Approaches and Applications of Mentha Species in Sustainable Agriculture
Abstract
:1. Introduction
2. Target: Microorganisms
2.1. Antibacterial Activity
2.2. Antifungal Activity
2.3. Yeast Diseases Management
3. Target: Animals
3.1. Instecticidal Activity
3.2. Acaricidal Activity
3.3. Nematicidal Activity
4. Target: Plant (Weeds and Crops)
4.1. Herbicidal Activity
4.2. Crops Phytotoxicity
5. Modes of Application
6. Constraints and Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorman, H.J.D.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M.J. Characterisation of the Antioxidant Properties of De-Odourised Aqueous Extracts from Selected Lamiaceae Herbs. Food Chem. 2003, 83, 255–262. [Google Scholar] [CrossRef]
- Tucker, A.O.; Naczi, R.F.C. Mentha: An Overview of Its Classification and Relationships. In Mint: The Genus Mentha; Lawrence, B.M., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 1–40. [Google Scholar]
- Mamadalieva, N.Z.; Hussain, H.; Xiao, J. Recent Advances in Genus Mentha: Phytochemistry, Antimicrobial Effects, and Food Applications. Food Front. 2020, 1, 435–458. [Google Scholar] [CrossRef]
- Karousou, R.; Lanaras, T.; Kokkini, S. Piperitone Oxide-Rich Essential Oils from Mentha longifolia Subsp. petiolata and M. × Villoso-Nervata Grown Wild on the Island of Crete (S Greece). J. Essent. Oil Res. 1998, 10, 375–379. [Google Scholar] [CrossRef]
- Kokkini, S.; Hanlidou, E.; Karousou, R.; Lanaras, T. Variation of Pulegone Content in Pennyroyal (Mentha pulegium L.) Plants Growing Wild in Greece. J. Essent. Oil Res. 2002, 14, 224–227. [Google Scholar] [CrossRef]
- Morris, M. Commercial Mint Species Grown in the United States. In Mint: The Genus Mentha; Lawrence, B.M., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2006; pp. 87–136. ISBN 978-0-8493-0779-9. [Google Scholar]
- Kokkini, S. Taxonomic Studies in the Genus Mentha L. in Greece. Ph.D. Dissertation, Aristotle University of Thessaloniki, Thessaloniki, Greece, 1983. [Google Scholar]
- Vining, K.J.; Hummer, K.E.; Bassil, N.V.; Lange, B.M.; Khoury, C.K.; Carver, D. Crop Wild Relatives as Germplasm Resource for Cultivar Improvement in Mint (Mentha L.). Front. Plant Sci. 2020, 11, 1217. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.M. Mint: The Genus Mentha; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2006; ISBN 978-0-429-12587-4. [Google Scholar]
- Salehi, B.; Stojanović-Radić, Z.; Matejić, J.; Sharopov, F.; Antolak, H.; Kręgiel, D.; Sen, S.; Sharifi-Rad, M.; Acharya, K.; Sharifi-Rad, R.; et al. Plants of Genus Mentha: From Farm to Food Factory. Plants 2018, 7, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catani, L.; Grassi, E.; Cocozza di Montanara, A.; Guidi, L.; Sandulli, R.; Manachini, B.; Semprucci, F. Essential Oils and Their Applications in Agriculture and Agricultural Products: A Literature Analysis through VOSviewer. Biocatal. Agric. Biotechnol. 2022, 45, 102502. [Google Scholar] [CrossRef]
- Isman, M.B. Bioinsecticides Based on Plant Essential Oils: A Short Overview. Z. Für Nat. C 2020, 75, 179–182. [Google Scholar] [CrossRef]
- Scognamiglio, M.; D’Abrosca, B.; Esposito, A.; Pacifico, S.; Monaco, P.; Fiorentino, A. Plant Growth Inhibitors: Allelopathic Role or Phytotoxic Effects? Focus on Mediterranean Biomes. Phytochem. Rev. 2013, 12, 803–830. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, A.K. Prospective of Essential Oils of the Genus Mentha as Biopesticides: A Review. Front. Plant Sci. 2018, 9, 1295. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidhyasekaran, P. Bacterial Disease Resistance in Plants: Molecular Biology and Biotechnological Applications; Food Products Press: New York, NY, USA, 2002; ISBN 978-1-56022-924-7. [Google Scholar]
- Agrios, G.N. Plant Pathology; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 978-0-08-047378-9. [Google Scholar]
- Cuppels, D.A.; Elmhirst, J. Disease Development and Changes in the Natural Pseudomonas Syringae Pv. Tomato Populations on Field Tomato Plants. Plant Dis. 1999, 83, 759–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perricone, M.; Arace, E.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Bioactivity of Essential Oils: A Review on Their Interaction with Food Components. Front. Microbiol. 2015, 7, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Işcan, G.; Kirimer, N.; Kürkcüoğlu, M.; Başer, K.H.C.; Demirci, F. Antimicrobial Screening of Mentha piperita Essential Oils. J. Agric. Food Chem. 2002, 50, 3943–3946. [Google Scholar] [CrossRef] [PubMed]
- Choi, O.; Cho, S.K.; Kim, J.; Park, C.G.; Kim, J. Antibacterial Properties and Major Bioactive Components of Mentha piperita Essential Oils against Bacterial Fruit Blotch of Watermelon. Arch. Phytopathol. Plant Prot. 2016, 49, 325–334. [Google Scholar] [CrossRef]
- Vasinauskienė, M.; Radušienė, J.; Zitikaitė, I.; Survilienė, E. Antibacterial Activities of Essential Oils from Aromatic and Medicinal Plants against Growth of Phytopathogenic Bacteria. Agron. Res. 2006, 4, 437–440. [Google Scholar]
- Shetta, A.; Kegere, J.; Mamdouh, W. Comparative Study of Encapsulated Peppermint and Green Tea Essential Oils in Chitosan Nanoparticles: Encapsulation, Thermal Stability, in-Vitro Release, Antioxidant and Antibacterial Activities. Int. J. Biol. Macromol. 2019, 126, 731–742. [Google Scholar] [CrossRef]
- Soltani, J.; Aliabadi, A.A. Antibacterial Effects of Several Plant Extracts and Essential Oils on Xanthomonas Arboricola Pv. Juglandis in Vitro. J. Essent. Oil Bear. Plants 2013, 16, 461–468. [Google Scholar] [CrossRef]
- Domingues, P.; Santos, L. Essential Oil of Pennyroyal (Mentha pulegium): Composition and Applications as Alternatives to Pesticides—New Tendencies. Ind. Crop. Prod. 2019, 139, 111534. [Google Scholar] [CrossRef]
- Bouyahya, A.; Et-Touys, A.; Bakri, Y.; Talbaui, A.; Fellah, H.; Abrini, J.; Dakka, N. Chemical Composition of Mentha pulegium and Rosmarinus Officinalis Essential Oils and Their Antileishmanial, Antibacterial and Antioxidant Activities. Microb. Pathog. 2017, 111, 41–49. [Google Scholar] [CrossRef]
- El Asbahani, A.; Jilale, A.; Voisin, S.N.; Addi, E.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.J.; Renaud, F.N.R. Chemical Composition and Antimicrobial Activity of Nine Essential Oils Obtained by Steam Distillation of Plants from the Souss-Massa Region (Morocco). J. Essent. Oil Res. 2015, 27, 34–44. [Google Scholar] [CrossRef]
- Sarac, N.; Ugur, A. The in Vitro Antimicrobial Activities of the Essential Oils of Some Lamiaceae Species from Turkey. J. Med. Food 2009, 12, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Tutar, U.; Çelik, C.; Karaman, İ.; Ataş, M.; Hepokur, C. Anti-Biofilm and Antimicrobial Activity of Mentha pulegium L Essential Oil against Multidrug-Resistant Acinetobacter Baumannii. Trop. J. Pharm. Res. 2016, 15, 1039–1046. [Google Scholar] [CrossRef] [Green Version]
