Vulnerability Assessment of Ecological–Economic–Social Systems in Urban Agglomerations in Arid Regions—A Case Study of Urumqi–Changji–Shihezi Urban Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Indicator System
3. Research Methods
3.1. The Entropy Method
3.2. Vulnerability Evaluation Method
3.3. Vulnerability Classification Method
3.4. Geodetector
3.5. GM(1, 1) Gray Prediction Model
4. Results
4.1. Temporal Evolution Characteristics of the Combined Vulnerability of Urban Agglomerations
4.2. Time Course of Subdimensional Vulnerability Evolution
4.3. Spatial Differentiation Characteristics of Vulnerability of Subdimensional Urban Clusters
4.4. Forecast of Ecological–Economic–Social System Vulnerability Development in the Urumqi–Changji–Shihezi Urban Agglomeration
5. Discussion
5.1. Dominant Factors Affecting the Vulnerability of Different Systems
5.1.1. Dominant Factors Affecting the Reduction of Ecosystem Vulnerability
5.1.2. Dominant Factors Affecting the Vulnerability of Regional Economic Systems
5.1.3. Dominant Factors Influencing the Development of Vulnerability in the Social System
5.2. Policy Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timmerman, P. Vulnerability, resilience and the collapse of society: A Review of Models and Possible Climatic Applications. Int. J. Climatol. 1981, 1, 396. [Google Scholar]
- Campbell, K. ; Vulnerability & Criticality; Creamer Media’s Mining Weekly: Germiston, South Africa, 2015; pp. 16–21. [Google Scholar]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, D. Climate Change 2001: Impacts, Adaptation and Vulnerability, Third Assessment Report; Contribution of Working Group II to the Third Assessment Report; Cambridge University Pres: Cambridge, UK, 2007; Volume 19, pp. 81–111. [Google Scholar]
- Fang, C.; Wang, Y. A comprehensive assessment of urban vulnerability and its spatial differentiation in China. Acta Geogr. Sin. 2015, 70, 234–247. (In Chinese) [Google Scholar] [CrossRef]
- He, L.; Zhang, P.; Cheng, Y. Concepts and Assessment Methods of Vulnerability. Prog. Geogr. 2008, 27, 18–25. (In Chinese) [Google Scholar]
- Salas, J.; Yepes, V. Urban vulnerability assessment: Advances from the strategic planning outlook. J. Clean. Prod. 2018, 179, 544–558. [Google Scholar] [CrossRef]
- Romero Lankao, P.; Qin, H. Conceptualizing urban vulnerability to global climate and environmental change. Curr. Opin. Environ. Sustain. 2011, 3, 142–149. [Google Scholar] [CrossRef]
- Chandra, A.; Gaganis, P. Deconstructing vulnerability and adaptation in a coastal river basin ecosystem: A participatory analysis of flood risk in Nadi, Fiji Islands. Clim. Dev. 2015, 8, 256–269. [Google Scholar] [CrossRef]
- Herslund, L.B.; Jalayer, F.; Jean-Baptiste, N.; Jørgensen, G.; Kabisch, S.; Kombe, W.; Lindley, S.; Nyed, P.K.; Pauleit, S.; Printz, A.; et al. A multi-dimensional assessment of urban vulnerability to climate change in Sub-Saharan Africa. Nat. Hazards 2015, 82, 149–172. [Google Scholar] [CrossRef]
- Tapia, C.; Abajo, B.; Feliu, E.; Mendizabal, M.; Martinez, J.A.; Fernández, J.G.; Laburu, T.; Lejarazu, A. Profiling urban vulnerabilities to climate change: An indicator-based vulnerability assessment for European cities. Ecol. Indic. 2017, 78, 142–155. [Google Scholar] [CrossRef]
