Implementing IPCC 2019 Guidelines into a National Inventory: Impacts of Key Changes in Austrian Cattle and Pig Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. The IPCC-2019 Calculation Procedure
2.2.2. Input Parameters for the Assessment of Dairy Cows According to IPCC-2019
2.2.3. Input Parameters for the Assessment of Fattening Pigs According to IPCC-2019
2.2.4. Gross Energy Requirement, Digestibility, and Crude-Protein and Ash Contents for Cattle and Pig Categories
2.2.5. For Comparison: The Previous National Method
2.2.6. Calculation of Emissions Related to Crude-Protein Yields over the Time Series, Lower CP Intake, and the Use of Feed Additives
3. Results
3.1. The Effects of Changing from the Previous Austrian National Method to IPCC-2019
3.2. Reduction Potential Originating from Increased Animal Efficiency
3.3. Reduction Potential of Reducing Dietary Crude-Protein Content and of Using Feed Additives
4. Discussion
4.1. Differences in Results When Using the Previous and the Updated Method
4.1.1. Changing Trends over the Time Series from 1990 to 2020
4.1.2. Changes within Other Cattle Due to Re-Categorization and Detailed Calculation
4.1.3. Changes for Pigs Due to Tier2 Methods and Re-Categorization
4.2. Efficiency Improvement and Other Mitigation Measures
4.2.1. Productivity, Efficiency, and Sustainability
4.2.2. Reducing Crude-Protein Intake and Imported Emissions
4.2.3. Use of Feed Additives
4.3. Limitations and Further Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Steffen, W.; Richardson, K.; Rockstrom, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 6223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twine, R. Emissions from Animal Agriculture—16.5% Is the New Minimum Figure. Sustainability 2021, 13, 6276. [Google Scholar] [CrossRef]
- Leip, A.; Weiss, F.; Lesschen, J.P.; Westhoek, H. The Nitrogen Footprint of Food Products in the European Union. J. Agric. Sci. 2014, 152, S20–S33. [Google Scholar] [CrossRef] [Green Version]
- Anderl, M.; Friedrich, A.; Gangl, M.; Haider, S.; Köther, T.; Kriech, M.; Kuschel, V.; Lampert, C.; Mandl, N.; Matthews, B.; et al. Agriculture (CRF Sector 3). Austria’s National Inventory Report 2021; Umweltbundesamt (Austrian Environment Agency): Vienna, Austria, 2021; pp. 300–384. [Google Scholar]
- Rösemann, C.; Haenel, H.-D.; Vos, C.; Dämmgen, U.; Döring, U.; Wulf, S.; Eurich-Menden, B.; Freibauer, A.; Döhler, H.; Schreiner, C.; et al. Calculations of Gaseous and Particulate Emissions from German Agriculture 1990–2019: Input Data and Emission Results. Thünen Report 84; Johann Heinrich von Thünen-Institut: Göttingen, Germany, 2021; Available online: https://www.openagrar.de/receive/openagrar_mods_00067815 (accessed on 3 January 2023).
- United Nations Environment Programme (UNEP) and Climate and Clean Air Coalition. Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions; UNEP: Nairobi, Kenya, 2021; Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/35913/GMA.pdf (accessed on 3 January 2023).
- López-Aizpún, M.; Horrocks, C.A.; Charteris, A.F.; Marsden, K.A.; Ciganda, V.S.; Evans, J.R.; Chadwick, D.R.; Cárdenas, L.M. Meta-analysis of Global Livestock Urine-derived Nitrous Oxide Emissions from Agricultural Soils. Glob. Chang. Biol. 2020, 26, 2002–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erisman, J.W.; Sutton, M.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a Century of Ammonia Synthesis Changed the World. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- European Environment Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019, Technical Guidance to Prepare National Emission Inventories, 3.B Manure Management; EEA: Copenhagen, Denmark, 2019; Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/4-agriculture/3-b-manure-management/view (accessed on 3 January 2023).
- Amon, B.; Çinar, G.; Anderl, M.; Dragoni, F.; Kleinberger-Pierer, M.; Hörtenhuber, S. Inventory Reporting of Livestock Emissions: The Impact of the IPCC 1996 and 2006 Guidelines. Environ. Res. Lett. 2021, 16, 075001. [Google Scholar] [CrossRef]
- Gavrilova, O.; Leip, A.; Dong, H.; MacDonald, J.D.; Gomez Bravo, C.A.; Amon, B.; Barahona Rosales, R.; del Prado, A.; de Lima, M.A.; Oyhantçabal, W.; et al. Intergovernmental Panel on Climate Change (IPCC). Emissions from Livestock and Manure Management. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Kyoto, Japan, 2019; Volume 4. [Google Scholar]
- National Inventory Submissions 2022. Available online: https://unfccc.int/ghg-inventories-annex-i-parties/2022 (accessed on 28 February 2023).
