Efficiency Evaluation and Influencing Factors of Sports Industry and Tourism Industry Convergence Based on China’s Provincial Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Variable Selection
2.1.1. The Evaluation Index System of the Efficiency of Sports Industry and Tourism Industry Convergence
- Input index
- Output index
2.1.2. Variable Selection of the Influencing Factors
- Outcome variables
- Conditional variables
2.2. Study Methods and Data Sources
2.2.1. Benevolent Cross-Efficiency DEA
2.2.2. Qualitative Comparative Analysis (QCA)
2.2.3. Data Sources
3. Results
3.1. The Efficiency of Sports Industry and Tourism Industry Convergence
3.1.1. The Promotion Efficiency of Tourism Industry to Sports Industry
3.1.2. The Promotion Efficiency of Sports Industry to Tourism Industry
3.1.3. Analysis of the Efficiency of Sports Industry and Tourism Industry Convergence
3.2. Configuration Analysis of Influencing Factors
Analysis of the Conditional Configurations
4. Discussion
4.1. Discussing Results
4.2. Contributions
4.3. Implications and Further Research
5. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Region | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2013–2019 Average Value |
---|---|---|---|---|---|---|---|---|
Beijing | 0.5054 | 0.5127 | 0.5649 | 0.5762 | 0.6810 | 0.6214 | 0.5944 | 0.5794 |
Tianjin | 0.9988 | 0.9988 | 0.9926 | 0.9915 | 0.9901 | 0.9500 | 0.9591 | 0.9830 |
Hebei | 0.3729 | 0.3572 | 0.3484 | 0.3268 | 0.3662 | 0.4503 | 0.5183 | 0.3914 |
Liaoning | 0.3787 | 0.2892 | 0.3466 | 0.2867 | 0.3484 | 0.3683 | 0.3815 | 0.3428 |
Shanghai | 0.7125 | 0.7487 | 0.8036 | 0.7301 | 0.8098 | 0.9225 | 0.9625 | 0.8128 |
Jiangsu | 0.6531 | 0.6465 | 0.6545 | 0.6547 | 0.7475 | 0.8250 | 0.8881 | 0.7242 |
Zhejiang | 0.4712 | 0.4767 | 0.5059 | 0.4880 | 0.4922 | 0.5578 | 0.5811 | 0.5104 |
Fujian | 0.4858 | 0.5161 | 0.5191 | 0.5735 | 0.6402 | 0.6704 | 0.7508 | 0.5937 |
Shandong | 0.6239 | 0.5466 | 0.5377 | 0.5024 | 0.5218 | 0.4838 | 0.5718 | 0.5411 |
Guangdong | 0.7699 | 0.7567 | 0.7570 | 0.7735 | 0.8537 | 0.9235 | 0.9743 | 0.8298 |
Hainan | 0.1353 | 0.1758 | 0.1614 | 0.1474 | 0.2234 | 0.2798 | 0.2951 | 0.2026 |
Eastern region | 0.5552 | 0.5477 | 0.5629 | 0.5501 | 0.6068 | 0.6412 | 0.6797 | 0.5919 |
Shanxi | 0.2968 | 0.3336 | 0.3748 | 0.3092 | 0.4460 | 0.4575 | 0.4316 | 0.3785 |
Jilin | 0.4063 | 0.4098 | 0.3625 | 0.3134 | 0.3994 | 0.4394 | 0.4491 | 0.3971 |
Heilongjiang | 0.4659 | 0.3712 | 0.3568 | 0.2892 | 0.3332 | 0.3103 | 0.3288 | 0.3508 |
Anhui | 0.3237 | 0.3088 | 0.3097 | 0.3115 | 0.3466 | 0.4921 | 0.5275 | 0.3743 |
Jiangxi | 0.3827 | 0.3101 | 0.2945 | 0.3013 | 0.3806 | 0.4113 | 0.4899 | 0.3672 |
Henan | 0.5519 | 0.6218 | 0.5604 | 0.4967 | 0.5777 | 0.7152 | 0.8122 | 0.6194 |
Hubei | 0.4350 | 0.4010 | 0.3867 | 0.3699 | 0.4847 | 0.6837 | 0.7538 | 0.5021 |
Hunan | 0.4429 | 0.3579 | 0.3616 | 0.3195 | 0.4608 | 0.6198 | 0.6459 | 0.4584 |
Central region | 0.4132 | 0.3893 | 0.3759 | 0.3388 | 0.4286 | 0.5162 | 0.5549 | 0.4310 |
Inner Mongolia | 0.3575 | 0.3883 | 0.3265 | 0.3392 | 0.3415 | 0.3635 | 0.3279 | 0.3492 |
Guangxi | 0.2916 | 0.3024 | 0.2527 | 0.2407 | 0.2936 | 0.3761 | 0.3933 | 0.3072 |
Chongqing | 0.4107 | 0.4031 | 0.3823 | 0.3839 | 0.4970 | 0.6860 | 0.7756 | 0.5055 |
Sichuan | 0.3645 | 0.4528 | 0.4328 | 0.4227 | 0.4606 | 0.6195 | 0.6186 | 0.4817 |
Guizhou | 0.3549 | 0.3412 | 0.3107 | 0.2465 | 0.2979 | 0.4153 | 0.4326 | 0.3427 |
Yunnan | 0.2007 | 0.2076 | 0.1917 | 0.1761 | 0.2130 | 0.3582 | 0.3517 | 0.2427 |
Tibet | 0.1686 | 0.1635 | 0.1316 | 0.0998 | 0.1418 | 0.1214 | 0.1328 | 0.1371 |