- Kermanshah, A.; Derrible, S.; Berkelhammer, M. Using Climate Models to Estimate Urban Vulnerability to Flash Floods. J. Appl. Meteorol. Climatol. 2017, 56, 2637–2650. [Google Scholar] [CrossRef]
- Rasch, R.J. Assessing urban vulnerability to flood hazard in Brazilian municipalities. Environ. Urban. 2015, 28, 145–168. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Liu, Z.; van Dijk, M.P. Measuring urban vulnerability to climate change using an integrated approach, assessing climate risks in Beijing. PeerJ 2019, 7, e7018. [Google Scholar] [CrossRef] [Green Version]
- Rocha, K.; Moreira, A. The role of domestic fundamentals on the economic vulnerability of emerging markets. Emerg. Mark. Rev. 2010, 11, 173–182. [Google Scholar] [CrossRef]
- Ren, C.; Sun, D.; Zhai, G.; Li, Y. A Comprehensive Assessment and Spatial Difference of China’s Provincial Economic Vulnerability. Econ. Geogr. 2019, 39, 37–46. (In Chinese) [Google Scholar]
- Pan, Z.; Gao, G.; Fu, B. Spatiotemporal changes and driving forces of ecosystem vulnerability in the Yangtze River Basin, China: Quantification using habitat-structure-function framework. Sci. Total Environ. 2022, 835, 155494. [Google Scholar] [CrossRef] [PubMed]
- Duy, P.N.; Chapman, L.; Tight, M. Resilient transport systems to reduce urban vulnerability to floods in emerging-coastal cities: A case study of Ho Chi Minh City, Vietnam. Travel Behav. Soc. 2019, 15, 28–43. [Google Scholar] [CrossRef]
- Sterzel, T.; Ludeke, M.K.B.; Walther, C.; Kok, M.T.; Sietz, D.; Lucas, P.L. Typology of coastal urban vulnerability under rapid urbanization. PLoS ONE 2020, 15, e0220936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R.; Sanderson, D.; Sitko, P.; De Boer, J. Investigating urban vulnerability and resilience: A call for applied integrated research to reshape the political economy of decision-making. Environ. Urban. 2020, 32, 589–598. [Google Scholar] [CrossRef]
- He, X.; Peng, K.; Xu, C. Spatiotemporal evolution and trend prediction of the vulnerability of tourism-economy-ecosystem in the Yangtze River Economic Belt. Acta Ecol. Sin. 2022, 42, 1–13. (In Chinese) [Google Scholar]
- Chen, W.; Yan, C.; Dong, J.; Yin, C. Spatial and temporal dynamics of urban vulnerability and analysis of key vulnerability-causing factors—The case of Henan Province. Urban Probl. 2020, 3, 38–46. (In Chinese) [Google Scholar]
- Wu, R. Theory and practice of vulnerability assessment of coupled economic-social-ecological systems. Dist. Econ. 2020, 5, 60–61. (In Chinese) [Google Scholar]
- Gu, K.; Liu, J.; Wang, Y.; Peng, X.; Wang, M. Ecological Vulnerability of Mining Cities in Central Liaoning. Sci. Geogr. Sin. 2008, 28, 759–764. (In Chinese) [Google Scholar]
- Su, F.; Zhang, P. Vulnerability Assessment of Petroleum City’s Economic System—A Case Study of Daqing City. Mod. Bus. 2009, 24, 1267–1274. (In Chinese) [Google Scholar]
- Wang, J.; Xue, D.; Ma, B.; Dong, C. Vulnerability and population response of mineral resource-based cities in the Loess Plateau. Arid. Land Geogr. 2020, 43, 1679–1690. (In Chinese) [Google Scholar]