- Hung, C.-Y.; VanderZaag, A.; Smith, W.; Grant, B. Evaluating the 2019 IPCC Refinement for Estimating Methane Conversion Factors in Canada. Sci. Total Environ. 2022, 835, 155325. [Google Scholar] [CrossRef]
- Statistics Austria. Statistics on Annual livestock. Available online: https://www.statistik.at/en/statistics/agriculture-and-forestry/animals-animal-production/livestock/annual-livestock (accessed on 3 January 2023).
- Minihuber, J.; (Rinderbörse, Beef cattle market association, Linz, Austria). Personal communication, 2021.
- Bayrische Landesanstalt für Landwirtschaft (LfL). Gruber Tabelle zur Fütterung in der Rindermast, 25th ed.; LfL: Freising, Germany, 2020; Available online: https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/gruber_tabelle_rindermast-2021_lfl-information.pdf (accessed on 10 January 2023).
- Brandstätter, B.; Eichler, S.; Gassner, B.; Griesmann, S.; Harm, A.; Höller, B.; Kobler, B.; Mandl, J.; Mlnarik, A.; Peyerl, H.; et al. Biorindfleisch. Richtlinien—Produktion—Struktur—Markt. Interdisziplinäres Projekt Ökonomik; BOKU: Vienna, Austria, 2003; Available online: https://boku.ac.at/fileadmin/data/H03000/H73000/H73300/pub/Biolandbau/2003_Biorindfleisch.pdf (accessed on 10 January 2023).
- Gruber, L.; (HBLFA Raumberg-Gumpenstein, Raumberg, Austria). Personal communication, 2021.
- Gruber, L.; Ettle, T.; Schwarz, F.J.; Royer, M.; Pries, M.; Fischer, B.; Jilg, T.; Koch, C.; Terler, G.; Meyer, U.; et al. Untersuchungen zur Futteraufnahme und zum Energieaufwand von Aufzuchtrindern der Rasse Fleckvieh und Holstein von der Geburt bis 220 kg Lebendmasse. In Proceedings of the 48. Viehwirtschaftliche Fachtagung. HBLFA Raumberg-Gumpenstein, Gumpenstein, Austria, 24–25 March 2021; pp. 145–170. [Google Scholar]
- Gruber, L.; Steinwidder, A. Influence of nutrition on nitrogen and phosphorus excretion of livestock - model calculations on the basis of a literature review. Die Bodenkult. 1996, 47, 255–277. [Google Scholar]
- Gruber, L.; Urdl, M.; Obritzhauser, W.; Schauer, A.; Häusler, J. Energie- und Nährstoffversorgung der Milchkuh in der Trockenstehzeit und zu Laktationsbeginn: Produktionsdaten und Stoffwechsel. In Proceedings of the 42. Viehwirtschaftliche Fachtagung 2015. HBLFA Raumberg-Gumpenstein, Gumpenstein, Austria, 25–26 March 2015; pp. 95–125. [Google Scholar]
- Häusler, J. Das Leistungspotenzial von Fleckviehmutterkühen—Versuchsergebnisse des LFZ Raumberg-Gumpenstein. In Proceedings of the Fachtag Erfolgreiche Mutterkuhhaltung, Warth, Austria, 19 November 2009; pp. 1–6. [Google Scholar]
- Kirchgessner, M.; Roth, F.X.; Schwarz, F.J.; Stangl, G.I. Tierernährung, 12th ed.; DLG: Frankfurt, Germany, 2008; p. 635. [Google Scholar]
- Klein-Jöbstl, D.; Arnholdt, T.; Sturmlechner, F.; Iwersen, M.; Drillich, M. Results of an online questionnaire to survey calf management practices on dairy cattle breeding farms in Austria and to estimate differences in disease incidences depending on farm structure and management practices. Acta Vet. Scand. 2015, 57, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mader, C.; (Österreichische Fleischkontrolle, St. Pölten, Austria). Personal communication, 2021.