- Kokošková, B.; Pouvova, D.; Pavela, R. Effectiveness of Plant Essential Oils against Erwinia Amylovora, Pseudomonas Syringae Pv. Syringae and Associated Saprophytic Bacteria on/in Host Plants. J. Plant Pathol. 2011, 93, 133–139. [Google Scholar]
- Vanneste, J.L. Fire Blight: The Disease and Its Causative Agent, Erwinia Amylovora; CABI Pub: Oxford, UK; New York, NY, USA, 2000; ISBN 978-0-85199-294-5. [Google Scholar]
- Renick, L.J.; Cogal, A.G.; Sundin, G.W. Phenotypic and Genetic Analysis of Epiphytic Pseudomonas Syringae Populations from Sweet Cherry in Michigan. Plant Dis. 2008, 92, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Benali, T.; Bouyahya, A.; Habbadi, K.; Zengin, G.; Khabbach, A.; Achbani, E.H.; Hammani, K. Chemical Composition and Antibacterial Activity of the Essential Oil and Extracts of Cistus Ladaniferus Subsp. Ladanifer and Mentha Suaveolens against Phytopathogenic Bacteria and Their Ecofriendly Management of Phytopathogenic Bacteria. Biocatal. Agric. Biotechnol. 2020, 28, 101696. [Google Scholar] [CrossRef]
- Kotan, R.; Kordali, S.; Cakir, A. Screening of Antibacterial Activities of Twenty-One Oxygenated Monoterpenes. Z. Nat. C J. Biosci. 2007, 62, 507–513. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of Antibacterial Action of Three Monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. Antibacterial and Antifungal Properties of Essential Oil Components. J. Essent. Oil Res. 1989, 1, 119–128. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The Mode of Antimicrobial Action of the Essential Oil of Melaleuca Alternifolia (Tea Tree Oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef]
- Sivropoulou, A.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial Activity of Mint Essential Oils. J. Agric. Food Chem. 1995, 43, 2384–2388. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, F.; Ji, B.-P.; Pei, R.-S.; Xu, N. The Antibacterial Mechanism of Carvacrol and Thymol against Escherichia Coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef]
- Rhouma, A.; Houcine, B.; Ghanmi, S.; Ben Salah, H.; Romdhane, M.; Demak, M. Antimicrobial Activities of Leaf Extracts of Pistacia and Schinus Species against Some Plant Pathogenic Fungi and Bacteria. J. Plant Pathol. 2009, 91, 339–345. [Google Scholar]
- Sharma, V.; Gautam, D.N.S.; Radu, A.-F.; Behl, T.; Bungau, S.G.; Vesa, C.M. Reviewing the Traditional/Modern Uses, Phytochemistry, Essential Oils/Extracts and Pharmacology of Embelia Ribes Burm. Antioxidants 2022, 11, 1359. [Google Scholar] [CrossRef] [PubMed]
- Khuntia, A.; Martorell, M.; Ilango, K.; Bungau, S.G.; Radu, A.-F.; Behl, T.; Sharifi-Rad, J. Theoretical Evaluation of Cleome Species’ Bioactive Compounds and Therapeutic Potential: A Literature Review. Biomed. Pharmacother. 2022, 151, 113161. [Google Scholar] [CrossRef] [PubMed]
- Ghitea, T.C.; Bungau, S.; Tit, D.M.; Purza, L.; Otrisal, P.; Aleya, L.; Cioca, G.; Pantis, C.; Lazar, L. The Effects of Oregano Oil on Fungal Infections Associated with Metabolic Syndrome. Rev. Chim. 2020, 71, 335–341. [Google Scholar] [CrossRef]
- Soković, M.; van Griensven, L.J.L.D. Antimicrobial Activity of Essential Oils and Their Components against the Three Major Pathogens of the Cultivated Button Mushroom, Agaricus Bisporus. Eur. J. Plant Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Kadoglidou, K.; Chatzopoulou, P.; Maloupa, E.; Kalaitzidis, A.; Ghoghoberidze, S.; Katsantonis, D. Mentha and Oregano Soil Amendment Induces Enhancement of Tomato Tolerance against Soilborne Diseases, Yield and Quality. Agronomy 2020, 10, 406. [Google Scholar] [CrossRef] [Green Version]
- Beyki, M.; Zhaveh, S.; Khalili, S.T.; Rahmani-Cherati, T.; Abollahi, A.; Bayat, M.; Tabatabaei, M.; Mohsenifar, A. Encapsulation of Mentha Piperita Essential Oils in Chitosan–Cinnamic Acid Nanogel with Enhanced Antimicrobial Activity against Aspergillus Flavus. Ind. Crop. Prod. 2014, 54, 310–319. [Google Scholar] [CrossRef]
- Kadoglidou, K.; Lagopodi, A.; Karamanoli, K.; Vokou, D.; Bardas, G.A.; Menexes, G.; Constantinidou, H.-I.A. Inhibitory and Stimulatory Effects of Essential Oils and Individual Monoterpenoids on Growth and Sporulation of Four Soil-Borne Fungal Isolates of Aspergillus Terreus, Fusarium Oxysporum, Penicillium Expansum, and Verticillium Dahliae. Eur. J. Plant Pathol. 2011, 130, 297–309. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Chen, Y.; Li, Z.-J.; Li, X.; Fan, G. Bioactive Properties of the Aromatic Molecules of Spearmint (Mentha spicata L.) Essential Oil: A Review. Food Funct. 2022, 13, 3110–3132. [Google Scholar] [CrossRef]
- Benomari, F.Z.; Andreu, V.; Kotarba, J.; Dib, M.E.A.; Bertrand, C.; Muselli, A.; Costa, J.; Djabou, N. Essential Oils from Algerian Species of Mentha as New Bio-Control Agents against Phytopathogen Strains. Environ. Sci. Pollut. Res. 2018, 25, 29889–29900. [Google Scholar] [CrossRef] [PubMed]
- Guerra, I.C.D.; de Oliveira, P.D.L.; de Souza Pontes, A.L.; Lúcio, A.S.S.C.; Tavares, J.F.; Barbosa-Filho, J.M.; Madruga, M.S.; de Souza, E.L. Coatings Comprising Chitosan and Mentha piperita L. or Mentha × Villosa Huds Essential Oils to Prevent Common Postharvest Mold Infections and Maintain the Quality of Cherry Tomato Fruit. Int. J. Food Microbiol. 2015, 214, 168–178. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, K.Á.R.; Berger, L.R.R.; de Araújo, S.A.; Câmara, M.P.S.; de Souza, E.L. Synergistic Mixtures of Chitosan and Mentha piperita L. Essential Oil to Inhibit Colletotrichum Species and Anthracnose Development in Mango Cultivar Tommy Atkins. Food Microbiol. 2017, 66, 96–103. [Google Scholar] [CrossRef]
- Gholamipourfard, K.; Salehi, M.; Banchio, E. Review: Mentha piperita Phytochemicals in Agriculture, Food Industry and Medicine: Features and Applications. S. Afr. J. Bot. 2021, 141, 183–195. [Google Scholar] [CrossRef]
- Dambolena, J.S.; López, A.G.; Cánepa, M.C.; Theumer, M.G.; Zygadlo, J.A.; Rubinstein, H.R. Inhibitory Effect of Cyclic Terpenes (Limonene, Menthol, Menthone and Thymol) on Fusarium Verticillioides MRC 826 Growth and Fumonisin B1 Biosynthesis. Toxicon 2008, 51, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.; Pourbaige, M.; Tabar, H.K.; Farhadi, N.; Hosseini, S.M.A. Composition and Antifungal Activity of Peppermint (Mentha Piperita) Essential Oil from Iran. J. Essent. Oil Bear. Plants 2013, 16, 506–512. [Google Scholar] [CrossRef]
- Hanana, M.; Mansour, M.; Algabr, M.; Ismail, A.; Gargouri, S.; Abderrahmane, R.; Jamoussi, B.; Hamrouni, L. Potential Use of Essential Oils from Four Tunisian Species of Lamiaceae: Biological Alternative for Fungal and Weed Control. Rec. Nat. Prod. 2017, 11, 258–269. [Google Scholar]