Shaanxi | 0.2874 | 0.2938 | 0.2731 | 0.2569 | 0.3019 | 0.4174 | 0.4546 | 0.3265 |
Gansu | 0.2150 | 0.2105 | 0.1849 | 0.1503 | 0.2060 | 0.2384 | 0.2778 | 0.2118 |
Qinghai | 0.2273 | 0.1875 | 0.1831 | 0.1627 | 0.1314 | 0.1507 | 0.1236 | 0.1666 |
Ningxia | 0.2926 | 0.3161 | 0.3237 | 0.2464 | 0.3063 | 0.3789 | 0.3657 | 0.3185 |
Xinjiang | 0.2427 | 0.2374 | 0.2229 | 0.1876 | 0.2457 | 0.3543 | 0.3770 | 0.2668 |
Western region | 0.2845 | 0.2920 | 0.2680 | 0.2427 | 0.2864 | 0.3733 | 0.3859 | 0.3047 |
National average | 0.4137 | 0.4078 | 0.4005 | 0.3766 | 0.4368 | 0.5052 | 0.5338 | 0.4392 |
Region | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2013–2019 Average Value |
---|---|---|---|---|---|---|---|---|
Beijing | 0.3372 | 0.5219 | 0.5374 | 0.2744 | 0.2322 | 0.2203 | 0.2189 | 0.3346 |
Tianjin | 0.6433 | 0.7344 | 0.8748 | 0.8057 | 0.7742 | 0.8645 | 0.7764 | 0.7819 |
Hebei | 0.2796 | 0.2788 | 0.3422 | 0.4393 | 0.4302 | 0.3637 | 0.3278 | 0.3517 |
Liaoning | 0.5621 | 0.6518 | 0.7749 | 0.9028 | 0.6630 | 0.8871 | 0.8708 | 0.7589 |
Shanghai | 0.6608 | 0.6156 | 0.8407 | 0.6819 | 0.5930 | 0.6849 | 0.5076 | 0.6549 |
Jiangsu | 0.4379 | 0.4263 | 0.5044 | 0.4965 | 0.4594 | 0.3895 | 0.2941 | 0.4297 |
Zhejiang | 0.4123 | 0.4376 | 0.5720 | 0.4201 | 0.3193 | 0.3756 | 0.2715 | 0.4012 |
Fujian | 0.3326 | 0.2886 | 0.3561 | 0.3374 | 0.2777 | 0.2549 | 0.2083 | 0.2937 |
Shandong | 0.3742 | 0.2923 | 0.3659 | 0.3601 | 0.2956 | 0.2697 | 0.2434 | 0.3145 |
Guangdong | 0.6265 | 0.5709 | 0.6814 | 0.5772 | 0.4507 | 0.3462 | 0.2966 | 0.5071 |
Hainan | 0.2586 | 0.2757 | 0.3375 | 0.3858 | 0.2465 | 0.2759 | 0.2076 | 0.2839 |
Eastern region | 0.4477 | 0.4631 | 0.5625 | 0.5165 | 0.4311 | 0.4484 | 0.3839 | 0.4647 |
Shanxi | 0.6451 | 0.5280 | 0.7398 | 0.8038 | 0.9523 | 0.9276 | 0.7960 | 0.7704 |
Jilin | 0.5487 | 0.4976 | 0.6287 | 0.6624 | 0.5380 | 0.8739 | 0.9086 | 0.6654 |
Heilongjiang | 0.5824 | 0.2656 | 0.3502 | 0.3499 | 0.3116 | 0.5945 | 0.5304 | 0.4264 |
Anhui | 0.4213 | 0.4246 | 0.6553 | 0.4676 | 0.3812 | 0.4845 | 0.4521 | 0.4695 |
Jiangxi | 0.4711 | 0.3996 | 0.5745 | 0.8066 | 0.6924 | 0.7730 | 0.6995 | 0.6309 |
Henan | 0.4570 | 0.3927 | 0.4801 | 0.3737 | 0.3054 | 0.2425 | 0.2270 | 0.3541 |
Hubei | 0.4953 | 0.4428 | 0.6119 | 0.5206 | 0.3869 | 0.2141 | 0.1405 | 0.4017 |
Hunan | 0.3255 | 0.3025 | 0.4846 | 0.3129 | 0.2959 | 0.3118 | 0.2521 | 0.3265 |
Central region | 0.4933 | 0.4067 | 0.5657 | 0.5372 | 0.4830 | 0.5527 | 0.5008 | 0.5056 |
Inner Mongolia | 0.4151 | 0.4206 | 0.5407 | 0.5364 | 0.5737 | 0.7547 | 0.6399 | 0.5544 |
Guangxi | 0.4415 | 0.4395 | 0.6672 | 0.6325 | 0.5423 | 0.6480 | 0.6991 | 0.5815 |
Chongqing | 0.5783 | 0.6184 | 0.7362 | 0.6005 | 0.4513 | 0.4086 | 0.3819 | 0.5393 |
Sichuan | 0.5031 | 0.4993 | 0.7927 | 0.4879 | 0.3470 | 0.4397 | 0.3570 | 0.4895 |
Guizhou | 0.9946 | 1.0000 | 0.9831 | 0.9381 | 0.9453 | 0.9347 | 0.9912 | 0.9696 |
Yunnan | 0.4919 | 0.4688 | 0.7187 | 0.7988 | 0.7119 | 0.6723 | 0.7032 | 0.6522 |
Tibet | 0.5262 | 0.4066 | 0.5588 | 0.4845 | 0.4239 | 0.4276 | 0.3394 | 0.4524 |
Shaanxi | 0.5044 | 0.4889 | 0.5567 | 0.5435 | 0.4880 | 0.3969 | 0.3391 | 0.4739 |
Gansu | 0.2498 | 0.2195 | 0.2771 | 0.2481 | 0.3193 | 0.4676 | 0.5125 | 0.3277 |
Qinghai | 0.2010 | 0.2436 | 0.3224 | 0.2647 | 0.2207 | 0.1885 | 0.1458 | 0.2267 |
Ningxia | 0.2053 | 0.1815 | 0.2759 | 0.1811 | 0.1705 | 0.2022 | 0.2254 | 0.2060 |
Xinjiang | 0.2792 | 0.1818 | 0.3185 | 0.2540 | 0.2271 | 0.6449 | 0.5674 | 0.3533 |
Western region | 0.4492 | 0.4307 | 0.5623 | 0.4975 | 0.4518 | 0.5155 | 0.4918 | 0.4855 |
National average | 0.4601 | 0.4360 | 0.5632 | 0.5145 | 0.4525 | 0.5013 | 0.4558 | 0.4833 |