- Tai, X.; Xiao, W.; Tang, Y. A quantitative assessment of vulnerability using social-economic-natural compound ecosystem framework in coal mining cities. J. Clean. Prod. 2020, 258, 120969. [Google Scholar] [CrossRef]
- Lingyun, S.; Simayi, Z.; Yinghong, W.; Yongcai, S.; Qin, S. Evaluation of Urban Vulnerability of Urumqi Based on the Variation Coefficient-Comprehensive index Method. Saf. Environ. Eng. 2017, 24, 14–19. (In Chinese) [Google Scholar]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal ecological vulnerability analysis with statistical correlation based on satellite remote sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef] [PubMed]
- Xiaojuan, Z.; Baoping, S.; Yan, Z.; Jinrong, L.; Xiangshan, Z.; Yinqian, W.; Yidan, Q.; Lei, F. Ecological vulnerability evaluation based on principal component analysis in Yunnan province. Ecol. Environ. Sci. 2011, 20, 109–113. (In Chinese) [Google Scholar]
- Karan, S.K.; Samadder, S.R.; Singh, V. Groundwater vulnerability assessment in degraded coal mining areas using the AHP-Modified DRASTIC model. Land Degrad. Dev. 2018, 29, 2351–2365. [Google Scholar] [CrossRef]
- Jahanishakib, F.; Malekmohamadi, B.; Yusefi, E.; Alipour, M. Developing Management Strategies Using a New Method for Vulnerability Assessment of Wetland Ecosystems (Case Study: Choghakhor Wetland). Master’s Thesis, University of Tehran, Tehran, Iran, 2013. Volume 19. [Google Scholar]
- Malekmohammadi, B.; Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 2017, 82, 293–303. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Pirasteh, S.; Ellison, J.C.; Jaafari, A. Fuzzy-based vulnerability assessment of coupled social-ecological systems to multiple environmental hazards and climate change. J. Environ. Manag. 2021, 299, 113573. [Google Scholar] [CrossRef]
- Mavromatidi, A.; Briche, E.; Claeys, C. Mapping and analyzing socio-environmental vulnerability to coastal hazards induced by climate change: An application to coastal Mediterranean cities in France. Cities 2018, 72, 189–200. [Google Scholar] [CrossRef]
- Weisshuhn, P.; Muller, F.; Wiggering, H. Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach. Env. Manag. 2018, 61, 904–915. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, R.; Kokic, P.; Crimp, S.; Martin, P.; Meinke, H.; Howden, S.M.; de Voil, P.; Nidumolu, U. The vulnerability of Australian rural communities to climate variability and change: Part II—Integrating impacts with adaptive capacity. Environ. Sci. Policy 2010, 13, 18–27. [Google Scholar] [CrossRef]
- Hagenlocher, M.; Renaud, F.G.; Haas, S.; Sebesvari, Z. Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards. Sci. Total Environ. 2018, 631–632, 71–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dechazal, J.; Quetier, F.; Lavorel, S.; Vandoorn, A. Including multiple differing stakeholder values into vulnerability assessments of socio-ecological systems. Glob. Environ. Chang. 2008, 18, 508–520. [Google Scholar] [CrossRef]
- Metzger, M.J.; Rounsevell, M.D.A.; Acosta-Michlik, L.; Leemans, R.; Schröter, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Teck, S.J.; Halpern, B.S.; Kappel, C.V.; Micheli, F.; Selkoe, K.A.; Crain, C.M.; Martone, R.; Shearer, C.; Arvai, J.; Fischhoff, B.; et al. Using expert judgment to estimate marine ecosystem vulnerability in the California Current. Ecol. Appl. 2010, 20, 1402–1416. [Google Scholar] [CrossRef] [PubMed]
