Spuchľáková, E.; Valášková, K. The history and ideas behind VaR. Procedia Econ. Financ. 2015, 24, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Holton, G.A. History of Value-at-Risk: 1922–1998. 2002. Available online: https://EconPapers.repec.org/RePEc:wpa:wuwpmh:0207001 (accessed on 14 January 2023).
- Likitratcharoen, D.; Ranong, T.N.; Chuensuksomboon, R.; Sritanee, N.; Pansriwong, A. Value at Risk Performance in Cryptocurrencies. J. Risk Manag. Insur. 2018, 22, 11–28. [Google Scholar]
- Likitratcharoen, D.; Kronprasert, N.; Wiwattanalamphong, K.; Pinmanee, C. The Accuracy of Risk Measurement Models on Bitcoin Market during COVID-19 Pandemic. Risks 2021, 9, 222. [Google Scholar] [CrossRef]
- Okorie, D.I.; Lin, B. Stock markets and the COVID-19 fractal contagion effects. Financ. Res. Lett. 2021, 38, 101640. [Google Scholar] [CrossRef] [PubMed]
- Drożdż, S.; Kwapień, J.; Oświęcimka, P.; Stanisz, T.; Wątorek, M. Complexity in Economic and Social Systems: Cryptocurrency Market at around COVID-19. Entropy 2020, 22, 1043. [Google Scholar] [CrossRef] [PubMed]
- Mavani, M.P. The Value at Risk Models in Times of Financial Crisis: Case Study of an Irish Equity Portfolio. Master’s Thesis, National College of Ireland, Dublin, Ireland, 2020. [Google Scholar]
- Kourouma, L.; Dupre, D.; Sanfilippo, G.; Taramasco, O. Extreme value at risk and expected shortfall during financial crisis. 2010. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1744091 (accessed on 14 January 2023).
- Jorion, P. Value at Risk: The New Benchmark for Managing Financial Risk; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Iqbal, N.; Fareed, Z.; Wan, G.; Shahzad, F. Asymmetric nexus between COVID-19 outbreak in the world and cryptocurrency market. Int. Rev. Financ. Anal. 2021, 73, 101613. [Google Scholar] [CrossRef]
- Akyildirim, E.; Corbet, S.; Lucey, B.; Sensoy, A.; Yarovaya, L. The relationship between implied volatility and cryptocurrency returns. Financ. Res. Lett. 2020, 33, 101212. [Google Scholar] [CrossRef]
- Özdemir, O. Cue the volatility spillover in the cryptocurrency markets during the COVID-19 pandemic: Evidence from DCC-GARCH and wavelet analysis. Financ. Innov. 2022, 8, 12. [Google Scholar] [CrossRef]
- Doumenis, Y.; Izadi, J.; Dhamdhere, P.; Katsikas, E.; Koufopoulos, D. A critical analysis of volatility surprise in Bitcoin cryptocurrency and other financial assets. Risks 2021, 9, 207. [Google Scholar] [CrossRef]
- Haq, I.U.; Maneengam, A.; Chupradit, S.; Suksatan, W.; Huo, C. Economic Policy Uncertainty and Cryptocurrency Market as a Risk Management Avenue: A Systematic Review. Risks 2021, 9, 163. [Google Scholar] [CrossRef]
- Vukovic, D.; Maiti, M.; Grubisic, Z.; Grigorieva, E.M.; Frömmel, M. COVID-19 Pandemic: Is the Crypto Market a Safe Haven? The Impact of the First Wave. Sustainability 2021, 13, 8578. [Google Scholar] [CrossRef]
- Conlon, T.; Corbet, S.; McGee, R.J. Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic. Res. Int. Bus. Financ. 2020, 54, 101248. [Google Scholar] [CrossRef] [PubMed]
- Conlon, T.; McGee, R. Safe haven or risky hazard? Bitcoin during the Covid-19 bear market. Financ. Res. Lett. 2020, 35, 101607. [Google Scholar] [CrossRef]
- Beneki, C.; Koulis, A.; Kyriazis, N.A.; Papadamou, S. Investigating volatility transmission and hedging properties between Bitcoin and Ethereum. Res. Int. Bus. Financ. 2019, 48, 219–227. [Google Scholar] [CrossRef]