- Kouassi, H.; Bajji, M.; Brostaux, Y.; Zhiri, A.; Samb, A.; Lepoivre, P.; Jijakli, M. Development and Application of a Microplate Method to Evaluate the Efficacy of Essential Oils against Penicillium Italicum Wehmer, Penicillium Digitatum Sacc. and Colletotrichum Musea (Berk. & M.A. Curtis) Arx, Three Postharvest Fungal Pathogens of Fruits. Biotechnol. Agron. Soc. Environ. 2012, 16, 325–336. [Google Scholar]
- Hajlaoui, H.; Trabelsi, N.; Noumi, E.; Mejdi, S.; Fallah, H.; Riadh, K.; Bakhrouf, A. Biological Activities of the Essential Oils and Methanol Extract of Tow Cultivated Mint Species (Mentha longifolia and Mentha pulegium) Used in the Tunisian Folkloric Medicine. World J. Biotec. Microbiol. 2009, 25, 2227–2238. [Google Scholar] [CrossRef]
- Silva, K.V.P.; Guerra, Y.L.; Alves, G.M.R.; Melo-Filho, P.A.; Lima, L.M.; Santos, R.C.; Silva, K.V.P.; Guerra, Y.L.; Alves, G.M.R.; Melo-Filho, P.A.; et al. Selectivity of Geraniol Synthase in Aromatic Species to Control of Cotton Ramulosis. Chil. J. Agric. Res. 2018, 78, 287–298. [Google Scholar] [CrossRef] [Green Version]
- Matos, O. Aromatic Plants as Sources of Photoactive Biological Products Useful to Crop Protection. Acta Hortic. 2012, 933, 531–537. [Google Scholar] [CrossRef]
- Kalemba, D.; Synowiec, A. Agrobiological Interactions of Essential Oils of Two Menthol Mints: Mentha Piperita and Mentha arvensis. Molecules 2019, 25, 59. [Google Scholar] [CrossRef] [Green Version]
- Tsao, R.; Zhou, T. Antifungal Activity of Monoterpenoids against Postharvest Pathogens Botrytis Cinerea and Monilinia Fructicola. J. Essent. Oil Res. 2000, 12, 113–121. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal Variation in Content, Chemical Composition and Antimicrobial and Cytotoxic Activities of Essential Oils from Four Mentha Species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef]
- Üstüner, T.; Kordali, S.; Usanmaz Bozhüyük, A. Herbicidal and Fungicidal Effects of Cuminum Cyminum, Mentha longifolia and Allium Sativum Essential Oils on Some Weeds and Fungi. Rec. Nat. Prod. 2018, 12, 619–629. [Google Scholar] [CrossRef]
- Al-Mughrabi, K.I.; Coleman, W.K.; Vikram, A.; Poirier, R.; Jayasuriya, K.E. Effectiveness of Essential Oils and Their Combinations with Aluminum Starch Octenylsuccinate on Potato Storage Pathogens. J. Essent. Oil Bear. Plants 2013, 16, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Ait Ouazzou, A.; Lorán, S.; Arakrak, A.; Laglaoui, A.; García, C.; Herrera, A.; Pagán, R.; Conchello, P. Evaluation of the Chemical Composition and Antimicrobial Activity of Mentha pulegium, Juniperus Phoenicea, and Cyperus Longus Essential Oils from Morocco. Food Res. Int. 2012, 45, 313–319. [Google Scholar] [CrossRef]
- Fancello, F.; Zara, S.; Petretto, G.L.; Chessa, M.; Addis, R.; Rourke, J.P.; Pintore, G. Essential Oils from Three Species of Mentha harvested in Sardinia: Chemical Characterization and Evaluation of Their Biological Activity. Int. J. Food Prop. 2017, 20, 1751–1761. [Google Scholar] [CrossRef] [Green Version]
- Abdelli, M.; Assia, A.; Houria, M.; Rachida, M. Algerian Mentha pulegium L. Leaves Essential Oil: Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activitie. Ind. Crop. Prod. 2016, 94, 197–205. [Google Scholar] [CrossRef]
- Ghazghazi, H.; Chedia, A.; Weslati, M.; Trakhna, F.; Houssine, S.; Abderrazak, M.; Brahim, H. Chemical Composition and in Vitro Antimicrobial Activities of Mentha pulegium Leaves Extracts against Foodborne Pathogens. J. Food Saf. 2013, 33, 239–246. [Google Scholar] [CrossRef]
- Mahboubi, M.; Haghi, G. Antimicrobial Activity and Chemical Composition of Mentha pulegium L. Essential Oil. J. Ethnopharmacol. 2008, 119, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Riahi, L.; Miryam, E.; Ghazghazi, H.; Jebali, J.; Ziadi, S.; Aouadhi, C.; Chograni, H.; Zaouali, Y.; Zoghlami, N.; Mliki, A. Phytochemistry, Antioxidant and Antimicrobial Activities of the Essential Oils of Mentha rotundifolia L. in Tunisia. Ind. Crop. Prod. 2013, 49, 883–889. [Google Scholar] [CrossRef]
- Al-Bayati, F.A. Isolation and Identification of Antimicrobial Compound from Mentha longifolia L. Leaves Grown Wild in Iraq. Ann. Clin. Microbiol. Antimicrob. 2009, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and Antifungal Activity of Essential Oils of Mentha suaveolens. Phytother. Res. 2002, 16, 727–731. [Google Scholar] [CrossRef]
- Conner, D.E.; Beuchat, L.R. Effects of Essential Oils from Plants on Growth of Food Spoilage Yeasts. J. Food Sci. 1984, 49, 429–434. [Google Scholar] [CrossRef]
- Ferreira, P.; Cardoso, T.; Ferreira, F.; Fernandes-Ferreira, M.; Piper, P.; Sousa, M.J. Mentha Piperita Essential Oil Induces Apoptosis in Yeast Associated with Both Cytosolic and Mitochondrial ROS-Mediated Damage. FEMS Yeast Res. 2014, 14, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Isman, M.B. Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Insecticidal Properties of Mentha Species: A Review. Ind. Crop. Prod. 2011, 34, 802–817. [Google Scholar] [CrossRef]
- Hori, M. Antifeeding, Settling Inhibitory and Toxic Activities of Labiate Essential Oils against the Green Peach Aphid, Myzus Persicae (Sulzer) (Homoptera: Aphididae). Appl. Entomol. Zool. 1999, 34, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Barros, G.; Magro, A.; Conceição, C.; Matos, O.; Barbosa, A.; Bastos, M.M.S.M.; Mexia, A. The Use of Laurus Nobilis and Mentha pulegium Essential Oils against Sitophilus Zeamais (Coleoptera: Curculionidae) on Stored Maize. Rev. Cienc. Agrar. 2015, 38, 191–195. [Google Scholar] [CrossRef]
- Rocha, D.; Novo, M.; Matos, O.; Figueiredo, A.; Delgado, M.; Cabral, M.; Liberato, M.; Moiteiro, C. Potential of Mentha pulegium for Mosquito Control Potencialidade Da Menta Pulegium No Controlo de Mosquitos. Rev. Cienc. Agrar. 2015, 38, 155–165. [Google Scholar]
- Lougraimzi, H.; El Iraqui, S.; Bouaichi, A.; Gouit, S.; Achbani, E.H.; Fadli, M. Insecticidal Effect of Essential Oil and Powder of Mentha pulegium L. Leaves against Sitophilus oryzae (Linnaeus, 1763) and Tribolium castaneum (Herbst, 1797) (Coleoptera: Curculionidae, Tenebrionidae), the Main Pests of Stored Wheat in Morocco. Pol. J. Entomol. 2018, 87, 263–278. [Google Scholar] [CrossRef]
- Sohani, N. Efficiency of Labiateae Plants Essential Oils against Adults of Cotton Whitefly (Bemisia tabaci). Indian J. Agric. Sci. 2011, 81, 1164–1167. [Google Scholar]
- Lamiri, A.; Lhaloui, S.; Benjilali, B.; Lamiri, A.; Lhaloui, S.; Benjilali, B.; Berrada, M. Insecticidal Effects of Essential Oils against Hessian Fly, Mayetiola Destructor (Say). Field Crops Research. Field Crop. Res. 2001, 71, 9–15. [Google Scholar] [CrossRef]
- Pavlidou, V.; Franzios, G.; Skouras, Z.; Mavragani-Tsipidou, P.; Karpouhtsis, I.; Zambetaki, A. Insecticidal and Genotoxic Effects of Essential Oils of Greek Sage, Salvia fruticosa, and Mint, Mentha pulegium, on Drosophila Melanogaster and Bactrocera Oleae (Diptera: Tephritidae). J. Agric. Urban Entomol. 2004, 21, 29–39. [Google Scholar]