- Thirumalaivasan, D.; Karmegam, M.; Venugopal, K. AHP-DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ. Model. Softw. 2003, 18, 645–656. [Google Scholar] [CrossRef]
- Ebrahimian Ghajari, Y.; Alesheikh, A.A.; Modiri, M.; Hosnavi, R.; Abbasi, M.; Sharifi, A. Urban vulnerability under various blast loading scenarios: Analysis using GIS-based multi-criteria decision analysis techniques. Cities 2018, 72, 102–114. [Google Scholar] [CrossRef]
- Nguyen, A.K.; Liou, Y.-A.; Li, M.-H.; Tran, T.A. Zoning eco-environmental vulnerability for environmental management and protection. Ecol. Indic. 2016, 69, 100–117. [Google Scholar] [CrossRef]
- Dixon, B. Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Appl. Geogr. 2005, 25, 327–347. [Google Scholar] [CrossRef]
- Sar, N.; Chatterjee, S.; Das Adhikari, M. Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai river basin, India. Model. Earth Syst. Environ. 2015, 1, 31. [Google Scholar] [CrossRef] [Green Version]
- Güngör Haki, Z.; Akyürek, Z.; Düzgün, S. Assessment of Social Vulnerability Using Geographic Information Systems: Pendik, Istanbul Case Study. Master’s Thesis, Middle East Technical University, Heraklion, Greece, 2004. [Google Scholar]
- Chao, G.; Jin, F.J.; Lei, J.; Zhang, X. Vulnerability Assessment of Economic System of Oasis Cities in Arid Area. Econ. Geogr. 2012, 32, 43–49. (In Chinese) [Google Scholar]
- Lu, Y.; Li, X.; Zibibula, S.; Zhao, X. Tourism Economic System’s Vulnerability Assessment of Hotan Prefecture in Xinjiang. Areal Res. Dev. 2017, 36, 120–124. (In Chinese) [Google Scholar]
- Cai, X.; Li, Z.; Liang, Y. Tempo-spatial changes of ecological vulnerability in the arid area based on ordered weighted average model. Ecol. Indic. 2021, 133, 108398. [Google Scholar] [CrossRef]
- Sandeep, P.; Reddy, G.P.O.; Jegankumar, R.; Arun Kumar, K.C. Modeling and Assessment of Land Degradation Vulnerability in Semi-arid Ecosystem of Southern India Using Temporal Satellite Data, AHP and GIS. Environ. Model. Assess. 2020, 26, 143–154. [Google Scholar] [CrossRef]
- Gao, C.; Lei, J.; Jin, F. The classification and assessment of vulnerability of man-land system of oasis city in arid area. Front. Earth Sci. 2013, 7, 406–416. [Google Scholar] [CrossRef]
- Wang, L.; Shi, K.; Liang, Z. Study on Comprehensive Evaluation and Dynamic Evolution of Urban Vulnerability: Taking Lanzhou City as an Example. Ecol. Econ. 2017, 33, 137–141. (In Chinese) [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar]
- Zhou, C.; Feng, X.; Tang, R. Analysis and Forecast of Coupling Coordination Development among the Regional Economy-Ecological Environment-Tourism lndustry—A Case Study of Provinces Along the Yangtze Economic Zone. Econ. Geogr. 2016, 36, 186–193. (In Chinese) [Google Scholar]
- Li, H.; Song, W. Spatiotemporal Distribution and Influencing Factors of Ecosystem Vulnerability on Qinghai-Tibet Plateau. Int. J. Environ. Res. Public Health 2021, 18, 6508. [Google Scholar] [CrossRef]