Region | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Average 2013–2019 |
---|---|---|---|---|---|---|---|---|
Beijing | 0.3372 | 0.5127 | 0.5374 | 0.2744 | 0.2322 | 0.2203 | 0.2189 | 0.3333 |
Tianjin | 0.6433 | 0.7344 | 0.8748 | 0.8057 | 0.7742 | 0.8645 | 0.7764 | 0.7819 |
Hebei | 0.2796 | 0.2788 | 0.3422 | 0.3268 | 0.3662 | 0.3637 | 0.3278 | 0.3264 |
Liaoning | 0.3787 | 0.2892 | 0.3466 | 0.2867 | 0.3484 | 0.3683 | 0.3815 | 0.3428 |
Shanghai | 0.6608 | 0.6156 | 0.8036 | 0.6819 | 0.5930 | 0.6849 | 0.5076 | 0.6496 |
Jiangsu | 0.4379 | 0.4263 | 0.5044 | 0.4965 | 0.4594 | 0.3895 | 0.2941 | 0.4297 |
Zhejiang | 0.4123 | 0.4376 | 0.5059 | 0.4201 | 0.3193 | 0.3756 | 0.2715 | 0.3918 |
Fujian | 0.3326 | 0.2886 | 0.3561 | 0.3374 | 0.2777 | 0.2549 | 0.2083 | 0.2937 |
Shandong | 0.3742 | 0.2923 | 0.3659 | 0.3601 | 0.2956 | 0.2697 | 0.2434 | 0.3145 |
Guangdong | 0.6265 | 0.5709 | 0.6814 | 0.5772 | 0.4507 | 0.3462 | 0.2966 | 0.5071 |
Hainan | 0.1353 | 0.1758 | 0.1614 | 0.1474 | 0.2234 | 0.2759 | 0.2076 | 0.1895 |
Eastern region | 0.4198 | 0.4202 | 0.4982 | 0.4286 | 0.3945 | 0.4012 | 0.3394 | 0.4146 |
Shanxi | 0.2968 | 0.3336 | 0.3748 | 0.3092 | 0.4460 | 0.4575 | 0.4316 | 0.3785 |
Jilin | 0.4063 | 0.4098 | 0.3625 | 0.3134 | 0.3994 | 0.4394 | 0.4491 | 0.3971 |
Heilongjiang | 0.4659 | 0.2656 | 0.3502 | 0.2892 | 0.3116 | 0.3103 | 0.3288 | 0.3317 |
Anhui | 0.3237 | 0.3088 | 0.3097 | 0.3115 | 0.3466 | 0.4845 | 0.4521 | 0.3624 |
Jiangxi | 0.3827 | 0.3101 | 0.2945 | 0.3013 | 0.3806 | 0.4113 | 0.4899 | 0.3672 |
Henan | 0.4570 | 0.3927 | 0.4801 | 0.3737 | 0.3054 | 0.2425 | 0.2270 | 0.3541 |
Hubei | 0.4350 | 0.4010 | 0.3867 | 0.3699 | 0.3869 | 0.2141 | 0.1405 | 0.3335 |
Hunan | 0.3255 | 0.3025 | 0.3616 | 0.3129 | 0.2959 | 0.3118 | 0.2521 | 0.3089 |
Centralregion | 0.3866 | 0.3405 | 0.3650 | 0.3226 | 0.3591 | 0.3589 | 0.3464 | 0.3542 |
Inner Mongolia | 0.3575 | 0.3883 | 0.3265 | 0.3392 | 0.3415 | 0.3635 | 0.3279 | 0.3492 |
Guangxi | 0.2916 | 0.3024 | 0.2527 | 0.2407 | 0.2936 | 0.3761 | 0.3933 | 0.3072 |
Chongqing | 0.4107 | 0.4031 | 0.3823 | 0.3839 | 0.4513 | 0.4086 | 0.3819 | 0.4031 |
Sichuan | 0.3645 | 0.4528 | 0.4328 | 0.4227 | 0.3470 | 0.4397 | 0.3570 | 0.4024 |
Guizhou | 0.3549 | 0.3412 | 0.3107 | 0.2465 | 0.2979 | 0.4153 | 0.4326 | 0.3427 |
Yunnan | 0.2007 | 0.2076 | 0.1917 | 0.1761 | 0.2130 | 0.3582 | 0.3517 | 0.2427 |
Tibet | 0.1686 | 0.1635 | 0.1316 | 0.0998 | 0.1418 | 0.1214 | 0.1328 | 0.1371 |
Shaanxi | 0.2874 | 0.2938 | 0.2731 | 0.2569 | 0.3019 | 0.3969 | 0.3391 | 0.3070 |
Gansu | 0.2150 | 0.2105 | 0.1849 | 0.1503 | 0.2060 | 0.2384 | 0.2778 | 0.2118 |
Qinghai | 0.2010 | 0.1875 | 0.1831 | 0.1627 | 0.1314 | 0.1507 | 0.1236 | 0.1629 |
Ningxia | 0.2053 | 0.1815 | 0.2759 | 0.1811 | 0.1705 | 0.2022 | 0.2254 | 0.2060 |
Xinjiang | 0.2427 | 0.1818 | 0.2229 | 0.1876 | 0.2271 | 0.3543 | 0.3770 | 0.2562 |
Westernregion | 0.2750 | 0.2762 | 0.2640 | 0.2373 | 0.2603 | 0.3188 | 0.3100 | 0.2774 |
National average | 0.3552 | 0.3439 | 0.3732 | 0.3272 | 0.3334 | 0.3584 | 0.3298 | 0.3459 |
Antecedent Condition | High | Non-High | ||
---|---|---|---|---|
Consistency | Coverage | Consistency | Coverage | |
Economic development | 0.4708 | 0.4705 | 0.6160 | 0.6068 |
~ Economic development | 0.6066 | 0.6158 | 0.4625 | 0.4628 |
Industrial structure | 0.5317 | 0.5435 | 0.5478 | 0.5520 |
~ Industrial structure | 0.5618 | 0.5576 | 0.5470 | 0.5351 |
Scientific and technological information | 0.5208 | 0.5034 | 0.5822 | 0.5547 |
~ Scientific and technological information | 0.5394 | 0.5670 | 0.4788 | 0.4962 |
Political force | 0.5093 | 0.5123 | 0.5776 | 0.5727 |