- Darabi, K.; Khajehali, J. Bioactivity of Essential Oils of Mentha Species and Cuminum cyminum L. on Anarta trifolii (Hufnagel) (Lepidoptera: Noctuidae). J. Essent. Oil Bear. Plants 2017, 20, 1097–1106. [Google Scholar] [CrossRef]
- Salem, N.; Bachrouch, O.; Sriti, J.; Msaada, K.; Khammassi, S.; Hammami, M.; Selmi, S.; Boushih, E.; Koorani, S.; Abderraba, M.; et al. Fumigant and Repellent Potentials of Ricinus Communis and Mentha pulegium Essential Oils against Tribolium castaneum and Lasioderma serricorne. Int. J. Food Prop. 2017, 20, S2899–S2913. [Google Scholar] [CrossRef] [Green Version]
- Ebadollahi, A.; Davari, M.; Razmjou, J.; Naseri, B. Separate and Combined Effects of Mentha Piperata and Mentha pulegium Essential Oils and a Pathogenic Fungus Lecanicillium Muscarium Against Aphis Gossypii (Hemiptera: Aphididae). J. Econ. Entomol. 2017, 110, 1025–1030. [Google Scholar] [CrossRef]
- Kimbaris, A.C.; González-Coloma, A.; Andrés, M.F.; Vidali, V.P.; Polissiou, M.G.; Santana-Méridas, O. Biocidal Compounds from Mentha Sp. Essential Oils and Their Structure-Activity Relationships. Chem. Biodivers. 2017, 14, e1600270. [Google Scholar] [CrossRef]
- Santana, O.; Andrés, M.F.; Sanz, J.; Errahmani, N.; Abdeslam, L.; González-Coloma, A. Valorization of Essential Oils from Moroccan Aromatic Plants. Nat. Prod. Commun. 2014, 9, 1934578X1400900812. [Google Scholar] [CrossRef] [Green Version]
- Szczepanik, M.; Grudniewska, A.; Zawitowska, B.; Wawrzeńczyk, C. Structure-Related Antifeedant Activity of Halolactones with a p-Menthane System against the Lesser Mealworm, Alphitobius Diaperinus Panzer. Pest Manag. Sci. 2014, 70, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Odeyemi, O.; Masika, P.J.; Afolayan, A. Insecticidal Activities of Essential Oil from the Leaves of Mentha Longifolia L. Subsp. Capensis against Sitophilus Zeamais (Motschulsky) (Coleoptera: Curculionidae). Afr. Entomol. 2009, 16, 220–225. [Google Scholar] [CrossRef]
- Khani, A.; Asghari, J. Insecticide Activity of Essential Oils of Mentha longifolia, Pulicaria gnaphalodes and Achillea wilhelmsii against Two Stored Product Pests, the Flour Beetle, Tribolium castaneum, and the Cowpea Weevil, Callosobruchus maculatus. J. Insect Sci. 2012, 12, 73. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Shukla, R.; Singh, P.; Singh, A.K.; Dubey, N.K. Use of Essential Oil from Mentha Arvensis L. to Control Storage Moulds and Insects in Stored Chickpea. J. Sci. Food Agric. 2009, 89, 2643–2649. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, B.H.; Choi, W.S.; Park, B.S.; Kim, J.G.; Campbell, B.C. Fumigant Toxicity of Volatile Natural Products from Korean Spices and Medicinal Plants towards the Rice Weevil, Sitophilus oryzae (L). Pest Manag. Sci. 2001, 57, 548–553. [Google Scholar] [CrossRef]
- Varma, J.; Dubey, N.K. Efficacy of Essential Oils of Caesulia Axillaris and Mentha Arvensis against Some Storage Pests Causing Biodeterioration of Food Commodities. Int. J. Food Microbiol. 2001, 68, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Koschier, E.H.; Sedy, K.A.; Novak, J. Influence of Plant Volatiles on Feeding Damage Caused by the Onion Thrips Thrips Tabaci. Crop. Prot. 2002, 21, 419–425. [Google Scholar] [CrossRef]
- Mishra, B.B.; Tripathi, S.P.; Tripathi, C.P.M. Sub-Lethal Activity of Plant Volatile Essential Oils in Management of Red Flour Beetle Tribolium castaneum (Coleoptera: Tenebrionidae). J. Essent. Oil Bear. Plants 2014, 17, 1211–1218. [Google Scholar] [CrossRef]
- Park, C.G.; Jang, M.; Yoon, K.A.; Kim, J. Insecticidal and Acetylcholinesterase Inhibitory Activities of Lamiaceae Plant Essential Oils and Their Major Components against Drosophila Suzukii (Diptera: Drosophilidae). Ind. Crop. Prod. 2016, 89, 507–513. [Google Scholar] [CrossRef]
- Lee, B.-H.; Lee, S.-E.; Annis, P.C.; Pratt, S.J.; Park, B.-S.; Tumaalii, F. Fumigant Toxicity of Essential Oils and Monoterpenes Against the Red Flour Beetle, Tribolium castaneum Herbst. J. Asia-Pac. Entomol. 2002, 5, 237–240. [Google Scholar] [CrossRef]
- Çam, H.; Karakoç, Ö.C.; Gökçe, A.; Telci, İ.; Demirtaş, İ. Fumigant toxicity of different Mentha species against granary weevil [Sitophilus granarius L. (Coleoptera: Curculionidae)]. Turk. J. Entomol. 2012, 36, 255–264. [Google Scholar]
- Koundal, R.; DOLMA, S.; Chand, G.; Agnihotri, V.; Reddy, S.G.E. Chemical Composition and Insecticidal Properties of Essential Oils against Diamondback Moth (Plutella xylostella L.). Toxin Rev. 2018, 39, 371–381. [Google Scholar] [CrossRef]
- Saeidi, K.; Mirfakhraie, S. Chemical Composition and Insecticidal Activity Mentha Piperita L. Essential Oil against the Cowpea Seed Beetle Callosobruchus Maculatus F. (Coleoptera: Bruchidae). J. Entomol. Acarol. Res. 2017, 49, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Souza, V.N.D.; Oliveira, C.R.F.D.; Matos, C.H.C.; Almeida, D.K.F.D. Fumigation Toxicity of Essential Oils against Rhyzopertha Dominica (f.) in Stored Maize Grain. Rev. Caatinga 2016, 29, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Chanotiya, C.S.; Dubey, N.K. Antifungal, Antiaflatoxigenic, and Insecticidal Efficacy of Spearmint (Mentha spicata L.) Essential Oil. Int. Biodeterior. Biodegrad. 2014, 89, 29–36. [Google Scholar] [CrossRef]
- Eliopoulos, P.A.; Hassiotis, C.N.; Andreadis, S.S.; Porichi, A.-E.E. Fumigant Toxicity of Essential Oils from Basil and Spearmint Against Two Major Pyralid Pests of Stored Products. J. Econ. Entomol. 2015, 108, 805–810. [Google Scholar] [CrossRef]
- Saroukolai, A.; Nouri-Ganbalani, G.; Rafiee Dastjerdi, H.; Hadian, J. Antifeedant Activity and Toxicity of Some Plant Essential Oils to Colorado Potato Beetle, Leptinotarsa Decemlineata Say (Coleoptera: Chrysomelidae). Plant Prot. Sci. 2014, 50, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Aslan, İ.; Telci, I.; Calmasur, Ö.; Cam, H. Toxicity of Essential Oil Vapours Obtained from Several Plants Species against the Granary Weevil, Sitophilus granarius (L.). Fresenius Environ. Bull. 2009, 18, 1717–1722. [Google Scholar]
- Yang, X.; Han, H.; Li, B.; Zhang, D.; Zhang, Z.; Xie, Y. Fumigant Toxicity and Physiological Effects of Spearmint (Mentha spicata, Lamiaceae) Essential Oil and Its Major Constituents against Reticulitermes dabieshanensis. Ind. Crop. Prod. 2021, 171, 113894. [Google Scholar] [CrossRef]
- Allahvaisi, S. Reducing Insects Contaminations through Stored Foodstuffs by Use of Packaging and Repellency Essential Oils. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 21–24. [Google Scholar] [CrossRef]
- Yakhlef, G.; Hambaba, L.; Pinto, D.C.G.A.; Silva, A.M.S. Chemical Composition and Insecticidal, Repellent and Antifungal Activities of Essential Oil of Mentha rotundifolia (L.) from Algeria. Ind. Crops Prod. 2020, 158, 112988. [Google Scholar] [CrossRef]