- Penghua, Q.; Songjun, X.; Genzong, X.; Benan, T.; Hua, B.; Longshi, Y. Analysis of the ecological vulnerability of the western Hainan Island based on its landscape pattern and ecosystem sensitivity. Acta Ecol. Sin. 2007, 27, 1257–1264. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Fu, X.; Li, H.; Xu, C. Ecological vulnerability assessment based on PSSR in Yellow River Delta. J. Clean. Prod. 2017, 167, 1106–1111. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, Y.; Wang, Y.; Fu, B. Greater increases in China’s dryland ecosystem vulnerability in drier conditions than in wetter conditions. J Env. Manag. 2021, 291, 112689. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Xie, L. On the Vulnerability of Economic System of Traditional Tourism Cities—A Case from Guilin. Tour. Trib. 2011, 26, 40–46. (In Chinese) [Google Scholar]
- Deng, Y.; Yang, Z. Spatial Analysis on the Vulnerability of Tourism Economic System Based on BP Neural Network: The Guangdong-Hong Kong-Macao Greater Bay Area (GBA). Math. Probl. Eng. 2022, 2022, 1–12. [Google Scholar] [CrossRef]
- Zhang, L. Analysis of TJ Economic Vulnerability Based on Set Pair Analysis. J. Serv. Sci. Manag. 2019, 12, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Ming, Q.; Guo, X.; Ll, T. Vulnerability Evaluation, Influencing Factors and Coping Strategies of Tourism Economic System in Frontier Provinces—A Case Study of Yunnan. J. Yunnan Norm. Univ. 2018, 38, 66–74. (In Chinese) [Google Scholar]
- Yu, Z.; Li, B.; Zhang, X. Social ecological system and vulnerability driving mechanism analysis. Acta Ecol. Sin. 2014, 34, 1870–1879. (In Chinese) [Google Scholar]
- Liu, C.; He, Q.; Li, Y. Spatiotemporal Evaluation of Socio-Ecological-Economic System Vulnerability: A County-Level Analysis of Chongqing, China. Sustainability 2020, 12, 3912. [Google Scholar] [CrossRef]
- Liu, K.; Ren, J.; Cheng, Y.; Ren, M. Yellow River Delta Social Vulnerability Evaluation and Influence Factor. Econ. Geogr. 2016, 36, 45–52. (In Chinese) [Google Scholar]
- Yin, P.; Liu, S.; Duan, P. Analysis on the Vulnerability and Obstacle Indicators in Island-Type Tourism Destination—Take Zhoushan City for Example. Econ. Geogr. 2017, 37, 234–240. (In Chinese) [Google Scholar]
Target Layer | Criterion Layer | Index Layer | Indicator Description | Index Properties | Weight |
---|---|---|---|---|---|
Ecological Vulnerability | Park green space per capita (m2-people) | Living environment and quality of life for urban residents | − | 0.017025 | |
Greening coverage of built-up areas (%) | Reflects the urban ecological environment | − | 0.0085627 | ||
Ecosystem Vulnerability | Cultivated land per capita (hectares) | Pressure on the ecosystem | + | 0.0091961 | |
Environmental Vulnerability | Wastewater treatment rate (%) | Environmental Governance Capacity | − | 0.0086132 | |
Domestic waste removal volume (million tons) | Domestic waste treatment capacity | − | 0.0963664 | ||
Total number of special vehicles for amenities and sanitation (units) | Environmental cleanliness protection capacity | − | 0.1175512 | ||
Economic structural vulnerability | The proportion of primary industry (%) | Reflect the level of regional modernization | + | 0.0188583 | |