- Marcé, C.; Guatteo, R.; Bareille, N.; Fourichon, C. Dairy calf housing systems across Europe and risk for calf infectious diseases. Animal 2010, 4, 1588–1596. [Google Scholar] [CrossRef] [Green Version]
- Neumayr, C. Treibhausgasemissionen von Systemen der Rind- und Lammfleischerzeugung; University of Natural Resources and Life Science: Vienna, Austria, 2012. [Google Scholar]
- Resch, R.; Guggenberger, T.; Wiedner, G.; Kasal, A.; Wurm, K.; Gruber, L.; Ringdorfer, F.; Buchgraber, K. Futterwerttabellen für das Grundfutter im Alpenraum. Fortsch. Landwirt 2006, 84, 20. [Google Scholar]
- Rinnhofer, B. Einflüsse der Haltungsumwelt und der Genetik auf das gegenseitige Besaugen beim Rind; University of Natural Resources and Life Science: Vienna, Austria, 2008. [Google Scholar]
- Stangl, G.I.; Schwarz, F.J.; Roth, F.X.; Südekum, K.-H.; Eder, K. Kirchgeßner Tierernährung. Leitfaden für Studium, Beratung und Praxis, 14th ed.; DLG: Frankfurt, Germany, 2014; p. 660. [Google Scholar]
- Steinwidder, A.; Häusler, J. Anforderungen an die Fütterung im Mutterkuhbetrieb. In Proceedings of the 31. Viehwirtschaftliche Fachtagung, Gumpenstein, Austria, 27–28 April 2004; pp. 1–16. [Google Scholar]
- Velik, M.; Eingang, D.; Kaufmann, J.; Kitzer, R. Fleischqualität österreichischer Rindfleisch-Markenprogramme (Ochse, Kalbin, Jungrind)—Ergebnisse einer Stichprobenerhebung. In Proceedings of the 36. Viehwirtschaftliche Fachtagung, LFZ Raumberg-Gumpenstein, Gumpenstein, Austria, 16–17 April 2009; pp. 85–93. [Google Scholar]
- Egger-Danner, C.; Fürst-Waltl, B.; Fürst, C.; Gruber, L.; Hörtenhuber, S.; Koeck, A.; Ledinek, M.; Pfeiffer, C.; Steininger, F.; Weißensteiner, R.; et al. Efficient Cow—Analyse und Optimierung der Produktionseffizienz und der Umweltwirkung in der Österreichischen Rinderwirtschaft; Zentrale Arbeitsgemeinschaft österreichischer Rinderzüchter (ZAR): Vienna, Austria, 2016; Available online: https://dafne.at/content/report_release/bf039db1-6192-44b1-a1e8-056ba5c48965_0.pdf (accessed on 10 January 2023).
- Jauschnegg, H. Schätzung von Rumpflänge, Widerristhöhe und Schulterbreite auf der Basis des Gewichtes beim Rind; University of Natural Resources and Life Science: Vienna, Austria, 1994. [Google Scholar]
- Gruber, L.; Steinwender, R.; Baumgartner, W. Einfluss von Grundfutterqualität und Kraftfutterniveau auf Leistung, Stoffwechsel und Wirtschaftlichkeit von Kühen der Rasse Fleckvieh und Holstein Friesian. In Proceedings of the 22. Tierzuchttagung “Aktuelle Forschungsergebnisse und Versorgungsempfehlungen in der Rindermast und Milchviehfütterung”, Irdning, Austria, 9–10 May 1995; pp. 1–49. [Google Scholar]
- Fürst, C.; (Rinderzucht Austria, Cattle breeding association, Vienna, Austria). Personal communication, 2020.
- Amon, B.; Kryvoruchko, V.; Fröhlich, M.; Amon, T.; Pöllinger, A.; Mösenbacher, I.; Hausleitner, A. Ammonia and Greenhouse Gas Emissions from a Straw Flow System for Fattening Pigs: Housing and Manure Storage. Livest. Sci. 2007, 112, 199–207. [Google Scholar] [CrossRef]
- Pöllinger, A.; Zentner, A.; Brettschuh, S.; Lackner, L.; Amon, B.; Stickler, Y. TIHALO II—Erhebung zum Wirtschaftsdüngermanagement aus der landwirtschaftlichen Tierhaltung in Österreich; HBLFA Raumberg-Gumpenstein: Irdning, Austria, 2018; 92p, Available online: https://dafne.at/content/report_release/19b91fb6-b73e-473b-8ef8-4db51230bc25_0.pdf (accessed on 10 January 2023).
- Pöllinger, A.; (HBLFA Raumberg-Gumpenstein, Irdning, Austria). Personal communication, 2021.
- Bittermann, A.; Kircher, B.; Obweger, J.; Schönhart, S. Almwirtschaftliches Basiswissen—Von der Bedeutung der Almen; Fortbildungsinstitut Österreich: Vienna, Austria, 2015; Available online: https://www.lko.at/media.php?filename=download%3D%2F2015.08.04%2F1438696023668172.pdf&rn=Basiswissen.pdf (accessed on 10 January 2023).
- Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft (BML; Austrian Federal Ministry of Agriculture, Forestry, Regions and Water Management). Grüner Bericht 2020—Die Situation der Österreichischen Land- und Forstwirtschaft; BML: Vienna, Austria, 2020. Available online: https://gruenerbericht.at/cm4/jdownload/send/2-gr-bericht-terreich/2167-gb2020 (accessed on 10 January 2023).
- Statistics Austria. Statistics on Austrian Milk Production. Available online: https://www.statistik.at/statistiken/land-und-forstwirtschaft/tiere-tierische-erzeugung/milch (accessed on 10 January 2023).
- AgrarMarkt Austria (AMA). Daten und Fakten der für den Bereich Milch und Milchprodukte (Facts and Figures for Milk and Dairy Products); AMA: Vienna, Austria, 2021; Available online: https://www.ama.at/getattachment/0b786879-6c75-4f7b-8c80-25bca0c8c39e/1_Fett-und-Eiwei%c3%9fgehalt-der-Anlieferungsmilch-1991-2019.pdf (accessed on 10 January 2023).
