Effects of Pre-Turbocharger Turbine Water Injection on the Sustainable Performance of Spark Ignition Engine
Abstract
:1. Introduction
1.1. Background
1.2. Strategies of Water Injection (WI)
1.2.1. Pre-Combustion Water Injection
1.2.2. Direct Water Injection (DWI)
1.2.3. Post-Combustion Water Injection
1.3. Objective of Research
2. Materials and Methods
2.1. General Concept of PTWI
2.2. Methods of Research
2.3. Experimental Setup
2.4. 3D CFD Simulation Setup
2.5. 1D Engine Modelling of SI Turbocharged Engine
2.5.1. 1D Numerical Modelling of the SI Engine
Connecting Pipes
Heat Transfer
Turbocharger
Cylinders
2.5.2. Heat Transfer in the Combustion Chamber
Port Heat Transfer
Combustion
2.5.3. Engines
Engine Model Setup
Engine Model Validation
Lambda 1 Engine Operation
3. Result and Discussion
3.1. 3D CFD Model Validation
3.2. 1D Engine Model Validation
3.3. CFD Parametric Studies
3.3.1. Injection Pressure
3.3.2. Diameter of Turbine Inlet Connecting Pipe
3.3.3. Injection Distance from Turbine Inlet
3.4. PTWI as an Enabler of Stoichiometric Operation
3.4.1. Effect of PTWI on the Fuel Consumption
3.4.2. Effect of PTWI on the Engine Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
1D | One-dimensional |
3D | Three-dimensional |
AFR | Air Fuel Ratio |
BSFC | Brake Specific Fuel Consumption |
CI | Compression Ignition |
CFD | Computational Fluid Dynamics |
CO2 | Carbon Dioxide |
CR | Compression Ratio |
DWI | Direct Water Injection |
ECU | Engine Control Unit |
EE | Eulerian-Eulerian |
EGR | Exhaust Gas Circulation |
EXP | Experimental |
FMEP | Friction Mean Effective Pressure |
GDI | Gasoline Direct Injection |
HC | Hydrocarbon |
ICE | Internal Combustion Engine |
Ii | Injector-i |
IMEP | Indicated Mean Effective Pressure |
LE | Lagrangian-Eulerian |
MBT | Maximum Brake Torque |
NO | Nitrogen Monoxide |
NOx | Nitrogen Oxide |
PNH | Patton, Nitschke and Heywood |
PTWI | Pre-turbocharger Turbine Water Injection |
PWI | Port Water Injection |
ROHR | Rate of Heat Release |
SBi | System Boundary-i |
SI | Spark Ignition |
SIM | Simulation |
TDC | Top Dead Centre |
TIT | Turbine Inlet Temperature |
VVT | Variable Intake Valve Timing |
WI | Water Injection |
WLTC | Light Vehicle Test Cycle |
Greek and Roman Symbols | |
Heat transfer coefficient between gas and wall | |
Heat transfer coefficient | |
Heat transfer coefficient | |
Total efficiency of turbocharger | |
Mechanical efficiency of turbocharger | |
Isentropic efficiency of turbine | |
Isentropic efficiency of compressor | |
λ | Lambda |
Thermal conductivity of the gas | |
ϕf | Transported variable, fluid |
ϕp | Transported variable, particle |
δt | Timestep |
Density | |
Dynamic diffusivity | |
Linearisation coefficient | |
Oil viscosity as a function of oil temperature | |
ε | Turbulence dissipation rate |
Wall surface area | |
a | Vibe function parameter |
Ci | Constant-i |
cm | Mean piston speed |
cp | Specific heat capacity of the wall layer |
Droplet diameter | |
Hydraulic diameter | |
dvi | Inner valve seat diameter |
E | Energy in the flux vector |
Flux vector | |
FMEPAUX | Auxiliary loss friction mean effective pressure |
FMEPCS | Crank shaft friction mean effective pressure |
FMEPIP | Injection pump friction mean effective pressure |
FMEPP | Piston friction mean effective pressure |
FMEPTOT | Total friction mean effective pressure |
FMEPVT | Valve train friction mean effective pressure |
FD | Drag force |
FB | Buoyancy force |
FR | Rotation force |
FVM | Virtual or added mass force |
FP | Pressure gradient force |
h | Specific enthalpy |
H | Latent heat of evaporation of the particle |
m | Vibe function shape parameter |
mp | Particle mass |
n | New values |
Nusselt number | |
o | Old values |
p | Pressure |
Power consumption of compressor | |
Pvap | Vapour pressure |
Qc | Convective heat transfer |
QR | Radiative heat transfer |
Wall heat flow | |
R | General non-linear source |
Source caused by axial changes in the cross-section of the pipe | |
Sherwood number | |
T | Temperature |
Gas temperature in the cylinder | |
Wall temperature | |
State vector | |
Up | Particle velocity |
V | Velocity |
Molecular weights of the vapour in the continuous phase | |
Molecular weights of the mixture in the continuous phase | |
x | Particle displacement |
Equilibrium vapour mole fraction of the evaporating component at the droplet surface | |
Mole fraction of the evaporating component in the gas phase |
References
- Iacobacci, A.; Valentino, G.; Marchitto, L. Water Injection to Enhance Performance and Emissions of a Turbocharged Gasoline Engine under High Load Condition. SAE Int. J. Engines V126 3EJ 2017, 10, 928–937. [Google Scholar]
- Chen, B.; Zhang, L.; Zi, D.; Chen, X.; Zhang, Q. Investigating Effects of Water Injection on Availabilities of a Turbocharged Gasoline Direct Injection Engine. J. Energy Eng. 2019, 145, 04019021. [Google Scholar] [CrossRef]
- Tornatore, C.; Siano, D.; Marchitto, L.; Iacobacci, A.; Valentino, G.; Bozza, F. Water Injection: A Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines. SAE Int. J. Engines 2017, 10, 2319–2329. [Google Scholar] [CrossRef]
- Rothrock, A.M.; Krsek Jr, A.; Jones, A.W. The Induction of Water to the Inlet Air as a Means of Internal Cooling in Aircraft Engine Cylinder; National Advisory Committee for Aeronautics; Langley Aeronautical Lab.: Langley Field, VA, USA, 1943.