- Mnif, E.; Jarboui, A.; Mouakhar, K. How the cryptocurrency market has performed during COVID-19? A multifractal analysis. Financ. Res. Lett. 2020, 36, 101647. [Google Scholar] [CrossRef] [PubMed]
- Theiri, S.; Nekhili, R.; Sultan, J. Cryptocurrency liquidity during the Russia–Ukraine war: The case of Bitcoin and Ethereum. J. Risk Financ. 2022. Epub ahead of printing. [Google Scholar] [CrossRef]
- Appiah-Otoo, I. The Impact of the Russia-Ukraine War on the Cryptocurrency Market. Asian Econ. Lett. 2023, 4. [Google Scholar] [CrossRef]
- Cheng, H.-P.; Yen, K.-C. The relationship between the economic policy uncertainty and the cryptocurrency market. Financ. Res. Lett. 2020, 35, 101308. [Google Scholar] [CrossRef]
- Nguyen, T.V.H.; Nguyen, B.T.; Nguyen, K.S.; Pham, H. Asymmetric monetary policy effects on cryptocurrency markets. Res. Int. Bus. Financ. 2019, 48, 335–339. [Google Scholar] [CrossRef]
- Mužić, I.; Gržeta, I. Expectations of macroeconomic news announcements: Bitcoin vs. Traditional assets. Risks 2022, 10, 123. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Lee, Y. Dissecting the Terra-LUNA crash: Evidence from the spillover effect and information flow. Financ. Res. Lett. 2022, 103590. [Google Scholar] [CrossRef]
- Peetz, D.; Mall, G. Why Bitcoin is not a currency but a speculative real asset. 2017, pp. 1–8. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3098765 (accessed on 14 January 2023).
- Milutinović, M.; Cryptocurrency. Екoнoмика-Часoпис за екoнoмску теoрију и праксу и друштвена питања; 2018; pp. 105–122. Available online: https://www.ceeol.com/search/article-detail?id=695295 (accessed on 14 January 2023).
- Peng, C.; Yichao, G. Cryptocurrency Price Analysis and Time Series Forecasting. 2020. Available online: https://wiki.smu.edu.sg/1920t2isss608/img_auth.php/2/20/Report_G7_Cryptocurrency.pdf (accessed on 14 January 2023).
- Rudolf, K.O.; Ajour El Zein, S.; Lansdowne, N.J. Bitcoin as an Investment and Hedge Alternative. A DCC MGARCH Model Analysis. Risks 2021, 9, 154. [Google Scholar] [CrossRef]
- Alshamsi, A.; Andras, P.P. User perception of Bitcoin usability and security across novice users. Int. J. Hum.-Comput. Stud. 2019, 126, 94–110. [Google Scholar] [CrossRef]
- Bouri, E.; Shahzad, S.J.H.; Roubaud, D.; Kristoufek, L.; Lucey, B. Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis. Q. Rev. Econ. Financ. 2020, 77, 156–164. [Google Scholar] [CrossRef]
- Bouri, E.; Gupta, R.; Tiwari, A.K.; Roubaud, D. Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions. Financ. Res. Lett. 2017, 23, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Fang, T.; Su, Z.; Yin, L. Economic fundamentals or investor perceptions? The role of uncertainty in predicting long-term cryptocurrency volatility. Int. Rev. Financ. Anal. 2020, 71, 101566. [Google Scholar] [CrossRef]
- Burnie, A. Exploring the interconnectedness of cryptocurrencies using correlation networks. arXiv 2018, arXiv:1806.06632. [Google Scholar]
- Cheah, E.-T.; Fry, J. Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin. Econ. Lett. 2015, 130, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Latif, S.R.; Mohd, M.A.; Amin, M.N.M.; Mohamad, A.I. Testing the Weak Form of Efficient Market in Cryptocurrency. J. Eng. Appl. Sci. 2017, 12, 22285–22288. [Google Scholar]
- Agosto, A.; Cafferata, A. Financial Bubbles: A Study of Co-Explosivity in the Cryptocurrency Market. Risks 2020, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Almeida, J.; Gonçalves, T.C. A systematic literature review of volatility and risk management on cryptocurrency investment: A methodological point of view. Risks 2022, 10, 107. [Google Scholar] [CrossRef]