- Annual Reports. (Rinderzucht Austria, Cattle Breeding Association, Vienna, Austria). Available online: https://www.rinderzucht.at/downloads/jahresberichte.html (accessed on 10 January 2023).
- Annual Reports. (ZuchtData EDV-Dienstleistungen GmbH, Vienna, Austria). Available online: https://www.rinderzucht.at/downloads/jahresberichte.html (accessed on 10 January 2023).
- Steinwidder, A.; Guggenberger, T. Erhebungen zur Futteraufnahme und Nährstoffversorgung von Milchkühen sowie Nährstoffbilanzierung auf Grünlandbetrieben in Österreich. Bodenkultur 2003, 54, 49–66. [Google Scholar]
- Gruber, L.; Steinwender, R. Nähr- und Mineralstoffversorgung von Milchkühen aus dem Grundfutter—Ergebnisse einer Praxiserhebung in landwirtschaftlichen Betrieben Österreichs. Bodenkultur 1992, 43, 65–79. [Google Scholar]
- Verband Österreichischer Schweinebauern (VÖS; Association of Austrian Pig Farmers). Jahresbericht 2020 (Annual Report 2020); VÖS: Vienna, Austria, 2021; Available online: https://www.voes-online.at/images/VS_Jahresbericht_2020.pdf (accessed on 10 January 2023).
- Statistics Austria. Lebend und Schlachtgewichte; Statistics Austria: Vienna, Austria, 2021; Available online: https://www.statistik.at/fileadmin/publications/Durchschnittliche_Lebend-_und_Schlachtgewichte_2020.pdf (accessed on 10 January 2023).
- Bayrische Landesanstalt für Landwirtschaft (LfL). Futterberechnung für Schweine, 26th ed.; LfL: Freising, Germany, 2021; Available online: https://www.lfl.bayern.de/mam/cms07/publikationen/daten/informationen/futterwerttabelle_schwein_lfl-information.pdf (accessed on 10 January 2023).
- Reiter, E.; Wilhelmer, C.; Mechtler, K.; Wagner, M.; Lippl, M.; Alber, O.; Dersch, G.; Felder, H. Endbericht Mais XP—Bewertung des Proteingehaltes sowie der Aminosäurenzusammensetzung des Österreichischen Körnermaissortiments; Bundesministerium für Landwirtschaft, Regionen und Tourismus (Federal Ministry of Agriculture, Regions and Tourism): Vienna, Austria, 2021; Available online: https://dafne.at/content/report_release/fc1c0648-bbca-4b03-b73c-3f02de6cc406_0.pdf (accessed on 10 January 2023).
- Staudacher, W.; Potthast, V. DLG-Futterwerttabellen—Schweine (DLG Feeding Value Table–Pigs), 7th ed.; DLG: Frankfurt, Germany, 2014; p. 68.
- Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft (BML; Austrian Federal Ministry of Agriculture, Forestry, Regions and Water Management). Richtlinien für die Sachgerechte Düngung im Ackerbau und Grünland, 7th ed.; BML: Vienna, Austria, 2017; Available online: https://gruenland-viehwirtschaft.at/jdownloads/Richtlinien_fuer_die_sachgerechte_Duengung_2017.pdf (accessed on 10 January 2023).
- Dämmgen, U.; Schulz, J.; Kleine Klausing, H.; Hutchings, N.J.; Haenel, H.-D.; Rösemann, C. Enteric Methane emissions from German pigs. Agric. For. Res. 2012, 3, 83–96. [Google Scholar]
- Amon, B.; Hopfner- Sixt, K.; Amon, T. Emission Inventory for the Agricultural Sector in Austria—Manure Management; Institute of Agricultural, Environmental and Energy Engineering, University of Natural Resources and Life Sciences Vienna: Vienna, Austria, 2002. [Google Scholar]
- Amon, B.; Hörtenhuber, S. Revision of Austria’s Air Pollution Inventory (OLI) for NH3, NMVOC and NOX; Sector 4, Agriculture; On behalf of the Environment Agency Austria (Umweltbundesamt GmbH); University of Natural Resources and Life Sciences Vienna: Vienna, Austria, 2008; p. 62. [Google Scholar]
- Amon, B.; Hörtenhuber, S. Revision of Austria’s National Greenhouse Gas Inventory for CH4 and N2O, Sector Agriculture; On behalf of the Environment Agency Austria (Umweltbundesamt GmbH); University of Natural Resources and Life Sciences Vienna: Vienna, Austria, 2010; p. 52. [Google Scholar]
- Amon, B.; Hörtenhuber, S. Implementierung der 2006 IPCC Guidelines und Aktualisierung von Daten zur landwirtschaftlichen Praxis in der Österreichischen Luftschadstoffinventur (OLI), Sektor Landwirtschaft; On behalf of the Environment Agency Austria (Umweltbundesamt GmbH); University of Natural Resources and Life Sciences Vienna: Vienna, Austria, 2014; p. 50. [Google Scholar]
- Gruber, L.; Pötsch, E.M. Calculation of nitrogen excretion of dairy cows in Austria. Die Bodenkult. 2006, 57, 65–72. [Google Scholar]
- Gesellschaft für Ernährungsphysiologie (GfE), Ausschuss für Bedarfsnormen. Energie- und Nährstoffbedarf landwirtschaftlicher Nutztiere. Nr. 6. Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder; DLG: Frankfurt/Main, Germany, 2001; p. 135. [Google Scholar]
- Schechtner, G. Wirtschaftsdünger—Richtige Gewinnung und Anwendung, Sonderausgabe des Förderungsdienst 1991; BMLF: Vienna, Austria, 1991. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4 Agriculture, Forestry and Other Land Use; IPCC: Kyoto, Japan, 2006; Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html (accessed on 10 January 2023).