~ Political force | 0.5752 | 0.5801 | 0.5081 | 0.5051 |
Transportation construction | 0.5227 | 0.5344 | 0.5770 | 0.5814 |
~ Transportation construction | 0.5905 | 0.5861 | 0.5379 | 0.5262 |
Opening to the outside world | 0.5587 | 0.5965 | 0.5042 | 0.5306 |
~ Opening to the outside world | 0.5604 | 0.5342 | 0.6165 | 0.5793 |
References
- Feng, D.; Li, Y.F.; Qin, C.; Sun, J. How industrial convergence affects regional green development efficiency: A spatial conditional process analysis. J Environ. Manag. 2021, 300, 113738. [Google Scholar]
- Qiu, P.; Zhou, Z.; Kim, D.J. A New Path of Sustainable Development in Traditional Agricultural Areas from the Perspective of Open Innovation-A Coupling and Coordination Study on the Agricultural Industry and the Tourism Industry. J. Open Innov. Technol. Mark. Complex. 2021, 7, 16. [Google Scholar] [CrossRef]
- Liu, R.; Qiu, Z. Urban Sustainable Development Empowered by Cultural and Tourism Industries: Using Zhenjiang as an Example. Sustainability 2022, 14, 12884. [Google Scholar] [CrossRef]
- Li, S.D.; Li, S.X.; Zhong, Y.D.; Ren, T.; Xiao, H.L.; Jia, B.B. Research on the efficiency of regional tourism resource allocation based on DEA model. Contr. Decis. Mak. 2022, 8, 1945–1954. [Google Scholar]
- Giango, M.K.; Hintapan, R.; Suson, M.; Batican, I.; Quiño, L.; Capuyan, L.; Anoos, J.M.; Batoon, J.; Aro, J.L.; Maturan, F.; et al. Local Support on Sports Tourism Development: An Integration of Emotional Solidarity and Social Exchange Theory. Sustainability 2022, 14, 12898. [Google Scholar] [CrossRef]
- Ma, M.; Tang, J.X. Interactive coercive relationship and spatio-temporal coupling coordination degree between tourism urbanization and eco-environment: A case study in Western China. Ecol. Indic. 2022, 142, 109149. [Google Scholar] [CrossRef]
- Huang, H.Y. Strategic thinking of promoting sports industry as a pillar industry of national economy. Sports Sci. 2022, 12, 3–16. [Google Scholar]
- Bao, X.M. Sports help “five major constructions”. J. Shanghai Inst. Phys. Educ. 2018, 1, 7–11. [Google Scholar]
- Wang, Y.; Wang, Y.; Li, M.X. Regional characteristics of sports industry profitability: Evidence from China’s province level data. Phys. A. 2019, 555, 946–955. [Google Scholar] [CrossRef]
- Zhuo, L.; Guan, X.; Ye, S. Quantitative Evaluation and Prediction Analysis of the Healthy and Sustainable Development of China’s Sports Industry. Sustainability 2020, 12, 2184. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q. Research on the intrinsic mechanism and extrinsic dynamics of the integration development of sports industry and related industries. J. Beijing Sport. Univ. 2013, 11, 20–24. [Google Scholar]
- Wang, G. Research on tourism integration development under the new normal. Learn Explor. 2016, 11, 104–106. [Google Scholar]
- Yuan, J.; Zhou, Y.; Liu, Y. Convergence Evaluation of Sports and Tourism Industries in Urban Agglomeration of Guangdong–Hong Kong–Macao Greater Bay Area and Its Spatial-Temporal Evolution. Sustainability 2022, 14, 10350. [Google Scholar] [CrossRef]
- Zhang, L.L. Research on the measurement of integration degree between sports industry and tourism. J. Jilin Inst. Sport. 2015, 1, 20–23. [Google Scholar]
- Yang, X.; Wang, H.M.; Jiang, C. Research on the integration and development of sports industry and tourism industry in China--an empirical analysis based on coupled coordination degree model. Cult. Ind. Res. 2019, 04, 126–138. [Google Scholar]
- Xu, J.F.; Chen, H.C. Measurement of coupling correlation between sports industry and tourism industry development in China and spatial correlation analysis. J. Shandong Inst. Sports 2020, 1, 9–16. [Google Scholar]