- Jiang, Z.; Mensi, W.; Yoon, S.-M. Risks in Major Cryptocurrency Markets: Modeling the Dual Long Memory Property and Structural Breaks. Sustainability 2023, 15, 2193. [Google Scholar] [CrossRef]
- Liu, Y.; Tsyvinski, A. Risks and returns of cryptocurrency. Rev. Financ. Stud. 2021, 34, 2689–2727. [Google Scholar] [CrossRef]
- Dey, A.K.; Akcora, C.G.; Gel, Y.R.; Kantarcioglu, M. On the role of local blockchain network features in cryptocurrency price formation. Can. J. Stat. 2020, 48, 561–581. [Google Scholar] [CrossRef]
- Bianchi, D. Cryptocurrencies as an asset class? An empirical assessment. J. Altern. Invest. 2020, 23, 162–179. [Google Scholar] [CrossRef]
- Ciaian, P.; Rajcaniova, M.; Kancs, d.A. The economics of BitCoin price formation. Appl. Econ. 2016, 48, 1799–1815. [Google Scholar] [CrossRef] [Green Version]
- Hayes, A.S. Cryptocurrency value formation: An empirical study leading to a cost of production model for valuing bitcoin. Telemat. Inform. 2017, 34, 1308–1321. [Google Scholar] [CrossRef]
- Vujičić, D.; Jagodić, D.; Ranđić, S. Blockchain technology, bitcoin, and Ethereum: A brief overview. In Proceedings of the 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 21–23 March 2018. [Google Scholar]
- Park, D.; Zhang, Y.; Rosu, G. End-to-End Formal Verification of Ethereum 2.0 Deposit Smart Contract. In Proceedings of the Computer Aided Verification, Los Angeles, CA, USA, 19–24 July 2020. [Google Scholar]
- Bogner, A.; Chanson, M.; Meeuw, A. A Decentralised Sharing App running a Smart Contract on the Ethereum Blockchain. In Proceedings of the 6th International Conference on the Internet of Things, Stuttgart, Germany, 7–9 November 2016. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, S.; D’Angelo, G. On the ethereum blockchain structure: A complex networks theory perspective. Concurr. Comput. Pract. Exp. 2020, 32, e5493. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, R.; Wang, Q.; Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv 2021, arXiv:2105.07447. [Google Scholar]
- Ante, L. Non-fungible token (NFT) markets on the Ethereum blockchain: Temporal development, cointegration and interrelations. Available at SSRN 3904683. 2021. Available online: http://dx.doi.org/10.2139/ssrn.3904683 (accessed on 14 January 2023). [CrossRef]
- Buterin, V. Ethereum White Paper: A Next Generation Smart Contract Decentralized Application Platform. 2014. Available online: https://finpedia.vn/wp-content/uploads/2022/02/Ethereum_white_paper-a_next_generation_smart_contract_and_decentral-ized_application_platform-vitalik-buterin.pdf (accessed on 14 January 2023).
- Binance Exchange. Binance Whitepaper V1.1. 2018. Available online: https://whitepaper.io/document/10/binance-whitepaper (accessed on 14 January 2023).
- Sun, T.; Yu, W. A Formal Verification Framework for Security Issues of Blockchain Smart Contracts. Electronics 2020, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Alt, R. Electronic Markets on blockchain markets. Electron. Mark. 2020, 30, 181–188. [Google Scholar] [CrossRef]
- King, S.; Nadal, S. Ppcoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake. Self-Published Paper, 19 August 2012. Available online: https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf (accessed on 14 January 2023).