- Intergovernmental Panel on Climate Change (IPCC). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventorie; IPCC: Kyoto, Japan, 1997; Available online: https://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html (accessed on 10 January 2023).
- Priller, H. Berechnung der N-Ausscheidung für Schweine; Landwirtschaftskammer: Linz, Austria, 2004; p. 10. [Google Scholar]
- Belanche, A.; Newbold, C.; Morgavi, D.; Bach, A.; Zweifel, B.; Yáñez-Ruiz, D. A Meta-Analysis Describing the Effects of the Essential Oils Blend Agolin Ruminant on Performance, Rumen Fermentation and Methane Emissions in Dairy Cows. Animals 2020, 10, 620. [Google Scholar] [CrossRef] [Green Version]
- Ballard, V.; Aubert, T.; Tristant, D.; Schmidely, P. Effects of plants extracts on methane production and milk yield for dairy cows. Rencontres Rech. Rumin. 2011, 18, 141. [Google Scholar]
- Hörtenhuber, S.; Größbacher, V.; Weißensteiner, R.; Veit, M.; Zollitsch, W. Mitigation potential for greenhouse gases and ammonia of a commercial phytogenic feed additive for dairy cows. In Proceedings of the 19. BOKU-Symposium Tierernährung, Vienna, Austria, 15 April 2021. [Google Scholar]
- EFSA (Panel on Additives and Products or Substances used in Animal Feed, FEEDAP). Safety and efficacy of a feed additive consisting of 3-nitrooxypropanol (Bovaer® 10) for ruminants for milk production and reproduction (DSM Nutritional Products Ltd.). EFSA J. 2021, 19, 11. [Google Scholar] [CrossRef]
- National Emission Reduction Commitments Directive. Available online: https://www.eea.europa.eu/themes/air/air-pollution-sources-1/national-emission-ceilings (accessed on 10 January 2023).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge UK; New York, NY, USA, 2022; Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 10 January 2023).
- Gerssen-Gondelach, S.J.; Lauwerijssen, R.B.G.; Havlík, P.; Herrero, M.; Valin, H.; Faaij, A.P.C.; Wicke, B. Intensification Pathways for Beef and Dairy Cattle Production Systems: Impacts on GHG Emissions, Land Occupation and Land Use Change. Agric. Ecosyst. Environ. 2017, 240, 135–147. [Google Scholar] [CrossRef]
- Chang, J.; Peng, S.; Yin, Y.; Ciais, P.; Havlik, P.; Herrero, M. Reply to Comment by Rigolot on “Narratives Behind Livestock Methane Mitigation Studies Matter”. AGU Adv. 2021, 2, e2021AV000526. [Google Scholar] [CrossRef]
- Thornton, P.K. Livestock Production: Recent Trends, Future Prospects. Phil. Trans. R. Soc. B 2010, 365, 2853–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfray, H.C.J.; Garnett, T. Food Security and Sustainable Intensification. Phil. Trans. R. Soc. B 2014, 369, 20120273. [Google Scholar] [CrossRef]
- Dumont, B.; Puillet, L.; Martin, G.; Savietto, D.; Aubin, J.; Ingrand, S.; Niderkorn, V.; Steinmetz, L.; Thomas, M. Incorporating Diversity Into Animal Production Systems Can Increase Their Performance and Strengthen Their Resilience. Front. Sustain. Food Syst. 2020, 4, 109. [Google Scholar] [CrossRef]
- Kahiluoto, H.; Kaseva, J. No Evidence of Trade-Off between Farm Efficiency and Resilience: Dependence of Resource-Use Efficiency on Land-Use Diversity. PLoS ONE 2016, 11, e0162736. [Google Scholar] [CrossRef] [Green Version]
- Gantner, V.; Bobić, T.; Potočnik, K. Prevalence of Metabolic Disorders and Effect on Subsequent Daily Milk quantity and Quality in Holstein Cows. Arch. Anim. Breed. 2016, 59, 381–386. [Google Scholar] [CrossRef]
- Jaramillo-López, E.; Itza-Ortiz, M.F.; Peraza-Mercado, G.; Carrera-Chávez, J.M. Ruminal Acidosis: Strategies for Its Control. Austral J. Vet. Sci. 2017, 49, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Nagata, R.; Kim, Y.-H.; Ohkubo, A.; Kushibiki, S.; Ichijo, T.; Sato, S. Effects of Repeated Subacute Ruminal Acidosis Challenges on the Adaptation of the Rumen Bacterial Community in Holstein Bulls. J. Dairy Sci. 2018, 101, 4424–4436. [Google Scholar] [CrossRef] [Green Version]
- Musco, N.; Tudisco, R.; Grossi, M.; Mastellone, V.; Morittu, V.M.; Pero, M.E.; Wanapat, M.; Trinchese, G.; Cavaliere, G.; Mollica, M.P.; et al. Effect of a High Forags: Concentrate Ratio on Milk Yield, Blood Parameters and Oxidative Status in Lactating Cows. Anim. Prod. Sci. 2020, 60, 1531. [Google Scholar] [CrossRef]