- Yan, S.H.; Miao, J.J. Research on the efficiency of integration between high-tech industries and traditional industries in the middle reaches of Yangtze River city cluster. Sci. Technol. Manag. Res. 2017, 12, 66–72. [Google Scholar]
- Lin, Y.H.; Lin, Z.G. Research on synergistic innovation of sports industry and tourism industry based on industrial integration. J. Shenyang Inst. Sports 2016, 1, 25–28. [Google Scholar]
- Weed, M. The role of the interface of sport and tourism in the response to the COVID-19 pandemic. J. Sport. Tour 2020, 24, 79–92. [Google Scholar] [CrossRef]
- Zhou, M.Y.; Miao, L.; Yan, X. Research on high-quality development of China’s sports tourism industry. J. Sport. M Cul. 2021, 4, 8–13. [Google Scholar]
- Yuan, J.; Liu, Y. Evaluation of Integration Development of Sports Industry and Tourism Industry: A Case Study of Guangdong Province. In Proceedings of the 2019 5th International Conference on Information Management (ICIM), Cambridge, UK, 24–27 March 2019; pp. 346–351. [Google Scholar]
- Gu, J.H.; Chai, H.Q.; Ge, P.F.; Wang, X.L. Study on the quality of agro-tourism integration in provincial regions of the Yellow River basin—An empirical analysis based on DEA cross-efficiency. Econ. Issues 2021, 12, 97–103. [Google Scholar]
- FANG, S.M.; LI, X.Y. Study on the spatial and temporal differences in the efficiency of agro-tourism integration in Dongting Lake Ecological Economic Zone and its optimization. J. Xiangtan Univ. (Philos. Soc. Sci. Ed.) 2021, 1, 60–64. [Google Scholar]
- Yang, M.; Li, M.L.; Jiang, Y.Y.; Zhou, H.L.; Cai, S.S. Evaluation of the efficiency of agricultural tourism integration for poverty alleviation in Wuling Mountain Area and analysis of histological factors. Resour. Dev. Mark. 2022, 2, 217–223. [Google Scholar]
- Wu, Y.C.; Lin, S.W. Efficiency evaluation of Asia’s cultural tourism using a dynamic DEA approach. Socio-Econ. Plan Sci. 2022, 84, 101426. [Google Scholar] [CrossRef]
- Dong, Y. Empirical Study on the Green Transformation of the Sports Industry Empowered by New Infrastructure from the Perspective of the Green Total Factor Productivity of the Sports Industry. Sustainability 2022, 14, 10661. [Google Scholar] [CrossRef]
- Li, H.J.; Shao, G.H.; Wang, Y. Research on the influence of China’s sports industry agglomeration on industrial efficiency. J. Tianjin Sports Inst. 2019, 6, 512–520. [Google Scholar]
- Wang, Z.F.; Zhao, S.S. Spatial and temporal dynamic evolution of tourism industry efficiency and influencing factors in Hunan Province based on DEA-Malmquist model. Yangtze River Basin Resour. Environ. 2019, 8, 1886–1897. [Google Scholar]
- Zhang, R.; Ming, Q.; Jiao, W.; Qi, F. Study on the efficiency and development level of tourism in China and its coordination characteristics. Resour. Dev. Mark. 2022, 38, 210–216. [Google Scholar]
- Xu, J.F.; Yang, S.X.; Lin, J.X. Research on the efficiency of sports industry in Yangtze River Economic Zone based on DEA-Tobit model. J. Fujian Norm. Univ. (Nat. Sci. Ed.) 2020, 3, 107–116. [Google Scholar]
- Su, J.; Ben. Research on the evaluation of the coordination relationship between sports industry and regional economic development level--Evaluation test based on the data of 12 provinces and cities in China. J. Xi’an Sport. Ins. 2021, 4, 449–460. [Google Scholar]
- Yang, G.; Yang, Y.; Gong, G.; Gui, Q. The Spatial Network Structure of Tourism Efficiency and Its Influencing Factors in China: A Social Network Analysis. Sustainability 2022, 14, 9921. [Google Scholar] [CrossRef]