- Kiayias, A.; Russell, A.; David, B.; Oliynykov, R. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. Paper presented at the Advances in Cryptology—CRYPTO 2017, Santa Barbara, CA, USA, 20–24 August 2017. [Google Scholar]
- Hoskinson, C. Why We Are Building Cardano; IOHK: Cheyenne, WY, USA, 2017. [Google Scholar]
- Armknecht, F.; Karame, G.O.; Mandal, A.; Youssef, F.; Zenner, E. Ripple: Overview and outlook. In Proceedings of the Trust and Trustworthy Computing, Heraklion, Greece, 24–26 August 2015. [Google Scholar]
- Jani, S. An Overview of Ripple Technology its Comparison with Bitcoin Technology. Master’s Thesis, Parul University, Gujarat, India, 2018. [Google Scholar]
- Rella, L. Steps towards an ecology of money infrastructures: Materiality and cultures of Ripple. J. Cult. Econ. 2020, 13, 236–249. [Google Scholar] [CrossRef]
- Chase, B.; MacBrough, E. Analysis of the XRP Ledger Consensus Protocol. arXiv 2018, arXiv:abs/1802.07242. [Google Scholar]
- Schwartz, D.; Youngs, N.; Britto, A. The ripple protocol consensus algorithm. Ripple Labs Inc White Pap. 2014, 5, 151. [Google Scholar]
- Bull, A.; Harttraft, T. Cryptocurrency and Blockchain Law: SEC’s Heightened Enforcement against Digital Assets. Rich. JL Tech. 2020, 27, 1. [Google Scholar]
- Karpenko, O.A.; Blokhina, T.K.; Chebukhanova, L.V. The Initial Coin Offering (ICO) Process: Regulation and Risks. J. Risk Financ. Manag. 2021, 14, 599. [Google Scholar] [CrossRef]
- Pritsker, M. The hidden dangers of historical simulation. J. Bank. Financ. 2006, 30, 561–582. [Google Scholar] [CrossRef] [Green Version]
- Linsmeier, T.J.; Pearson, N.D. Value at Risk. Financ. Anal. J. 2000, 56, 47–67. [Google Scholar] [CrossRef]
- Jorion, P. Financial Risk Manager Handbook Plus Test Bank: FRM Part I/Part II, 6th ed.; John Wiley Sons, Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Hull, J.; White, A. The pricing of options on assets with stochastic volatilities. J. Financ. 1987, 42, 281–300. [Google Scholar] [CrossRef]
- Cox, J.C.; Ingersoll, J.E.; Ross, S.A. A Theory of the Term Structure of Interest Rates. Econometrica 1985, 53, 385–407. [Google Scholar] [CrossRef]
- Heston, S.L. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. Rev. Financ. Stud. 1993, 6, 327–343. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Nadarajah, S. A review of backtesting for value at risk. Commun. Stat. -Theory Methods 2018, 47, 3616–3639. [Google Scholar] [CrossRef] [Green Version]
- Christoffersen, P.F. Evaluating interval forecasts. Int. Econ. Rev. 1998, 39, 841–862. [Google Scholar] [CrossRef]
- Halilbegovic, S.; Vehabovic, M. Backtesting Value at Risk Forecast: The Case of Kupiec Pof-Test. Eur. J. Econ. Stud. 2016, 3, 393–404. [Google Scholar]
- Halilbegovic, S.; Celebic, N.; Arapovic, A.; Vehabovic, M. Back-testing the Effectiveness of Value at Risk Model. Rev. Romana De Econ. 2019, 48. Available online: http://revecon.ro/articles/2019-1/2019-1-1.pdf (accessed on 4 February 2023).
- Haas, M. New Methods in Backtesting; Research Center Caesar: Bonn, Germany, 2001. [Google Scholar]
- Dimopoulou, D. Backtesting Different Models of Value-at-Risk. Master’s Thesis, Athens University of Economics and Business, Athens, Greece, 2017. [Google Scholar]
Descriptive Statistics | BTC | ETH | BNB | ADA | XRP |
---|---|---|---|---|---|
Mean | 0.10% | 0.22% | 0.31% | 0.22% | 0.08% |
SD | 3.61% | 5.11% | 6.27% | 6.27% | 6.21% |
Skewness | −0.22 | −0.38 | 0.83 | 0.27 | 0.07 |
Kurtosis | 2.91 | 3.54 | 16.4 | 2.64 | 14.18 |
Jarque-Bera Test | 800.46 | 771 | 30,545 | 597.35 | 33,330 |
Kupiec’s POF Test | ||||||||