- Dippel, S.; Dolezal, M.; Brenninkmeyer, C.; Brinkmann, J.; March, S.; Knierim, U.; Winckler, C. Risk Factors for Lameness in Freestall-Housed Dairy Cows across Two Breeds, Farming Systems, and Countries. J. Dairy Sci. 2009, 92, 5476–5486. [Google Scholar] [CrossRef] [Green Version]
- Rouha-Mülleder, C.; Iben, C.; Wagner, E.; Laaha, G.; Troxler, J.; Waiblinger, S. Relative Importance of Factors Influencing the Prevalence of Lameness in Austrian Cubicle Loose-Housed Dairy Cows. Prev. Vet. Med. 2009, 92, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Foditsch, C.; Oikonomou, G.; Machado, V.S.; Bicalho, M.L.; Ganda, E.K.; Lima, S.F.; Rossi, R.; Ribeiro, B.L.; Kussler, A.; Bicalho, R.C. Lameness Prevalence and Risk Factors in Large Dairy Farms in Upstate New York. Model Development for the Prediction of Claw Horn Disruption Lesions. PLoS ONE 2016, 11, e0146718. [Google Scholar] [CrossRef] [PubMed]
- van Marle-Köster, E.; Visser, C. Unintended Consequences of Selection for Increased Production on the Health and Welfare of Livestock. Arch. Anim. Breed. 2021, 64, 177–185. [Google Scholar] [CrossRef]
- Band, G.D.O.; Guimarães, S.E.F.; Lopes, P.S.; Schierholt, A.S.; Silva, K.M.; Pires, A.V.; Benevenuto Júnior, A.A.; de Miranda Gomide, L.A. Relationship between the Porcine Stress Syndrome Gene and Pork Quality Traits of F2 Pigs Resulting from Divergent Crosses. Genet. Mol. Biol. 2005, 28, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Walter, K.; Löpmeier, F.J. Fütterung und Haltung von Hochleistungskühen—5. Hochleistungskühe und Klimawandel. VTI Agric. For. Res. 2010, 60, 17–34. [Google Scholar]
- Mayorga, E.J.; Renaudeau, D.; Ramirez, B.C.; Ross, J.W.; Baumgard, L.H. Heat Stress Adaptations in Pigs. Anim. Front. 2019, 9, 54–61. [Google Scholar] [CrossRef]
- Hörtenhuber, S.J.; Schauberger, G.; Mikovits, C.; Schönhart, M.; Baumgartner, J.; Niebuhr, K.; Piringer, M.; Anders, I.; Andre, K.; Hennig-Pauka, I.; et al. The Effect of Climate Change-Induced Temperature Increase on Performance and Environmental Impact of Intensive Pig Production Systems. Sustainability 2020, 12, 9442. [Google Scholar] [CrossRef]
- Schiefer, J.; Lair, G.J.; Blum, W.E.H. Indicators for the Definition of Land Quality as a Basis for the Sustainable Intensification of Agricultural Production. Int. Soil Water Conserv. Res. 2015, 3, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Schoof, N.; Luick, R.; Jürgens, K.; Jones, G. Dairies in Germany: Key Factors for Grassland Conservation? Sustainability 2020, 12, 4139. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Allan, E.; Manning, P.; Alt, F.; Binkenstein, J.; Blaser, S.; Blüthgen, N.; Böhm, S.; Grassein, F.; Hölzel, N.; Klaus, V.H.; et al. Land Use Intensification Alters Ecosystem Multifunctionality via Loss of Biodiversity and Changes to Functional Composition. Ecol. Lett. 2015, 18, 834–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertl, P.; Knaus, W.; Zollitsch, W. An Approach to Including Protein Quality When Assessing the Net Contribution of Livestock to Human Food Supply. Animal 2016, 10, 1883–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertl, P.; Klocker, H.; Hörtenhuber, S.; Knaus, W.; Zollitsch, W. The Net Contribution of Dairy Production to Human Food Supply: The Case of Austrian Dairy Farms. Agric. Syst. 2015, 137, 119–125. [Google Scholar] [CrossRef]
- Eisen, M.B.; Brown, P.O. Rapid Global Phaseout of Animal Agriculture Has the Potential to Stabilize Greenhouse Gas Levels for 30 Years and Offset 68 Percent of CO2 Emissions This Century. PLoS Clim. 2022, 1, e0000010. [Google Scholar] [CrossRef]
- Herrero, M.; Grace, D.; Njuki, J.; Johnson, N.; Enahoro, D.; Silvestri, S.; Rufino, M.C. The Roles of Livestock in Developing Countries. Animal 2013, 7, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Godber, O.F.; Wall, R. Livestock and Food Security: Vulnerability to Population Growth and Climate Change. Glob. Chang. Biol. 2014, 20, 3092–3102. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Long, W.; Chadwick, D.; Velthof, G.L.; Oenema, O.; Ma, W.; Wang, J.; Qin, W.; Hou, Y.; Zhang, F. Can Dietary Manipulations Improve the Productivity of Pigs with Lower Environmental and Economic Cost? A Global Meta-Analysis. Agric. Ecosyst. Environ. 2020, 289, 106748. [Google Scholar] [CrossRef]