Urbanization rate (%) | Reflects the urbanization process | − | 0.022392 | ||
Regional economic vulnerability | Share of industrial value added in GDP (%) | The pull of industry on the economy | − | 0.018683 | |
Economic efficiency vulnerability | Local revenue (billion yuan) | Reflects the degree of economic development | − | 0.1021245 | |
GDP per capita (RMB) | Economic level of regional residents per capita | − | 0.0142876 | ||
Total retail sales of social consumer goods (million yuan) | Reflects the economic prosperity | − | 0.1009445 | ||
Total social fixed asset investment (million yuan) | Reflects economic structure and quality | − | 0.0637112 | ||
Human Development Vulnerability | Population density (persons/km2) | Social Development Demographic Pressure Indicators | + | 0.0096287 | |
The average wage of employed workers (yuan) | Reflects regional wage levels | − | 0.0123461 | ||
Infrastructure Vulnerability | Urban road area per capita (m2) | Convenience of urban transportation | − | 0.0229304 | |
Drainage pipeline density (km/km2) | Reflects the city’s sewage diversion capacity | − | 0.0236853 | ||
Gas penetration rate (%) | Utility modernization level | − | 0.0070537 | ||
Social system vulnerability | Number of public toilets (one) | Sewage facilities construction capacity | − | 0.0965437 | |
Social Environmental Vulnerability | Disposable income per urban resident (yuan) | Reflects the livelihood capacity and real standard of living of the society’s residents | − | 0.0219353 | |
Net income per capita of rural residents (yuan) | − | 0.0159044 | |||
Number of beds in medical and health institutions (sheets) | City Public Service Levels | − | 0.0959529 | ||
Number of urban basic pension insurance participants (persons) | Social Security Capability | − | 0.0957034 |
Vulnerability Level | Slight | Light | Medium | Heavy | Extreme |
---|---|---|---|---|---|
Integrated system | ≤0.6301 | 0.6302~0.6670 | 0.6671~0.7647 | 0.7648~0.7756 | 0.7757~0.8387 |
Ecological system | ≤0.1202 | 0.1203~0.1302 | 0.1303~0.1581 | 0.1582~0.1754 | 0.1755~0.2293 |
Regional economic system | ≤0.2031 | 0.2032~0.2148 | 0.2149~0.2419 | 0.2420~0.2695 | 0.2696~0.3132 |
Social system | 0.2941~0.2962 | 0.2963~0.3068 | 0.3069~0.3214 | 0.3215~0.3472 | 0.3473~0.3583 |
Accuracy Class | P | C | Accuracy Class | P | C |
---|---|---|---|---|---|
High | >0.95 | <0.35 | Basic qualified | >0.70 | <0.65 |
Qualified | >0.80 | <0.50 | Unqualified | ≤0.70 | ≥0.65 |
Region | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | 2019–2025 |
---|---|---|---|---|---|---|---|---|
Urumqi City | 0.2463 | 0.2154 | 0.1853 | 0.1559 | 0.1273 | 0.0993 | 0.0721 | 1.1016 |
Shihezi City | 0.4853 | 0.4705 | 0.4562 | 0.4423 | 0.4288 | 0.4157 | 0.4030 | 3.1018 |
Changji City | 0.5723 | 0.5565 | 0.5412 | 0.5263 | 0.5118 | 0.4977 | 0.4840 | 3.6898 |
Fukang City | 0.5760 | 0.5607 | 0.5459 | 0.5314 | 0.5173 | 0.5036 | 0.4903 | 3.7252 |
Hutubi County | 0.5911 | 0.5760 | 0.5614 | 0.5471 | 0.5331 | 0.5195 | 0.5063 | 3.8344 |
Manas County | 0.5871 | 0.5660 | 0.5457 | 0.5261 | 0.5072 | 0.4889 | 0.4713 | 3.6923 |
Shawan City | 0.6995 | 0.6929 | 0.6864 | 0.6799 | 0.6736 | 0.6672 | 0.6609 | 4.7605 |