---|---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Expected Number of Exceptions | Realized Number of Exceptions | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | ||||||
Bitcoin (BTC) | 1000 | 99% | 10 | 14 | 1.4374 | Accept | Accept | Accept |
1000 | 95% | 50 | 51 | 0.0209 | Accept | Accept | Accept | |
1000 | 90% | 100 | 100 | 0.0000 | Accept | Accept | Accept | |
Ethereum (ETH) | 1000 | 99% | 10 | 12 | 0.3798 | Accept | Accept | Accept |
1000 | 95% | 50 | 52 | 0.0832 | Accept | Accept | Accept | |
1000 | 90% | 100 | 106 | 0.3931 | Accept | Accept | Accept | |
Binance Coin (BNB) | 1000 | 99% | 10 | 11 | 0.0978 | Accept | Accept | Accept |
1000 | 95% | 50 | 45 | 0.5438 | Accept | Accept | Accept | |
1000 | 90% | 100 | 96 | 0.1799 | Accept | Accept | Accept | |
Cardano (ADA) | 1000 | 99% | 10 | 15 | 2.1892 | Accept | Accept | Accept |
1000 | 95% | 50 | 52 | 0.0832 | Accept | Accept | Accept | |
1000 | 90% | 100 | 104 | 0.1757 | Accept | Accept | Accept | |
Ripple (XRP) | 1000 | 99% | 10 | 14 | 1.4374 | Accept | Accept | Accept |
1000 | 95% | 50 | 51 | 0.0209 | Accept | Accept | Accept | |
1000 | 90% | 100 | 106 | 0.3931 | Accept | Accept | Accept |
Kupiec’s TUFF Test | |||||||
---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Time Until First Failure | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | |||||
Bitcoin (BTC) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 46 | 0.9725 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept | |
Ethereum (ETH) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 9 | 0.5332 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept | |
Binance Coin (BNB) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 9 | 0.5332 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept | |
Cardano (ADA) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 9 | 0.5332 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept | |
Ripple (XRP) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 46 | 0.9725 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept |
Independence Test | |||||||
---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Realized Number of Exceptions | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | |||||
Bitcoin (BTC) | 1000 | 99% | 14 | 1.7458 | Accept | Accept | Accept |
1000 | 95% | 51 | 0.7259 | Accept | Accept | Accept | |
1000 | 90% | 100 | 0.0000 | Accept | Accept | Accept | |
Ethereum (ETH) | 1000 | 99% | 12 | 2.2896 | Accept | Accept | Accept |
1000 | 95% | 52 | 0.6082 | Accept | Accept | Accept | |
1000 | 90% | 106 | 0.7956 | Accept | Accept | Accept | |
Binance Coin (BNB) | 1000 | 99% | 11 | 0.2449 | Accept | Accept | Accept |
1000 | 95% | 45 | 0.0004 | Accept | Accept | Accept | |
1000 | 90% | 96 | 0.3984 | Accept | Accept | Accept | |
Cardano (ADA) | 1000 | 99% | 15 | 0.4573 | Accept | Accept | Accept |
1000 | 95% | 52 | 0.0343 | Accept | Accept | Accept | |
1000 | 90% | 104 | 0.1541 | Accept | Accept | Accept | |
Ripple (XRP) | 1000 | 99% | 14 | 6.1763 | Accept | Reject | Reject |
1000 | 95% | 51 | 14.5673 | Reject | Reject | Reject | |
1000 | 90% | 106 | 4.4666 | Accept | Reject | Reject |
Christoffersen’s Interval Forecast Test | ||||||||
---|---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Test Statistics | Test Statistics | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | ||||||
Bitcoin (BTC) | 1000 | 99% | 1.4374 | 1.7458 | 3.1832 | Accept | Accept | Accept |
1000 | 95% | 0.0209 | 0.7259 | 0.7468 | Accept | Accept | Accept | |
1000 | 90% | 0.0000 | 0.0000 | 0.0000 | Accept | Accept | Accept | |
Ethereum (ETH) | 1000 | 99% | 0.3798 | 2.2896 | 2.6693 | Accept | Accept | Accept |
1000 | 95% | 0.0832 | 0.6082 | 0.6914 | Accept | Accept | Accept | |