- Preißinger, W.; Propstmeier, G.; Scherb, S.; Htoo, J.; Müller, M. Minimierung des Sojaeinsatzes in der Mast von Schweinen (Schweinefütterungsversuch S 91); LfL: Freising, Germany, 2018; Available online: https://www.lfl.bayern.de/mam/cms07/ite/dateien/157718_versuchsbericht.pdf (accessed on 10 January 2023).
- Sajeev, E.P.M.; Amon, B.; Ammon, C.; Zollitsch, W.; Winiwarter, W. Evaluating the Potential of Dietary Crude Protein Manipulation in Reducing Ammonia Emissions from Cattle and Pig Manure: A Meta-Analysis. Nutr. Cycl. Agroecosyst. 2018, 110, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Le Dinh, P.; van der Peet-Schwering, C.; Ogink, N.; Aarnink, A. Effect of Diet Composition on Excreta Composition and Ammonia Emissions from Growing-Finishing Pigs. Animals 2022, 12, 229. [Google Scholar] [CrossRef]
- Sasu-Boakye, Y.; Cederberg, C.; Wirsenius, S. Localising Livestock Protein Feed Production and the Impact on Land Use and Greenhouse Gas Emissions. Animal 2014, 8, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Bellarby, J.; Tirado, R.; Leip, A.; Weiss, F.; Lesschen, J.P.; Smith, P. Livestock Greenhouse Gas Emissions and Mitigation Potential in Europe. Glob. Chang. Biol. 2013, 19, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Hörtenhuber, S.J.; Lindenthal, T.; Zollitsch, W. Reduction of Greenhouse Gas Emissions from Feed Supply Chains by Utilizing Regionally Produced Protein Sources: The Case of Austrian Dairy Production: Greenhouse Gas Emissions from Regional Protein Sources for Dairy Cows. J. Sci. Food Agric. 2011, 91, 1118–1127. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.A.; Tzilivakis, J.; Green, A.; Warner, D.J.; Stedman, A.; Naseby, D. Review of Substances/Agents That Have Direct Beneficial Effect on the Environment: Mode of Action and Assessment of Efficacy. EFS3 2013, 10, 440E. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Green, A.; Warner, D.J. Potential of Feed Additives to Improve the Environmental Impact of European Livestock Farming: A Multi-Issue Analysis. Int. J. Agric. Sustain. 2015, 13, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Reyer, H.; Zentek, J.; Männer, K.; Youssef, I.M.I.; Aumiller, T.; Weghuber, J.; Wimmers, K.; Mueller, A.S. Possible Molecular Mechanisms by Which an Essential Oil Blend from Star Anise, Rosemary, Thyme, and Oregano and Saponins Increase the Performance and Ileal Protein Digestibility of Growing Broilers. J. Agric. Food Chem. 2017, 65, 6821–6830. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited Review: Enteric Methane in Dairy Cattle Production: Quantifying the Opportunities and Impact of Reducing Emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed Additives as a Strategic Approach to Reduce Enteric Methane Production in Cattle: Modes of Action, Effectiveness and Safety. Anim. Prod. Sci. 2021, 62, 1303–1317. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Abdalla, A.L.; Alvarez, C.; Arndt, C.; Becquet, P.; Benchaar, C.; Berndt, A.; Mauricio, R.M.; McAllister, T.A.; et al. Invited Review: Current Enteric Methane Mitigation Options. J. Dairy Sci. 2022, 105, 9297–9326. [Google Scholar] [CrossRef]
- Hindrichsen, I.K.; Wettstein, H.-R.; Machmüller, A.; Kreuzer, M. Methane Emission, Nutrient Degradation and Nitrogen Turnover in Dairy Cows and Their Slurry at Different Milk Production Scenarios with and without Concentrate Supplementation. Agric. Ecosys. Environ. 2006, 113, 150–161. [Google Scholar] [CrossRef]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.M.; Brito, A.F.; Casper, D.P.; Crompton, L.A.; et al. Symposium Review: Uncertainties in Enteric Methane Inventories, Measurement Techniques, and Prediction Models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; IPCC: Kanagawa, Japan, 2000; Available online: https://www.ipcc-nggip.iges.or.jp/public/gp/english/index.html (accessed on 10 January 2023).