- Jacobson, M. Botanical Pesticides: Past, Present and Future. In Insecticides of Plant in Origin; Arnason, J.J., Philogene, B.R., Morand, P., Eds.; ACS Symposium Series (ACS Publications): Washington, DC, USA, 1989; pp. 1–10. [Google Scholar]
- Rajkumar, V.; Gunasekaran, C.; Christy, I.K.; Dharmaraj, J.; Chinnaraj, P.; Paul, C.A. Toxicity, Antifeedant and Biochemical Efficacy of Mentha piperita L. Essential Oil and Their Major Constituents against Stored Grain Pest. Pestic. Biochem. Physiol. 2019, 156, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Fournier, D.; Mutero, A. Modification of Acetylcholinesterase as a Mechanism of Resistance to Insecticides. Comp. Biochem. Physiology. C Pharmacol. Toxicol. Endocrinol. 1994, 108, 19–31. [Google Scholar] [CrossRef]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of Octopaminergic Receptors by Essential Oil Constituents Isolated from Aromatic Plants: Possible Mode of Action against Insect Pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Eli Shaaya and Moshe Kostyukovysky Essential Oils: Potency against Stored Product Insects and Mode of Action. Stewart Postharvest Rev. 2006, 2, 1–6. [CrossRef]
- Pare, P.W.; Tumlinson, J.H. Plant Volatiles as a Defense against Insect Herbivores. Plant Physiol. 1999, 121, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topuz, E.; Madanlar, N.; Erler, F. Evaluation of Fumigant Toxicity of Mentha pulegium Essential Oil against Tetranychus Cinnabarinus under Greenhouse Conditions. Fresenius Environ. Bull. 2012, 21, 2739–2745. [Google Scholar]
- Attia, S.; Grissa, K.L.; Ghrabi, Z.G.; Mailleux, A.C.; Lognay, G.; Hance, T. Acaricidal Activity of 31 Essential Oils Extracted from Plants Collected in Tunisia. J. Essent. Oil Res. 2012, 24, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R.; Shchenikova, A.; Stepanycheva, E.; Petrova, M.; Chermenskaya, T. Essential Oils as Prospective Fumigants against Tetranychus Urticae Koch. Ind. Crop. Prod. 2016, 94, 755–761. [Google Scholar] [CrossRef]
- Topuz, E.; Madanlar, N.; Erler, F. Chemical Composition, Toxic and Development- and Reproduction-Inhibiting Effects of Some Essential Oils against Tetranychus Urticae Koch (Acarina: Tetranychidae) as Fumigants. J. Plant Dis. Prot. 2018, 125, 377–387. [Google Scholar] [CrossRef]
- Zandi-Sohani, N.; Ramezani, L. Evaluation of Five Essential Oils as Botanical Acaricides against the Strawberry Spider Mite Tetranychus Turkestani Ugarov and Nikolskii. Int. Biodeterior. Biodegrad. 2015, 98, 101–106. [Google Scholar] [CrossRef]
- Jeon, Y.-J.; Lee, H.-S. Chemical Composition and Acaricidal Activities of Essential Oils of Litsea Cubeba Fruits and Mentha Arvensis Leaves Against House Dust and Stored Food Mites. J. Essent. Oil Bear. Plants 2016, 19, 1721–1728. [Google Scholar] [CrossRef]
- Park, J.-H.; Yang, J.-Y.; Lee, H.-S. Acaricidal Activity of Constituents Derived from Peppermint Oil against Tyrophagus Putrescentiae. J. Food Prot. 2014, 77, 1819–1823. [Google Scholar] [CrossRef]
- Delaplane, K.S. Controlling Tracheal Mites (Acari: Tarsonemidae) in Colonies of Honey Bees (Hymenoptera: Apidae) with Vegetable Oil and Menthol. J. Econ. Entomol. 1992, 85, 2118–2124. [Google Scholar] [CrossRef]
- Floris, I.; Satta, A.; Cabras, P.; Garau, V.L.; Angioni, A. Comparison between Two Thymol Formulations in the Control of Varroa Destructor: Effectiveness, Persistence, and Residues. J. Econ. Entomol. 2004, 97, 187–191. [Google Scholar] [CrossRef]
- Caboni, P.; Saba, M.; Tocco, G.; Casu, L.; Murgia, A.; Maxia, A.; Menkissoglu-Spiroudi, U.; Ntalli, N. Nematicidal Activity of Mint Aqueous Extracts against the Root-Knot Nematode Meloidogyne Incognita. J. Agric. Food Chem. 2013, 61, 9784–9788. [Google Scholar] [CrossRef] [PubMed]
- Faria, J.M.S.; Barbosa, P.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity against Bursaphelenchus Xylophilus: Nematotoxics from Essential Oils, Essential Oils Fractions and Decoction Waters. Phytochemistry 2013, 94, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Ntalli, N.G.; Ferrari, F.; Giannakou, I.; Menkissoglu-Spiroudi, U. Phytochemistry and Nematicidal Activity of the Essential Oils from 8 Greek Lamiaceae Aromatic Plants and 13 Terpene Components. J. Agric. Food Chem. 2010, 58, 7856–7863. [Google Scholar] [CrossRef] [PubMed]
- Oka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. Nematicidal Activity of Essential Oils and Their Components against the Root-Knot Nematode. Phytopathology 2000, 90, 710–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, R.; Kalra, A. Inhibitory Effects of Vermicompost Produced from Agro-Waste of Medicinal and Aromatic Plants on Egg Hatching in Meloidogyne Incognita (Kofoid and White) Chitwood. Curr. Sci. 2010, 98, 833–835. [Google Scholar]
- Khanzada, S.A.; Naeemullah, M.; Munir, A.; Iftikhar, S.; Masood, S. Plant Parasitic Nematodes Associated with Different Mentha species. Pak. J. Nematol. 2012, 30, 21–26. [Google Scholar]
- Sangwan, N.K.; Verman, B.S.; Verma, K.K.; Dhindsa, K.S. Nematicidal Activity of Some Essential Plant Oils. Pestic. Sci. 1990, 28, 331–335. [Google Scholar] [CrossRef]
- Park, I.K.; Park, J.Y.; Kim, K.H.; Choi, K.S.; Choi, I.H.; Kim, C.S.; Shin, S.C. Nematicidal Activity of Plant Essential Oils and Components from Garlic (Allium sativum) and Cinnamon (Cinnamomum verum) Oils against the Pine Wood Nematode (Bursaphelenchus xylophilus). Nematology 2005, 7, 767–774. [Google Scholar] [CrossRef]
- Kadoglidou, K. Effects of Secondary Metabolites from Aromatic Plants on the Physiology of Biologically Cultivated Tomato and on Its Soil Environment. Ph.D. Dissertation, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2009. [Google Scholar]
- Azirak, S.; Karaman, S. Allelopathic Effect of Some Essential Oils and Components on Germination of Weed Species. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2008, 58, 88–92. [Google Scholar] [CrossRef]
- Argyropoulos, E.I.; Eleftherohorinos, I.G.; Vokou, D. In Vitro Evaluation of Essential Oils from Mediterranean Aromatic Plants of the Lamiaceae for Weed Control in Tomato and Cotton Crops. Allelopath. J. 2008, 22, 69–78. [Google Scholar]
- Dhima, K.V.; Vasilakoglou, I.B.; Gatsis, T.D.; Panou-Philotheou, E.; Eleftherohorinos, I.G. Effects of Aromatic Plants Incorporated as Green Manure on Weed and Maize Development. Field Crop. Res. 2009, 110, 235–241. [Google Scholar] [CrossRef]
- Verdeguer, M.; Castañeda, L.G.; Torres-Pagan, N.; Llorens-Molina, J.A.; Carrubba, A. Control of Erigeron Bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules 2020, 25, 562. [Google Scholar] [CrossRef] [Green Version]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural Products in Crop Protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef]