1000 | 90% | 0.3931 | 0.7956 | 1.1887 | Accept | Accept | Accept | |
Binance Coin (BNB) | 1000 | 99% | 0.0978 | 0.2449 | 0.3428 | Accept | Accept | Accept |
1000 | 95% | 0.5438 | 0.0004 | 0.5442 | Accept | Accept | Accept | |
1000 | 90% | 0.1799 | 0.3984 | 0.5783 | Accept | Accept | Accept | |
Cardano (ADA) | 1000 | 99% | 2.1892 | 0.4573 | 2.6466 | Accept | Accept | Accept |
1000 | 95% | 0.0832 | 0.0343 | 0.1175 | Accept | Accept | Accept | |
1000 | 90% | 0.1757 | 0.1541 | 0.3299 | Accept | Accept | Accept | |
Ripple (XRP) | 1000 | 99% | 1.4374 | 6.1763 | 7.6137 | Accept | Reject | Reject |
1000 | 95% | 0.0209 | 14.5673 | 14.5882 | Reject | Reject | Reject | |
1000 | 90% | 0.3931 | 4.4666 | 4.8597 | Accept | Accept | Reject |
Kupiec’s POF Test | ||||||||
---|---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Expected Number of Exceptions | Realized Number of Exceptions | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | ||||||
Bitcoin (BTC) | 1000 | 99% | 10 | 17 | 4.0910 | Accept | Reject | Reject |
1000 | 95% | 50 | 46 | 0.3457 | Accept | Accept | Accept | |
1000 | 90% | 100 | 71 | 10.2909 | Reject | Reject | Reject | |
Ethereum (ETH) | 1000 | 99% | 10 | 19 | 6.4725 | Accept | Reject | Reject |
1000 | 95% | 50 | 38 | 3.2937 | Accept | Accept | Reject | |
1000 | 90% | 100 | 74 | 8.1804 | Reject | Reject | Reject | |
Binance Coin (BNB) | 1000 | 99% | 10 | 14 | 1.4374 | Accept | Accept | Accept |
1000 | 95% | 50 | 27 | 13.2784 | Reject | Reject | Reject | |
1000 | 90% | 100 | 49 | 34.9286 | Reject | Reject | Reject | |
Cardano (ADA) | 1000 | 99% | 10 | 14 | 1.4374 | Accept | Accept | Accept |
1000 | 95% | 50 | 36 | 4.5530 | Accept | Reject | Reject | |
1000 | 90% | 100 | 75 | 7.5358 | Reject | Reject | Reject | |
Ripple (XRP) | 1000 | 99% | 10 | 16 | 3.0766 | Accept | Accept | Reject |
1000 | 95% | 50 | 31 | 8.7393 | Reject | Reject | Reject | |
1000 | 90% | 100 | 59 | 21.5794 | Reject | Reject | Reject |
Kupiec’s TUFF Test | |||||||
---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Time Until First Failure | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | |||||
Bitcoin (BTC) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 46 | 0.9725 | Accept | Accept | Accept | |
1000 | 90% | 46 | 4.4522 | Accept | Reject | Reject | |
Ethereum (ETH) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 9 | 0.5332 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept | |
Binance Coin (BNB) | 1000 | 99% | 9 | 3.0922 | Accept | Accept | Reject |
1000 | 95% | 9 | 0.5332 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept | |
Cardano (ADA) | 1000 | 99% | 9 | 3.0922 | Accept | Accept | Reject |
1000 | 95% | 9 | 0.5332 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept | |
Ripple (XRP) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 46 | 0.9725 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept |
Independence Test | |||||||
---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Realized Number of Exceptions | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | |||||
Bitcoin (BTC) | 1000 | 99% | 17 | 1.1211 | Accept | Accept | Accept |
1000 | 95% | 46 | 0.7931 | Accept | Accept | Accept | |
1000 | 90% | 71 | 0.1987 | Accept | Accept | Accept | |
Ethereum (ETH) | 1000 | 99% | 19 | 0.8032 | Accept | Accept | Accept |
1000 | 95% | 38 | 0.2071 | Accept | Accept | Accept | |
1000 | 90% | 74 | 0.0506 | Accept | Accept | Accept | |
Binance Coin (BNB) | 1000 | 99% | 14 | 0.3980 | Accept | Accept | Accept |
1000 | 95% | 27 | 1.5002 | Accept | Accept | Accept | |
1000 | 90% | 49 | 0.0790 | Accept | Accept | Accept | |
Cardano (ADA) | 1000 | 99% | 14 | 0.3980 | Accept | Accept | Accept |