Year | Dairy Cows | Suckler Cows | Breeding Heifers 1–2 Years | Fattening Heifers, Bulls, and Oxen 1 1–2 yr | Cattle < 1 Year | Cattle > 2 Year | Breeding Sows | Fattening Pigs | Piglets | |
---|---|---|---|---|---|---|---|---|---|---|
GE 2 intake (MJ/day) | 1990 | 253.8 | 231.8 | 175.4 | 178.1 | 75.9 | 163.4 | 43.7 | 10.9 | 1.88 |
2005 | 290.6 | 247.6 | 171.2 | 175.5 | 83.7 | 158.6 | 45.1 | 10.8 | 1.88 | |
2020 | 315.3 | 252.8 | 176.1 | 177.1 | 82.3 | 167.1 | 51.2 | 11.1 | 1.84 | |
MCF 3 YM (%) | 1990 | 6.50 | 6.50 | 6.30 | 6.30 | 4.34 | 6.30 | 2.04 | 1.00 | 0.33 |
2005 | 6.40 | 6.50 | 6.30 | 6.30 | 4.49 | 6.30 | 2.10 | 1.03 | 0.36 | |
2020 | 6.30 | 6.50 | 6.30 | 6.30 | 3.84 | 6.30 | 2.38 | 1.07 | 0.34 | |
Digestibility (%) | 1990 | 66.5 | 65.3 | 65.1 | 73.5 | 83.5 | 66.7 | 75.2 | 79.9 | 78.4 |
2005 | 69.4 | 66.0 | 65.1 | 73.0 | 80.8 | 65.7 | 75.3 | 80.1 | 78.4 | |
2020 | 71.6 | 66.0 | 65.1 | 72.1 | 82.8 | 66.0 | 76.3 | 82.0 | 80.8 | |
Ash content (kg/kg) | 1990 | 0.083 | 0.110 | 0.102 | 0.069 | 0.081 | 0.090 | 0.066 | 0.047 | 0.059 |
2005 | 0.082 | 0.110 | 0.102 | 0.072 | 0.085 | 0.092 | 0.057 | 0.047 | 0.059 | |
2020 | 0.081 | 0.110 | 0.102 | 0.079 | 0.083 | 0.088 | 0.058 | 0.048 | 0.059 | |
Crude-protein content (kg/kg) | 1990 | 0.137 | 0.119 | 0.118 | 0.121 | 0.171 | 0.119 | 0.174 | 0.181 | 0.183 |
2005 | 0.139 | 0.120 | 0.118 | 0.120 | 0.169 | 0.119 | 0.165 | 0.175 | 0.179 | |
2020 | 0.146 | 0.120 | 0.118 | 0.119 | 0.175 | 0.119 | 0.149 | 0.161 | 0.171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hörtenhuber, S.J.; Größbacher, V.; Schanz, L.; Zollitsch, W.J. Implementing IPCC 2019 Guidelines into a National Inventory: Impacts of Key Changes in Austrian Cattle and Pig Farming. Sustainability 2023, 15, 4814. https://doi.org/10.3390/su15064814
Hörtenhuber SJ, Größbacher V, Schanz L, Zollitsch WJ. Implementing IPCC 2019 Guidelines into a National Inventory: Impacts of Key Changes in Austrian Cattle and Pig Farming. Sustainability. 2023; 15(6):4814. https://doi.org/10.3390/su15064814
Chicago/Turabian StyleHörtenhuber, Stefan J., Verena Größbacher, Lisa Schanz, and Werner J. Zollitsch. 2023. "Implementing IPCC 2019 Guidelines into a National Inventory: Impacts of Key Changes in Austrian Cattle and Pig Farming" Sustainability 15, no. 6: 4814. https://doi.org/10.3390/su15064814
APA StyleHörtenhuber, S. J., Größbacher, V., Schanz, L., & Zollitsch, W. J. (2023). Implementing IPCC 2019 Guidelines into a National Inventory: Impacts of Key Changes in Austrian Cattle and Pig Farming. Sustainability, 15(6), 4814. https://doi.org/10.3390/su15064814