- Boretti, A. Water injection in directly injected turbocharged spark ignition engines. Appl. Therm. Eng. 2013, 52, 62–68. [Google Scholar] [CrossRef]
- Brooke, L. Bosch developing new water-injection system for production engines. Automot. Eng. SAE Int. 2015, 2018. [Google Scholar]
- Bulander, D.R. Powertrain Optimization using a Comprehensive Systems Approach. In Proceedings of the 36th Interational Vienna Motor Symposium 2015; Bosch: Vienna, Austria, 2015. [Google Scholar]
- Worm, J.; Naber, J.; Duncan, J.; Barros, S.; Atkinson, W. Water Injection as an Enabler for Increased Efficiency at High-Load in a Direct Injected, Boosted, SI Engine. SAE Int. J. Engines V126 3EJ 2017, 8, 951–958. [Google Scholar] [CrossRef]
- Worm, J. The Impact of Water Injection on Spark Ignition Engine Performance under High Load Operation; Michigan Technological University: Michigan, IN, USA, 2017. [Google Scholar]
- Karagöz, Y.; Yüksek, L.; Sandalcı, T.; Dalkılıç, A.S. An experimental investigation on the performance characteristics of a hydroxygen enriched gasoline engine with water injection. Int. J. Hydrogen Energy 2015, 40, 692–702. [Google Scholar] [CrossRef]
- Brusca, S.; Lanzafame, R. Water Injection in IC–SI Engines to Control Detonation and to Reduce Pollutant Emissions; SAE International: Warrendale, PA, USA, 2003. [Google Scholar]
- Miganakallu, N.; Naber, J.D.; Rao, S.; Atkinson, W.; Barros, S. Experimental Investigation of Water Injection Technique in Gasoline Direct Injection Engine; ASME: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Subramanian, V.; Mallikarjuna, J.M.; Ramesh, A. Effect of water injection and spark timing on the nitric oxide emission and combustion parameters of a hydrogen fuelled spark ignition engine. Int. J. Hydrogen Energy 2007, 32, 1159–1173. [Google Scholar] [CrossRef]
- d’Adamo, A.; Berni, F.; Breda, S.; Lugli, M.; Fontanesi, S.; Cantore, G. A Numerical Investigation on the Potentials of Water Injection as a Fuel Efficiency Enhancer in Highly Downsized GDI Engines; SAE International: Warrendale, PA, USA, 2015; Volume 2015. [Google Scholar]
- Berni, F.; Breda, S.; Lugli, M.; Cantore, G. A Numerical Investigation on the Potentials of Water Injection to Increase Knock Resistance and Reduce Fuel Consumption in Highly Downsized GDI Engines. Energy Procedia 2015, 81, 826–835. [Google Scholar] [CrossRef] [Green Version]
- Battistoni, M.; Grimaldi, C.N.; Cruccolini, V.; Discepoli, G.; De Cesare, M. Assessment of Port Water Injection Strategies to Control Knock in a GDI Engine through Multi-Cycle CFD Simulations; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2017; Volume 14. [Google Scholar] [CrossRef]
- Bozza, F.; De Bellis, V.; Teodosio, L.; Tufano, D.; Malfi, E. Techniques for CO2 Emission Reduction over a WLTC. A Numerical Comparison of Increased Compression Ratio, Cooled EGR and Water Injection 2018; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Bozza, F.; De Bellis, V.; Giannattasio, P.; Teodosio, L.; Marchitto, L. Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and over a WLTP Driving Cycle. SAE Int. J. Engines 2017, 10, 2141–2153. [Google Scholar] [CrossRef] [Green Version]
- Bozza, F.; De Bellis, V.; Teodosio, L. Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines. Appl. Energy 2016, 169, 112–125. [Google Scholar] [CrossRef]
- Hoppe, F.; Thewes, M.; Baumgarten, H.; Dohmen, J. Water injection for gasoline engines: Potentials, challenges, and solutions. Int. J. Engine Res. 2016, 17, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Schlueter, W.B.; Debuque, I.D. System and Method for Superheated-Water Injection System (SWIS). U.S. Patent 4,408,573, 11 October 1983. [Google Scholar]