- Hu, J.S.; Huang, H.Y. Regional sports industry efficiency and its influencing factors from the perspective of factors-an empirical analysis based on the data of Shanghai jurisdictions from 2014–2018. J. Sport. 2021, 2, 48–53. [Google Scholar]
- Zhang, J.Q.; Wang, J. On the integration and development of sports industry and cultural industry. J. Shanghai Sport. Inst. 2012, 5, 41–44. [Google Scholar]
- Wang, Y.; Wang, M.; Li, K.; Zhao, J. Analysis of the Relationships between Tourism Efficiency and Transport Accessibility—A Case Study in Hubei Province, China. Sustainability 2021, 13, 8649. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cui, Q. Research on the evaluation of the integration of industrialization and informatization in China. Sci. Res. Manag. 2013, 4, 43–49. [Google Scholar]
- Qian, X.L. Analysis of industrial integration theory. J. Hunan Inst. Sci. Technol. 2011, 2, 98–99. [Google Scholar]
- Berg-Schlosser, D.; Meur, G.D.; Rihoux, B.; Ragin, C.C. Qualitative Comparative Analysis (QCA) As an Approach; Sage: Thousand Oaks, CA, USA, 2009; pp. 1–18. [Google Scholar]
- Tan, N.; Huang, W. Do cultural industry agglomeration policies drive regional tourism economic growth? --Evidence from a quasi-natural experiment of cultural and creative park selection. China Soft Sci. 2021, 1, 68–75. [Google Scholar]
- Fan, L.; Hou, Z.; Shi, Y.; Cao, M. Spatio-temporal evolution and influencing factors of tourism efficiency of excellent tourism cities in China. Resour. Dev. Mark. 2021, 8, 984–990+997. [Google Scholar]
- Chen, H.L.; Zheng, X.; Zhao, Z. The Spatial and Temporal Dynamics of the Integration Efficiency of Culture and tourism Industry in China and Its Driving Mechanism. Resour. Dev. Mark. 2020, 1, 99–106. [Google Scholar]
- Li, J.; Shu, B.Y. Research on tourism financial efficiency in six provinces in central China: Dynamic evolution, spatial pattern and driving factors. Explor. Econ. Issues 2022, 1, 67–78. [Google Scholar]
- Silkman, R.; Sexton, T.R. Data Envelopment Analysis: Critique and Extensions. New Dir. Prog. Eval. 1986, 32, 73–105. [Google Scholar]
- Wu, L.; Liang, H.; Yu, H.J.; Huo, R.M. Spatial differentiation and driving factors of cultural and tourism integration development in China. Econ. Geog. 2021, 2, 214–221. [Google Scholar]
- Prokop, V.; Hajek, P.; Stejskal, J. Configuration paths to efficient national innovation ecosystems. Technol. Forecast. Soc. Chang. 2021, 168, 120787. [Google Scholar] [CrossRef]
- Qin, M.; Sun, M.; Li, J. Impact of environmental regulation policy on ecological efficiency in four major urban agglomerations in eastern China. Ecolo. Indic. 2021, 130, 108002. [Google Scholar] [CrossRef]
- Yang, F.; Xia, Q.; Liang, L. A DEA cross-efficiency evaluation method considering both competitive and cooperative relationships of decision units. Syst. Eng. Theory Pract. 2011, 31, 92–98. [Google Scholar]
- FISS, P.C. Building better causal theories: A fuzzy set approach to typologies in organization research. Acad. Manag. J. 2011, 2, 393–420. [Google Scholar] [CrossRef] [Green Version]
- Benoit, R.H.; Charles, C. Larkin. QCA Design Principles and Applications: A New Approach beyond Qualitative and Quantitative Research; Du, Y.Z.; Li, Y.F., Translators; Machinery Industry Press: Beijing, China, 2017. [Google Scholar]
- Misangyi, V.F.; Greckhamer, T.; Furnari, S.; Fiss, C.; Crilly, D. Aguilera. Embracing causal complexity: The emergence of a neo-configurational perspective. J. Manag. 2017, 1, 255–282. [Google Scholar]