- Mucciarelli, M.; Camusso, W.; Bertea, C.M.; Maffei, M. Effect of (+)-Pulegone and Other Oil Components of Mentha × Piperita on Cucumber Respiration. Phytochemistry 2001, 57, 91–98. [Google Scholar] [CrossRef]
- Kombrink, E.; Somssich, I.E. Defense Responses of Plants to Pathogens. Adv. Bot. Res. 1995, 21, 1–34. [Google Scholar]
- Nürnberger, T.; Nennstiel, D.; Jabs, T.; Sacks, W.R.; Hahlbrock, K.; Scheel, D. High Affinity Binding of a Fungal Oligopeptide Elicitor to Parsley Plasma Membranes Triggers Multiple Defense Responses. Cell 1994, 78, 449–460. [Google Scholar] [CrossRef]
- Scrivanti, L.R.; Zunino, M.P.; Zygadlo, J.A. Tagetes Minuta and Schinus Areira Essential Oils as Allelopathic Agents. Biochem. Syst. Ecol. 2003, 31, 563–572. [Google Scholar] [CrossRef]
- Zunino, M.P.; Zygadlo, J.A. Effect of Monoterpenes on Lipid Oxidation in Maize. Planta 2004, 219, 303–309. [Google Scholar] [CrossRef]
- Kriegs, B.; Jansen, M.; Hahn, K.; Peisker, H.; Šamajová, O.; Beck, M.; Braun, S.; Ulbrich, A.; Baluška, F.; Schulz, M. Cyclic Monoterpene Mediated Modulations of Arabidopsis thaliana Phenotype. Plant Signal. Behav. 2010, 5, 832–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gitsopoulos, T.; Kadoglidou, K.; Damalas, C. Sustainable Weed Control with Aromatic Plants and Essential Oils. In Weed Control: Sustainability, Hazards and Risks in Cropping Systems Worldwide; Korres, N.E., Burgos, N.R., Duke, S.O., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 597–613. [Google Scholar]
- Mahdavikia, F.; Saharkhiz, M.J. Secondary Metabolites of Peppermint Change the Morphophysiological and Biochemical Characteristics of Tomato. Biocatal. Agric. Biotechnol. 2016, 7, 127–133. [Google Scholar] [CrossRef]
- Mahdavikia, F.; Saharkhiz, M.J.; Karami, A. Defensive Response of Radish Seedlings to the Oxidative Stress Arising from Phenolic Compounds in the Extract of Peppermint (Mentha × piperita L.). Sci. Hortic. 2017, 214, 133–140. [Google Scholar] [CrossRef]
- Ulbrich, A.; Kahle, H.; Krämer, P.; Schulz, M. Mentha × Piperita Volatiles Promote Brassica Oleracea—A Pilot Study for Sustainable Vegetable Production. Allelopath. J. 2018, 43, 93–104. [Google Scholar] [CrossRef]
- Skrzypek, E.; Repka, P.; Stachurska-Swakon, A.; Barabasz-Krasny, B.; Mozdzen, K. Allelopathic Effect of Aqueous Extracts from the Leaves of Peppermint (Mentha piperita L.) on Selected Physiological Processes of Common Sunflower (Helianthus annuus L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Synowiec, A.; Bocianowski, J.; Krajewska, A. The Phytotoxicity of Microencapsulated Peppermint Oil on Maize (Zea mays L.) Depending on the Type of Growth Substrate and Maize Cultivar. Agronomy 2020, 10, 1302. [Google Scholar] [CrossRef]
- Karkanis, A.; Alexiou, A.; Katsaros, C.; Petropoulos, S. Allelopathic Activity of Spearmint (Mentha spicata L.) and Peppermint (Mentha × Piperita L.) Reduces Yield, Growth, and Photosynthetic Rate in a Succeeding Crop of Maize (Zea mays L.). Agronomy 2019, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Synowiec, A.; Smęda, A.; Adamiec, J.; Kalemba, D. The effect of microencapsulated essential oils on the initial growth of maize (Zea mays) and common weeds (Echinochloa crus-galli and Chenopodium album) Wpływ mikrokapsułkowanych olejków eterycznych na początkowy wzrost kukurydzy (Zea mays) i chwastów (Echinochloa crus-galli i Chenopodium album). Prog. Plant Prot. 2016, 56, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Kadoglidou, K.; Chalkos, D.; Karamanoli, K.; Eleftherohorinos, I.; Constantinidou, H.-I.; Vokou, D. Aromatic Plants as Soil Amendments: Effects of Spearmint and Sage on Soil Properties, Growth and Physiology of Tomato Seedlings. Sci. Hortic. 2014, 179, 25–35. [Google Scholar] [CrossRef]
- Chalkos, D.; Kadoglidou, K.; Karamanoli, K.; Fotiou, C.; Pavlatou-Ve, A.; Eleftherohorinos, I.; Constantinidou, H.-I.; Vokou, D. Mentha spicata and Salvia fruticosa Composts as Soil Amendments in Tomato Cultivation. Plant Soil 2010, 332, 495–509. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1334/2008 of the European Parliament and of the 551 Council of 16 December 2008 on Flavourings and Certain Food Ingredients with Flavouring Properties for 552 Use in and on Foods and Amending Council Regulation (EEC) No 1601/91. Off. J. Eur. Union 2008, L354, 34–50. [Google Scholar]
- FDA. Substances Added to Food Formerly EAFUS. Available online: https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=FoodSubstances&id=PENNYROYALOILEUROPEANMENTHAPULEGIUM&sort=Sortterm&order=ASC&startrow=1&type=basic&search=pennyroyal (accessed on 2 February 2023).
- Kavetsou, E.; Koutsoukos, S.; Daferera, D.; Polissiou, M.G.; Karagiannis, D.; Perdikis, D.C.; Detsi, A. Encapsulation of Mentha pulegium Essential Oil in Yeast Cell Microcarriers: An Approach to Environmentally Friendly Pesticides. J. Agric. Food Chem. 2019, 67, 4746–4753. [Google Scholar] [CrossRef] [PubMed]
Target Bacterium | Species of Mentha | Tested Compound(s) | Activity/Toxicity | Method(s)/Dose | Reference |
---|---|---|---|---|---|
Pseudomonas syringae pv. syringae, | M. × piperita | EO 1/menthol/menthone | MIC 2: 0.07–1.25/0.156/2.5 mg/mL, respectively | Broth dilution bioassay | [20] |
P. syringae pv. tomato, | EO/menthol/menthone | MIC: 0.07–1.25/0.07/1.25 mg/mL, respectively | |||
P. syringae pv. phaseolicola, | EO/menthol/menthone | MIC: 0.07–1.25/1.25/2.5 mg/mL, respectively | |||
Xanthomonas campestris pv. campestris, | EO/menthol/menthone | MIC: 0.07–1.25/0.156/1.25 mg/mL, respectively | |||
X. campestris pv. phaseoli, | EO/menthol/menthone | MIC: 0.07–1.25/0.625/2.6 mg/mL, respectively | |||
Acidovorax citrulli, | M. × piperita | EO/menthol/neomenthol/isopulegone/1,8-cineole | Significant inhibition at 20 μL | Disk diffusion assay | [21] |
EO/menthol/neomenthol/isopulegone/1,8-cineole | Prevention of bacterial growth at 0.2% concentration | in vivo | |||
Xanthomonas arboricola pv. juglandis, | M. × piperita M. spicata | EOs/extracts | 5.8–3.2 mm radius of inhibition zone | Diffusion assay | [24] |
Xanthomonas vesicatoria, | M. × piperita | EO | Strong inhibitory effect/6–12 mm zone of inhibition | Disk diffusion assay (filter paper discs of 5 mm in diameter were immersed in EO and placed onto the inoculated medium) | [22] |
Erwinia carotovora subsp. carotovora, | Moderate inhibition/2–6 mm zone of inhibition | ||||
Bacillus sp., | |||||
Pseudomonas syringae pv. tomato, | No effect | ||||
P. marginalis pv. marginalis, | No effect | ||||
P. syringae pv. syringaea, | No effect | ||||
Staphylococcus aureus, | M. × piperita | EO | MBC 3: 0.57 mg/mL | Encapsulation in chitosan–nanoparticles | [23] |
Escerichia coli, | EO | MBC: 1.15 mg/mL | without encapsulation | ||