- Binion, W.S. Cylinder Water Injection Engine. U.S. Patent 5,937,799, 17 August 1999. [Google Scholar]
- Binion, W.S. In-Cylinder Water Injection Engine. U.S. Patent 5,718,194, 17 February 1998. [Google Scholar]
- Mulye, N. Internally Cooled Internal Combustion Engine and Method Thereof. U.S. Patent Application 14/761,369, 12 October 2014. [Google Scholar]
- Mingrui, W.; Sa, N.T.; Turkson, R.F.; Jinping, L.; Guanlun, G. Water injection for higher engine performance and lower emissions. J. Energy Inst. 2017, 90, 285–299. [Google Scholar] [CrossRef]
- Hoppe, F.; Thewes, M.; Seibel, J.; Balazs, A.; Scharf, J. Evaluation of the Potential of Water Injection for Gasoline Engines. SAE Int. J. Engines 2017, 10, 2500–2512. [Google Scholar] [CrossRef]
- Arabaci, E.; İçingür, Y. Thermodynamic investigation of experimental performance parameters of a water injection with exhaust heat recovery six-stroke engine. J. Energy Inst. 2016, 89, 569–577. [Google Scholar] [CrossRef]
- Wei, M.; Nguyen, T.; Turkson, R.; Guo, G.; Liu, J. The Effect of Water Injection on the Control of In-Cylinder Pressure and Enhanced Power Output in a Four-Stroke Spark-Ignition Engine. Sustainability 2016, 8, 993. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Park, H.; Bae, C.; Choi, M.; Kwak, Y. Effects of water direct injection on the torque enhancement and fuel consumption reduction of a gasoline engine under high-load conditions. Int. J. Engine Res. 2016, 17, 795–808. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamental; Mcgraw-Hill: New York, NY, USA, 1988; Volume 930. [Google Scholar]
- Bedford, F.; Rutland, C.; Dittrich, P.; Raab, A.; Wirbeleit, F. Effects of Direct Water Injection on DI Diesel Engine Combustion; SAE International: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.; Kosaka, H.; Bady, M.; Abdel-Rahman, A.K. Effects of intake and exhaust manifold water injection on combustion and emission characteristics of a DI diesel engine. J. Therm. Sci. Technol. 2017, 12, JTST0014. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Fraser, N.; Wieske, P. Water Cooled Exhaust Manifold and Full Load EGR Technology Applied to a Downsized Direct Injection Spark Ignition Engine. SAE Int. J. Engines 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Fenske, J. (Ed.) Why Does Volkswagen Have a Water-Cooled Exhaust? High Gear Media: Menlo Park, CA, USA, 2017; pp. 6–28. [Google Scholar]
- Nour, M.; Kosaka, H.; Abdel-Rahman, A.K.; Bady, M. Effect of Water Injection into Exhaust Manifold on Diesel Engine Combustion and Emissions. Energy Procedia 2016, 100, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Ansys Inc. Ansys CFX Theory Guide; Ansys Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Shankar Subramaniam Lagrangian–Eulerian methods for multiphase flows.pdf. Elsevier Sci. 2012, 1, 75.
- Cengel, Y.A.; Ghajar, A.J. Nusselt Number. In Heat and Mass Transfer; Mcgraw-Hill: New York, NY, USA, 2013; p. 376. [Google Scholar]
- Broekaert, S.; Demuynck, J.; De Cuyper, T.; De Paepe, M.; Verhelst, S. Heat transfer in premixed spark ignition engines part I: Identification of the factors influencing heat transfer. Energy 2016, 116, 380–391. [Google Scholar] [CrossRef] [Green Version]
- AVL. BOOST Theory; AVL List GmbH: Graz, Austria, 2020. [Google Scholar]
- AVL. Advanced Simulation Technologies-Simulation Tools and Methods for Powertrain Development; AVL: Asheville, NC, USA, 2016. [Google Scholar]
- Burch, I. Water Mist for Ship Machinery Spaces; Defence Science and Technology: Fairbairn, Australia, 2006.