- He, G.S.; Wang, X.H.; Zhou, H.J.; Guo, Y.; Xu, C.C. Research on the accounting method of gross marine product. Mar. Bull. 2006, 3, 64–71. [Google Scholar]
- Han, Y.J.; Wu, P.; Lin, T. Measurement and comparative analysis of tourism industry efficiency in representative provinces based on carbon emissions. Geogr. Res. 2015, 10, 1957–1970. [Google Scholar]
- Zhao, Y.L.; Dai, T.H. Analysis of regional characteristics in the development process of China’s sports industry--based on available inter-provincial data. China Sport. Sci. Technol. 2019, 4, 31–42+80. [Google Scholar]
- He, Z.L.; Wang, S. Spatial and temporal evolution of the conversion efficiency of tourism resources in China and the influencing mechanism. China Popul.-Res. Environ. 2020, 30, 185–193. [Google Scholar]
- Schneider, C.Q.; Wagemann, C. Set-Theoretic Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Li, F.; Long, J.; Zhao, W. Mining Braces of Innovation Linking to Digital Transformation Grounded in TOE Framework. Sustainability 2023, 15, 301. [Google Scholar] [CrossRef]
- Zhang, M.; Du, Y.Z. The application of QCA methods in organization and management research: Orientation, strategy and direction. J. Manag. 2019, 9, 1312–1323. [Google Scholar]
- Rihoux, B.; Ragin, C.C. Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques; Sage: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Ragin, C.C. Redesigning Social Inquiry: Fuzzy Sets and Beyond; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Shen, J.X.; Li, S.; Zhang, J.Y. Research on factors influencing the development capability of big data industry—Based on fsQCA method. Sci. Technol. Manag. Res. 2019, 7, 140–147. [Google Scholar]
- Zhong, J.Q.; Cui, R.H.; Zhao, W.Z.; Wang, Z.Y. Exploring the input-output-efficiency spatial divergence and its coupling relationship in China’s sports industry. J. Shenyang Inst. Sport. 2018, 1, 41–50. [Google Scholar]
- Su, F. Construction and empirical analysis of coupling model of agriculture and tourism. China Agric. Res. Zoning 2017, 7, 58–63+72. [Google Scholar]
- Li, W.; Wang, L. Research on innovation mechanism of Integration of Sports and tourism Industry. J. Shangdong Phys. Educ. Univ. 2016, 6, 28. [Google Scholar]
Target | Dimensions | Indicators | Representation |
---|---|---|---|
Inputs | Sports industry inputs | Sporting goods manufacturing and sports services employees | Level of labor input in the sports industry |
Culture, sports and entertainment industry fixed asset investment | Level of capital investment in the sports industry | ||
Number of main sports industry units | Sports industry service level | ||
Tourism industry inputs | Travel agencies, A-grade scenic spots and star-rated hotels employees | Labor input level of tourism industry | |
Fixed asset investment in the accommodation and catering industry | Level of capital investment in tourism industry | ||
Number of travel agencies, A- grade scenic spots and star-rated hotels | Tourism service reception capacity level | ||
Outputs | Sports industry outputs | Sporting goods manufacturing main business income and sports services legal entity units | Sports industry revenue levels |
Value added of culture, sports and entertainment industry | Value added of sports industry | ||
Tourism industry outputs | International tourism foreign exchange earnings and domestic tourism revenue | Tourism industry income level | |
Number of inbound tourism and domestic tourism | Tourism industry development radiation surface |
Variables | Definition and Description | ||
---|---|---|---|