Pseudomonas sp., | M. pulegium | EO | Resistant (Pseudomonas genus were particularly resistant) | [28] | |
Gram-negative bacteria, | M. pulegium | EO | Sensitivity | [27] | |
Erwinia amylovora, | M. arvensis | EO | Antibacterial efficacy almost 20% 10.9 cm zone of inhibition | 1 μL/plate, diffusion assay | [30] |
Pseudomonas syringae pv. syringae, | Menthol | 5.0 cm zone of inhibition | |||
Aerococcus viridans, Clavibacter michiganense, Kocuria varians, Pseudomonas syringae pathovars, Erwinia spp., Xanthomonas taxa, Neisseria subflava, Agrobacterium tumefaciens, | Effective inhibition on the growth of 16 from 30 strains | Disk diffusion | [34] | ||
Menthone | Poor/it inhibited the growth of 2 from 30 strains | ||||
C.michiganensis subsp. michiganensis, P. savastanoi pv. savastanoi | M. suaveolens | EO | MIC: 0.78 mg/mL, drastic only against C. michiganensis | Disc diffusion and microdilution assay | [33] |
Target Fungi | Species of Mentha | Tested Compound(s) | Activity/Toxicity | Method(s)/Doses | Reference |
---|---|---|---|---|---|
Fusarium oxysporum, | M. spicata | EO 1/carvone | Moderate/Fungistatic at 10 μL/plate | In vitro, disk diffusion assay, tested doses: 1, 5, 10 μL/plate | [47] |
Verticillium dahliae, | Very strong/Fungicidal at 10 μL/plate | ||||
Aspergillus terreus, | Strong/Fungistatic at 10 μL/plate | ||||
Penicillium expansum, | Strong/Fungistatic at 10 μL/plate | ||||
Fusarium oxysporum f.sp. lycopersici, Verticillium dahliae, | M. spicata | Dry raw material | Tomato plants recovered from the initial inoculation of both fungi 50 days after transplantation | Incorporation of dried plant material into the soil at the dose of 4% (w/w, plant material:soil) | [45] |
Botrytis cinerea, Monilinia laxa, M. fructigena, | M. rotundifolia M. spicata M. pulegium M. × piperita | EOs | Strong | In vitro, disk diffusion assay | [49] |
Fusarium culmorum, F. avenaceum, F. oxysporum, F. subglutinans, F. verticillioides, F. nygamai, Bipolaris sorokiniana, Botrytis cinerea, Microdochium nivale, | M. pulegium | EO | Moderate | In vitro, disk diffusion assay. EO dilution in 1 mL of Tween 20 (0.1% v/v) and then addition of 20 mL PDA | [55] |
Penicillium italicum, | M. pulegium | EO/methanol extracts | Poor | Micro-bioassay method with tested concentration at 100, 500 or 1000 ppm | [56] |
Botrytis cinerea, F. culmorum, F. oxysporum, Aspergillus niger, A. flavus, Trichoderma sp., | M. pulegium | EO | Only the high concentration (100 μL/mL) of M. pulegium oil caused high antifungal activity (74–90.6% MGI 2) | In vitro | [57] |
Methanol extracts | Methanol extracts were not effective | In vitro | |||
Colletotrichum gossypii South var. cephalosporioides, | M. pulegium | EO | Strong | 1.0 and 1.5 mL/L of EO completely inhibited the fungi in vitro and in vivo, respectively | [58] |
Cladosporium cucumerinum, Fusarium culmorum, | M. pulegium | EO | Higher fungicidal activity of EO was when exposed to a sun light simulator, rather than incubated in the dark | [59] | |
Bοtrytis cinerea, | Menthol and menthone | 96% and 45% inhibition of conidial germination, respectively | 250 μg/mL | [61] | |
Menthol | 47% MGI | 100 μg/mL | |||
Monilia fructicola, | Menthol and menthone | 97% and 8% inhibition of conidial germination, respectively | 250 μg/mL | ||
Menthol | 95% MGI | 100 μg/mL | |||
Alternaria alternata, Alternaria solani, Aspergillus flavus, Aspergillus niger, Fusarium solani, Rhizopus solani, Rhizopus spp., | M. arvensis M. × piperita M. longifolia M. spicata | EOs/their major components menthol, menthone, piperitenone oxide and carvone, respectively | Notable antifungal activity | Disk diffusion/broth microdilution | [62] |
Aspergillus flavus, | M. × piperita | EO | Enhancement of antifungal activity | Encapsulation in chitosan–cinnamic acid nanogel | [46] |
Verticillium dahliae, | M. longifolia | EO | 100% MGI at all concentrations | In vitro/5, 10, 15 and 20 μg/cm2 | [63] |
Fusarium oxysporum, | 100% MGI at 10–20 μg/cm2 | ||||
Rhizoctonia solani, Helminthosporium solani, Phytopthora erythroseptica, Fusarium coeruleum, Pythium ultimum, Phoma exigua, Aspergillus flavus, | M. × piperita M. spicata | Carvone/ Menthone/ EOs | 100% MGI in the majority of strains | In vitro, 100 μL of pure oils and 0.1, 1, 10, 100, and 1000 ppm of constituents into each petri plate) | [64] |
Aspergillus niger, Botrytis cinerea, Penicillium expansum, Rhizopus stolonifera, | M. × piperita M. × villora | EOs with chitosan | Strong inhibition of MGI and spore germination | 4 mg/mL chitosan + 1.25 or 2.5 μg/mL EOs | [50] |
Colletotrichum strains, | M. × piperita | EO with chitosan | 100% MGI except of the mixture 5 mg/mL chitosan + 0.3 mL/mL EO | 5 and 7.5 mg/ML chitosan + 0.3, 0.6 or 1.25 μL/mL EO | [51] |
Fusarium verticillioides MRC 826, | Limonene/ Menthol/ Menthone/ Thymol | Semisolid agar antifungal susceptibility technique. Concentrations: 25, 50, 75, 150, 200, 250, 500 and 1000 μL/L | [53] | ||
Dreschlera spicifera, Fusarium oxysporum f.sp. ciceris, Macrophomina phaseolina | M. × piperita | EO | Dose dependent activity 100% MGI at 800 and 1600 ppm in some fungi | Petri plates assays in potato dextrose agar. Concentrations: 100, 200, 400, 800, 1600 ppm | [54] |
Target Insect | Species of Mentha | Tested Compound(s) | Activity/Toxicity | Method(s)/Dose | Reference |
---|---|---|---|---|---|
Green peach aphid (Myzus persicae), | Spearmint | Carvone | Antifeeding and settling inhibitory | Aphids diets with or without EO into plastic vessels | [77] |
Sitophilus zeamais, | M. pulegium | EO 1 | Effect on reproduction adult mortality within 24 h | 0.16 μL/cm2 | [78] |
Sitophilus granaries, | M. pulegium | EO | Inhalation and Ingestion: 100% mortalityBy contact: LD50 2 = 9.11 ± 2.53 μL/mL | Inhalation: 2.5–5 μL EO/mL acetone | [67] |
Sitophilus oryza, Tribolium castaneum, | M. pulegium | EO and powder | By contact: 100.0% mortality | 0.16 μL/cm2 | [80] |
Fumigant: 100% mortality | 20 μL/L air | ||||
Ingestion: 100% mortality | 0.25 μL/g | ||||
Bemisia tabaci, | M. pulegium M. viridis | EO | High mortality | 2 μL/L air | [81] |
Mayetiola destructor, | M. pulegium | EO | 100% adult mortality | 20 μL/L air | [82] |
Bactrocera (Dacus) oleae, | M. pulegium | EO | LD50: 0.22 μL/L | 1 mL diluted in acetone 2% v/v and applied on filter paper in petri dishes | [83] |
Pulegone/ | LD50: 0.9 μL/L | ||||
Menthone | LD50: 0.13 μL/L | ||||
Drosophila melanogaster, | EO | LD50: 2.09 μL/L | |||
Pulegone/ | LD50: 0.17 μL/L | ||||
Menthone | LD50: 1.29 μL/L | ||||
Anarta trifolii, | M. pulegium | EO | 2nd larval instar LC50 3: 0.41 μL/L air 3rd larval instar LC50: 0.80 μL/L air 2nd larval instar LC90 4: 0.88 μL/L air 3rd larval instar LC90: 9.14 μL/L air | 0.89, 1.34, 2 μL/L | [84] |