1000 | 95% | 36 | 2.6922 | Accept | Accept | Accept | |
1000 | 90% | 75 | 1.0511 | Accept | Accept | Accept | |
Ripple (XRP) | 1000 | 99% | 16 | 5.1359 | Accept | Reject | Reject |
1000 | 95% | 31 | 9.5613 | Reject | Reject | Reject | |
1000 | 90% | 59 | 3.2041 | Accept | Accept | Reject |
Christoffersen’s Interval Forecast Test | ||||||||
---|---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Test Statistics | Test Statistics | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | ||||||
Bitcoin (BTC) | 1000 | 99% | 4.0910 | 1.1211 | 5.2121 | Accept | Accept | Reject |
1000 | 95% | 0.3457 | 0.7931 | 1.1388 | Accept | Accept | Accept | |
1000 | 90% | 10.2909 | 0.1987 | 10.4897 | Reject | Reject | Reject | |
Ethereum (ETH) | 1000 | 99% | 6.4725 | 0.8032 | 7.2757 | Accept | Reject | Reject |
1000 | 95% | 3.2937 | 0.2071 | 3.5008 | Accept | Accept | Accept | |
1000 | 90% | 8.1804 | 0.0506 | 8.2310 | Accept | Reject | Reject | |
Binance Coin (BNB) | 1000 | 99% | 1.4374 | 0.3980 | 1.8354 | Accept | Accept | Accept |
1000 | 95% | 13.2784 | 1.5002 | 14.7785 | Reject | Reject | Reject | |
1000 | 90% | 34.9286 | 0.0790 | 35.0076 | Reject | Reject | Reject | |
Cardano (ADA) | 1000 | 99% | 1.4374 | 0.3980 | 1.8354 | Accept | Accept | Accept |
1000 | 95% | 4.5530 | 2.6922 | 7.2452 | Accept | Reject | Reject | |
1000 | 90% | 7.5358 | 1.0511 | 8.5869 | Accept | Reject | Reject | |
Ripple (XRP) | 1000 | 99% | 3.0766 | 5.1359 | 8.2125 | Accept | Reject | Reject |
1000 | 95% | 8.7393 | 9.5613 | 18.3006 | Reject | Reject | Reject | |
1000 | 90% | 21.5794 | 3.2041 | 24.7835 | Reject | Reject | Reject |
Kupiec’s POF Test | ||||||||
---|---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Expected Number of Exceptions | Realized Number of Exceptions | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | ||||||
Bitcoin (BTC) | 1000 | 99% | 10 | 17 | 4.0910 | Accept | Reject | Reject |
1000 | 95% | 50 | 46 | 0.3457 | Accept | Accept | Accept | |
1000 | 90% | 100 | 71 | 10.2909 | Reject | Reject | Reject | |
Ethereum (ETH) | 1000 | 99% | 10 | 19 | 6.4725 | Accept | Reject | Reject |
1000 | 95% | 50 | 38 | 3.2937 | Accept | Accept | Reject | |
1000 | 90% | 100 | 74 | 8.1804 | Reject | Reject | Reject | |
Binance Coin (BNB) | 1000 | 99% | 10 | 14 | 1.4374 | Accept | Accept | Accept |
1000 | 95% | 50 | 27 | 13.2784 | Reject | Reject | Reject | |
1000 | 90% | 100 | 49 | 34.9286 | Reject | Reject | Reject | |
Cardano (ADA) | 1000 | 99% | 10 | 13 | 0.8306 | Accept | Accept | Accept |
1000 | 95% | 50 | 36 | 4.5530 | Accept | Reject | Reject | |
1000 | 90% | 100 | 75 | 7.5358 | Reject | Reject | Reject | |
Ripple (XRP) | 1000 | 99% | 10 | 16 | 3.0766 | Accept | Accept | Reject |
1000 | 95% | 50 | 31 | 8.7393 | Reject | Reject | Reject | |
1000 | 90% | 100 | 59 | 21.5794 | Reject | Reject | Reject |
Kupiec’s TUFF Test | |||||||
---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Time Until First Failure | Test Statistics | Test Results | ||
99%Significance | 95%Significance | 90%Significance | |||||
Bitcoin (BTC) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 46 | 0.9725 | Accept | Accept | Accept | |
1000 | 90% | 46 | 4.4522 | Accept | Reject | Reject | |
Ethereum (ETH) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 9 | 0.5332 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept | |
Binance Coin (BNB) | 1000 | 99% | 9 | 3.0922 | Accept | Accept | Reject |
1000 | 95% | 9 | 0.5332 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept | |
Cardano (ADA) | 1000 | 99% | 9 | 3.0922 | Accept | Accept | Reject |
1000 | 95% | 9 | 0.5332 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept | |
Ripple (XRP) | 1000 | 99% | 46 | 0.4795 | Accept | Accept | Accept |
1000 | 95% | 46 | 0.9725 | Accept | Accept | Accept | |
1000 | 90% | 9 | 0.0120 | Accept | Accept | Accept |
Independence Test | |||||||
---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Realized Number of Exceptions | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | |||||
Bitcoin (BTC) | 1000 | 99% | 17 | 1.1211 | Accept | Accept | Accept |
1000 | 95% | 46 | 0.7931 | Accept | Accept | Accept | |
1000 | 90% | 71 | 0.1987 | Accept | Accept | Accept | |
Ethereum (ETH) | 1000 | 99% | 19 | 0.8032 | Accept | Accept | Accept |
1000 | 95% | 38 | 0.2071 | Accept | Accept | Accept | |
1000 | 90% | 74 | 0.0506 | Accept | Accept | Accept | |
Binance Coin (BNB) | 1000 | 99% | 14 | 0.3980 | Accept | Accept | Accept |
1000 | 95% | 27 | 1.5002 | Accept | Accept | Accept | |
1000 | 90% | 49 | 0.0790 | Accept | Accept | Accept | |
Cardano (ADA) | 1000 | 99% | 13 | 0.3428 | Accept | Accept | Accept |
1000 | 95% | 36 | 2.6922 | Accept | Accept | Accept | |
1000 | 90% | 75 | 1.0511 | Accept | Accept | Accept | |
Ripple (XRP) | 1000 | 99% | 16 | 5.1359 | Accept | Reject | Reject |
1000 | 95% | 31 | 9.5613 | Reject | Reject | Reject | |
1000 | 90% | 59 | 3.2041 | Accept | Accept | Reject |
Christoffersen’s Interval Forecast Test | ||||||||
---|---|---|---|---|---|---|---|---|
Cryptocurrency | Numbers of Observations | Confidence Level | Test Statistics | Test Statistics | Test Statistics | Test Results | ||
99% Significance | 95% Significance | 90% Significance | ||||||
Bitcoin (BTC) | 1000 | 99% | 4.0910 | 1.1211 | 5.2121 | Accept | Accept | Reject |
1000 | 95% | 0.3457 | 0.7931 | 1.1388 | Accept | Accept | Accept | |
1000 | 90% | 10.2909 | 0.1987 | 10.4897 | Reject | Reject | Reject | |
Ethereum (ETH) | 1000 | 99% | 6.4725 | 0.8032 | 7.2757 | Accept | Reject | Reject |
1000 | 95% | 3.2937 | 0.2071 | 3.5008 | Accept | Accept | Accept | |
1000 | 90% | 8.1804 | 0.0506 | 8.2310 | Accept | Reject | Reject | |
Binance Coin (BNB) | 1000 | 99% | 1.4374 | 0.3980 | 1.8354 | Accept | Accept | Accept |
1000 | 95% | 13.2784 | 1.5002 | 14.7785 | Reject | Reject | Reject | |
1000 | 90% | 34.9286 | 0.0790 | 35.0076 | Reject | Reject | Reject | |
Cardano (ADA) | 1000 | 99% | 0.8306 | 0.3428 | 1.1734 | Accept | Accept | Accept |
1000 | 95% | 4.5530 | 2.6922 | 7.2452 | Accept | Reject | Reject | |
1000 | 90% | 7.5358 | 1.0511 | 8.5869 | Accept | Reject | Reject | |
Ripple (XRP) | 1000 | 99% | 3.0766 | 5.1359 | 8.2125 | Accept | Reject | Reject |
1000 | 95% | 8.7393 | 9.5613 | 18.3006 | Reject | Reject | Reject | |
1000 | 90% | 21.5794 | 3.2041 | 24.7835 | Reject | Reject | Reject |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Likitratcharoen, D.; Chudasring, P.; Pinmanee, C.; Wiwattanalamphong, K. The Efficiency of Value-at-Risk Models during Extreme Market Stress in Cryptocurrencies. Sustainability 2023, 15, 4395. https://doi.org/10.3390/su15054395
Likitratcharoen D, Chudasring P, Pinmanee C, Wiwattanalamphong K. The Efficiency of Value-at-Risk Models during Extreme Market Stress in Cryptocurrencies. Sustainability. 2023; 15(5):4395. https://doi.org/10.3390/su15054395
Chicago/Turabian StyleLikitratcharoen, Danai, Pan Chudasring, Chakrin Pinmanee, and Karawan Wiwattanalamphong. 2023. "The Efficiency of Value-at-Risk Models during Extreme Market Stress in Cryptocurrencies" Sustainability 15, no. 5: 4395. https://doi.org/10.3390/su15054395
APA StyleLikitratcharoen, D., Chudasring, P., Pinmanee, C., & Wiwattanalamphong, K. (2023). The Efficiency of Value-at-Risk Models during Extreme Market Stress in Cryptocurrencies. Sustainability, 15(5), 4395. https://doi.org/10.3390/su15054395