Condition variables | Economic development | GDP per capita (RJ) | The regional GDP achieved in the reporting period is calculated compared to the resident population of local economic development. |
Industrial structure | Ratio of value-added of tertiary industry in GDP(SZ) | It refers to the ratio of added value of tertiary industry to regional GDP, reflecting the degree of development of local tertiary industry. | |
Scientific and technological information | Total volume of post and telecommunications business (YZ) | It refers to the total amount of postal business and telecommunication business in each region, which is the total amount of postal and telecommunication services provided by postal and telecommunication enterprises to society and reflects the degree of information construction in the region. | |
Political force | Local fiscal general budget expenditure (CZ) | It refers to the expenditures arranged by the district for the planned allocation and use of centralized budget revenues during the reporting period, reflecting the level of government support. | |
Transportation conditions | Density of public and railroad network (LM) | It refers to the ratio of total road and rail mileage to land area in each province, which reflects the level of local transportation construction. | |
Opening to the outside world | Proportion of total import and export trade to regional gross domestic product GDP(KD) | It refers to the proportion of total regional import and export trade to regional gross domestic product (GDP) in the reporting public period, reflecting the degree of regional openness to the outside world. | |
Result variable | Efficiency of sports industry and tourism industry convergence | It refers to the integrated efficiency value calculated by MATLAB software, which reflects the level of efficiency of sports industry and tourism industry convergence |
Conditional Variables | High Level | Non-High Level | |||||||
---|---|---|---|---|---|---|---|---|---|
H1 | H2 | H3 | NH1 | NH2 | NH3 | NH4 | NH5 | NH6 | |
Economic development (RJ) | |||||||||
Industrial structure (SZ) | |||||||||
Scientific and technological information (YZ) | |||||||||
Political force (CZ) | |||||||||
Transportation construction (LM) | |||||||||
Opening to the outside world (KD) | |||||||||
Consistency | 0.85 | 0.94 | 0.86 | 0.88 | 0.86 | 0.84 | 0.86 | 0.92 | 0.92 |
raw coverage | 0.39 | 0.39 | 0.43 | 0.49 | 0.33 | 0.53 | 0.40 | 0.27 | 0.28 |
Unique coverage | 0.11 | 0.09 | 0.09 | 0.12 | 0.01 | 0.04 | 0.02 | 0.01 | 0.01 |
Solution consistency | 0.84 | 0.82 | |||||||
Solution coverage | 0.63 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Zhou, H.; Li, Y.; Zhang, J. Efficiency Evaluation and Influencing Factors of Sports Industry and Tourism Industry Convergence Based on China’s Provincial Data. Sustainability 2023, 15, 5408. https://doi.org/10.3390/su15065408
Yang M, Zhou H, Li Y, Zhang J. Efficiency Evaluation and Influencing Factors of Sports Industry and Tourism Industry Convergence Based on China’s Provincial Data. Sustainability. 2023; 15(6):5408. https://doi.org/10.3390/su15065408
Chicago/Turabian StyleYang, Mei, Hongling Zhou, Yali Li, and Jinyu Zhang. 2023. "Efficiency Evaluation and Influencing Factors of Sports Industry and Tourism Industry Convergence Based on China’s Provincial Data" Sustainability 15, no. 6: 5408. https://doi.org/10.3390/su15065408
APA StyleYang, M., Zhou, H., Li, Y., & Zhang, J. (2023). Efficiency Evaluation and Influencing Factors of Sports Industry and Tourism Industry Convergence Based on China’s Provincial Data. Sustainability, 15(6), 5408. https://doi.org/10.3390/su15065408