Lasioderma serricorne, Tribolium castaneum, | M. pulegium | EO | LC50 of 8.46 µL/L air 60% repellent activity | 0.078 µL/cm2 | [85] |
Aphis gossypii, | M. pulegium M. piperata | EO | LD50: 23.13 μL/L LD50: 15.25 μL/L | [86] | |
Leptinotarsa decemlineata, Myzus persicae, Spodoptera littoralis, | M. spicata M. pulegium | EOs (and iso-menthone, pulegone, carvone, piperitone, piperitone oxide, piperitenone oxide) | Feeding inhibition: 75.3–84.6% Feeding inhibition: 83% Feeding inhibition: 87.6–89.9% Feeding inhibition: 74% Feeding inhibition: 75.1–80.8% Feeding inhibition: 51.2% | [87] | |
Myzus persicae, Spodoptera littoralis, Rhopalosiphum padi, | M. pulegium M. spicata M. pulegium M. spicata M. pulegium M. spicata | EOs | % SI 5: 77.9 μg/cm2 % SI: 48.9 μg/cm2 % FI 6: 100 μg/cm2 % FI: 48.9 μg/cm2 % SI: 85.3 μg/cm2 % SI: 43.6 μg/cm2 | [88] | |
Alphitobius diaperinus, | Synthetic pulegone epoxide/ Carvone/ Carvone epoxide/ Piperitenone oxide/ Piperitone | Repellent and strong antifeedants | [89] | ||
Sitophilus zeamais, | M. longifolia subsp. capensis | EO | 100% mortality | 0.50 μL/g | [90] |
Tribolium castaneum, | M. longifolia | EO | Strong activity LC50: 13.05 μL/L air | Fumigation | [88] |
Callosobruchus chinensis, | M. arvensis | EO | 10 µL/L completely controlled the oviposition In situ: 94.05% protection of the chickpea from insect | [92] | |
Sitophilus oryzaeha, | M. arvensis var. piperascens | EO/ Menthone/ Linalool/ Alpha-pinene | LC50: 45.5 μL/L of air LC50:12.7 μL/L of air LC50: 39.2 μL/L of air LC50: 54.9 μL/L of air | [93] | |
Sitophilus oryzae, Tribolium castaneum, | M. arvensis | EO | 100% inhibition | Fumigation with 600 ppm | [94] |
Thrips tabaci, | M. arvensis | EO | Feeding deterrence Index: 15–42% | [95] | |
Tribolium castaneum, | M. arvensis | EO | Inhibition of acetylcholinesterase activity about 67.5% | Fumigation with sub-lethal concentration | [96] |
Drosophila suzukii, | M. × piperita | EO/ Menthone/ Menthol | LD50: 3.87 mg/L against males LD50: 4.1 mg/L against females LD50: 5.76 mg/L against males LD50: 5.13 mg/L against females LD50: 1.88 mg/L against males LD50: 1.94 mg/L against females | [97] | |
T. castaneum, | M. × piperita | EO/ Menthone | 25.8 μL/L air 8.5 μL/L air | Fumigation for 24 h | [98] |
Sitophilus granaries, | M. × piperita M. spicata M. villoso-nervata | EOs | The most toxic (90% mortality) was M. villoso-nervata oil | Fumigation for 24 h with 0.024 μL/mL LC50 value | [99] |
Plutella xylostella, | M. × piperita M. spicata M. longifolia | EOs | LC50 = 1.37 mg/mL RC50 7 = 1.33 mg/mL LC50 = 1.06 mg/mL | Residual toxicity bioassay | [100] |
Callosobruchus maculates, | M. × piperita | EO | LC50: 25.70 μL/L | [101] | |
Rhyzopertha dominica, | M. spicata | EO | LC50: 27.52 mL/L of air | [102] | |
Callosobruchus chinensis, | M. spicata | EO | LC50: 0.003 μL/mL of air 100% repellency 98.46% oviposition deterrency 100% ovicidal activity 88.84% larvicidal activity 72.91% pupaecidal activity 100% antifeedant activity | Fumigation 0.025 μL/mL air 0.1 μL/mL air | [103] |
Ephestia kuehniella, Plodia interpunctella, | M. spicata | EO | adult mortality: 80% egg mortality: 56–60% larval mortality < 18% pupae mortality < 28% | 2.5 mL/L | [104] |
Leptinotarsa decemlineata, | M. spicata | EO | LC50: 259.73 ppm for adults LC50: 75.31ppm for 4th instars larvae | Fumigation | [105] |
Sitophilus granaries, | M. spicata subsp. tomentosa M. spicata var. formasa | EOs | 100% mortality | 1 mL/L air | [106] |
Sitophilus granaries, | M. viridis | EO | 63.81% repellent effectiveness | 0.5 mL acetone dose | [108] |
Sitophilus granaries, Tribolium confususm, | M. rotundifolia | EO | LC50: 1.072 μL/mL air LC50: 1.530 μL/mL air | Fumigant toxicity in glass jar and repellency bioassay with filter paper disk in petri | [109] |
Reticulitermes dabieshanensis | M. spicata | EO/ Carvone/ Dihydrocarvone/ Limonene | LC50: 0.134–0.213 μL/L LC50: 0.045–0.115 μL/L LC50: 0.096–0.213 μL/L LC50: 2.468–5.149 μL/L, Strong acetylocholinesterase inhibition | Fumigant toxicity in 1 L glass jar with 0.03–6 μL of tested compounds determined at 15, 20, 25 and 30 °C | [107] |
Target Weed | Species of Mentha | Tested Compound(s) | Activity/Toxicity | Method(s)/Doses | Reference | |
---|---|---|---|---|---|---|
Abutilon theophrasti, Oryza sativa, Datura stramonium, Phalaris paradoxa, | M. spicata | EO 1 | Ι50 2 of radical length 3.32 2.68 2.70 2.81 | Ι50 of hypocotyl length 3.84 5.92 2.82 2.99 | 1, 2.5, 5, 10 μL/petri | [133] |
Abutilon theophrasti, Oryza sativa, Datura stramonium, Phalaris paradoxa, | Carvone | Ι50 of radical length 2.80 2.34 2.17 2.30 | Ι50 of hypocotyl length 3.09 3.02 2.30 2.23 | 1, 2.5, 5, 10 μL/petri | ||
Alcea pallida, Amaranthus retroflexus, Centaurea salsotitialis, Raphanus raphanistrum, Rumex nepalensis, Sinapis arvensis, Sonchus oleraceus, | M. spicata | EO/ Carvone | High inhibitory effect against weed seeds even at low concentrations of EO or carvone | 3, 6, 10, 20 µL/petri 62.5, 125, 250, 500 μg/mL | [134] | |
Amaranthus retroflexus, Echinochloa crus-galli, Oryza sativa, Portulaca oleracea, Setaria verticillate, | M. spicata | EO | Inhibition of germination | [135] | ||
Echinochloa crus-galli, | M. verticillata | Extracts | Germination (% of control) 63.7 59.3 | Fresh weight (% of control) 51.5 46.5 | perlite-based bioassay 2 g dry mint/100 mL 4 g dry mint/100 mL | [136] |
E. crus-galli, Portulaca oleracea, Tribulus terrestris, Chenopodium album, | Cover crop/ Green manure | Plants/m2 52 43 47 29 | Fresh Weight g/m2 62 26 59 29 | In field | ||
Erigeron bonariensis, | M. × piperita | EO | Significant effectiveness at 4 and 8 μL/mL | pre- and post-emergence assays with 2, 4 and 8 μL/mL | [137] | |
Rumex crispus, Convolvulus arvensis, | M. longifolia | EO | 100% inhibition of seed germination, root and shoot growth | 5, 10, 15, 20 μg/cm2 | [63] | |
Sinapis arvensis, Phalaris paradoxa, Lolium rigidum | M. pulegium | EO | 100% inhibition of germination and seedling growth | at 0.75 μL/mL at 1 μL/mL | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadoglidou, K.I.; Chatzopoulou, P. Approaches and Applications of Mentha Species in Sustainable Agriculture. Sustainability 2023, 15, 5245. https://doi.org/10.3390/su15065245
Kadoglidou KI, Chatzopoulou P. Approaches and Applications of Mentha Species in Sustainable Agriculture. Sustainability. 2023; 15(6):5245. https://doi.org/10.3390/su15065245
Chicago/Turabian StyleKadoglidou, Kalliopi I., and Paschalina Chatzopoulou. 2023. "Approaches and Applications of Mentha Species in Sustainable Agriculture" Sustainability 15, no. 6: 5245. https://doi.org/10.3390/su15065245
APA StyleKadoglidou, K. I., & Chatzopoulou, P. (2023). Approaches and Applications of Mentha Species in Sustainable Agriculture. Sustainability, 15(6), 5245. https://doi.org/10.3390/su15065245