- Lefebvre, A.H.; Mcdonell, V.G. Atomization and Sprays, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781498736268. [Google Scholar]
Equipment | Specification |
---|---|
Injector | BOSCH #A280436277-359 Dual spray angle 24° Maximum flow 155 g/min Maximum injection time 2.5 m/s Maximum pressure 4 bar 4-hole with 200 µm |
Electrical water pump | KO JINE #TYP-2000 KJ Flow 2.2 LPM Pressure 10 bar |
Turbocharger | BORG WARNER #KP39 |
Engine | PROTON 1.3 L Campro IAFM Naturally aspirated 4-cylinder Max torque 120 Nm at 4000 rpm Max power 70 kW at 6000 rpm |
Manipulated Variables | Unit |
---|---|
Injecting pressure | 4 bar, 7 bar, 10 bar |
Distance from turbine | 150 mm, 250 mm, 450 mm |
Diameter of turbine connecting pipe | 30 mm, 40 mm, 50 mm |
Engine Parameters | Specification |
---|---|
Number of cylinders | 4 |
Displacement | 1561 cc |
Firing order | 1-3-4-2 |
Bore | 76 mm |
Stroke | 86 mm |
Compression ratio | 9.5:1 |
Intake valve diameter | 30 mm |
Intake cam lift | 7.51 mm |
Exhaust valve diameter | 25 mm |
Exhaust cam lift | 7.92 m |
Engine Load | 100% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Injection Pressure (bar) | 4 | 7 | 10 | ||||||
Distance after the Injection Point (mm) | |||||||||
Engine Speed (rpm) | 150 | 250 | 450 | 150 | 250 | 450 | 150 | 250 | 450 |
3000 | 55.39 | 59.08 | 57.37 | 52.23 | 55.64 | 54.34 | 50.99 | 54.22 | 53.41 |
4000 | 48.77 | 51.97 | 50.18 | 45.88 | 48.86 | 47.46 | 44.32 | 47.2 | 46.02 |
5000 | 47.01 | 50.88 | 49.18 | 44.17 | 47.08 | 45.66 | 42.47 | 45.28 | 44.05 |
Engine Load | 100% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Injection Pressure (bar) | 4 | 7 | 10 | ||||||
Distance after the Injection Point (mm) | |||||||||
Engine Speed (rpm) | 150 | 250 | 450 | 150 | 250 | 450 | 150 | 250 | 450 |
3000 | 69.65 | 69.81 | 75.49 | 66.57 | 66.77 | 70.14 | 64.96 | 65.06 | 66.72 |
4000 | 72.66 | 72.52 | 80.21 | 56.83 | 56.86 | 61.57 | 55.06 | 55.18 | 58.77 |
5000 | 58.67 | 58.67 | 65.92 | 54.7 | 55.02 | 60.46 | 53.34 | 53.57 | 57.87 |
Engine Load | 100% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Injection Pressure (bar) | 4 | 7 | 10 | ||||||
Distance after the Injection Point (mm) | |||||||||
Engine Speed (rpm) | 150 | 250 | 450 | 150 | 250 | 450 | 150 | 250 | 450 |
3000 | 101.5 | 100.4 | 91.17 | 97.41 | 96.04 | 82.7 | 95.48 | 93.37 | 74.65 |
4000 | 87.32 | 86.36 | 80.06 | 82.79 | 82.11 | 74.84 | 80.51 | 79.7 | 69.95 |
5000 | 85.34 | 82.88 | 78 | 79.25 | 78.33 | 72.97 | 76.98 | 76.14 | 69.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veza, I.; Huat, L.C.; Abas, M.A.; Idris, M.; Spraggon, M.; Herawan, S.G. Effects of Pre-Turbocharger Turbine Water Injection on the Sustainable Performance of Spark Ignition Engine. Sustainability 2023, 15, 4559. https://doi.org/10.3390/su15054559
Veza I, Huat LC, Abas MA, Idris M, Spraggon M, Herawan SG. Effects of Pre-Turbocharger Turbine Water Injection on the Sustainable Performance of Spark Ignition Engine. Sustainability. 2023; 15(5):4559. https://doi.org/10.3390/su15054559
Chicago/Turabian StyleVeza, Ibham, Ling Chee Huat, Mohd Azman Abas, Muhammad Idris, Martin Spraggon, and Safarudin G. Herawan. 2023. "Effects of Pre-Turbocharger Turbine Water Injection on the Sustainable Performance of Spark Ignition Engine" Sustainability 15, no. 5: 4559. https://doi.org/10.3390/su15054559
APA StyleVeza, I., Huat, L. C., Abas, M. A., Idris, M., Spraggon, M., & Herawan, S. G. (2023). Effects of Pre-Turbocharger Turbine Water Injection on the Sustainable Performance of Spark Ignition Engine. Sustainability, 15(5), 4559. https://doi.org/10.3390/su15054559