Detection Factor | Detection Results by Years | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
X1 | 0.5943 | 0.8224 | 0.9488 | 0.8983 | 0.5713 | 0.8247 | 0.5997 | 0.6088 | 0.5482 | 0.5258 |
X2 | 0.9080 | 0.9935 | 0.6632 | 0.4131 | 0.9974 | 0.3921 | 0.9058 | 0.6088 | 0.7807 | 0.9560 |
X3 | 0.8388 | 0.9856 | 0.4889 | 0.9810 | 0.9953 | 0.9826 | 0.9479 | 0.9504 | 0.9305 | 0.3139 |
X4 | 0.8483 | 0.9569 | 0.9728 | 0.9940 | 0.8553 | 0.9855 | 0.9013 | 0.9861 | 0.8419 | 0.8782 |
X5 | 0.8874 | 0.8912 | 0.8872 | 0.9776 | 0.9801 | 0.9803 | 0.8575 | 0.9498 | 0.9412 | 0.9561 |
X6 | 0.8700 | 0.9917 | 0.9519 | 0.9874 | 0.9883 | 0.9921 | 0.9565 | 0.9623 | 0.7802 | 0.7093 |
X7 | 0.8700 | 0.9512 | 0.8886 | 0.9933 | 0.9987 | 0.8652 | 0.8323 | 0.8316 | 0.5250 | 0.4753 |
X8 | 0.7780 | 0.8564 | 0.9107 | 0.8115 | 0.7107 | 0.7682 | 0.5164 | 0.5491 | 0.1648 | 0.4830 |
X9 | 0.7254 | 0.8836 | 0.6210 | 0.9556 | 0.4482 | 0.9165 | 0.5643 | 0.5615 | 0.4149 | 0.9456 |
X10 | 0.8144 | 0.8134 | 0.8872 | 0.9776 | 0.9816 | 0.9803 | 0.9437 | 0.9031 | 0.9579 | 0.9781 |
X11 | 0.3709 | 0.9443 | 0.8259 | 0.9110 | 0.3792 | 0.3622 | 0.4532 | 0.4356 | 0.7808 | 0.7061 |
X12 | 0.8884 | 0.7503 | 0.8799 | 0.9530 | 0.8506 | 0.9060 | 0.9408 | 0.9451 | 0.9551 | 0.9775 |
X13 | 0.8458 | 0.8912 | 0.8930 | 0.9813 | 0.8506 | 0.9178 | 0.9368 | 0.9022 | 0.8999 | 0.9635 |
X14 | 0.7790 | 0.5204 | 0.9519 | 0.9874 | 0.9953 | 0.9875 | 0.9566 | 0.9838 | 0.2513 | 0.3861 |
X15 | 0.8483 | 0.9235 | 0.9525 | 0.4125 | 0.9987 | 0.4296 | 0.9928 | 0.5901 | 0.9158 | 0.9777 |
X16 | 0.8270 | 0.8224 | 0.8723 | 0.8654 | 0.3457 | 0.8482 | 0.9058 | 0.9064 | 0.9478 | 0.9821 |
X17 | 0.5972 | 0.5905 | 0.7297 | 0.8723 | 0.7825 | 0.9156 | 0.8134 | 0.7328 | 0.3613 | 0.5039 |
X18 | 0.7800 | 0.9235 | 0.6423 | 0.5386 | 0.4035 | 0.8443 | 0.4478 | 0.6088 | 0.2198 | 0.2617 |
X19 | 0.8874 | 0.8539 | 0.9599 | 0.9367 | 0.8382 | 0.9011 | 0.8675 | 0.8562 | 0.9277 | 0.9341 |
X20 | 0.9382 | 0.5927 | 0.4233 | 0.2164 | 0.4529 | 0.2264 | 0.8386 | 0.8448 | 0.7577 | 0.9613 |
X21 | 0.9226 | 0.9279 | 0.9519 | 0.9874 | 0.7825 | 0.8688 | 0.8134 | 0.8073 | 0.4790 | 0.2581 |
X22 | 0.8874 | 0.7503 | 0.9273 | 0.9367 | 0.8449 | 0.9011 | 0.8675 | 0.8562 | 0.9692 | 0.9559 |
X23 | 0.9450 | 0.9279 | 0.8886 | 0.9933 | 0.9987 | 0.9972 | 0.9119 | 0.9861 | 0.9692 | 0.9778 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Simayi, Z.; Yang, S.; Mamitimin, Y.; Shen, F.; Zhang, Y. Vulnerability Assessment of Ecological–Economic–Social Systems in Urban Agglomerations in Arid Regions—A Case Study of Urumqi–Changji–Shihezi Urban Agglomeration. Sustainability 2023, 15, 5414. https://doi.org/10.3390/su15065414
Zhang X, Simayi Z, Yang S, Mamitimin Y, Shen F, Zhang Y. Vulnerability Assessment of Ecological–Economic–Social Systems in Urban Agglomerations in Arid Regions—A Case Study of Urumqi–Changji–Shihezi Urban Agglomeration. Sustainability. 2023; 15(6):5414. https://doi.org/10.3390/su15065414
Chicago/Turabian StyleZhang, Xiaofen, Zibibula Simayi, Shengtian Yang, Yusuyunjiang Mamitimin, Fang Shen, and Yunyi Zhang. 2023. "Vulnerability Assessment of Ecological–Economic–Social Systems in Urban Agglomerations in Arid Regions—A Case Study of Urumqi–Changji–Shihezi Urban Agglomeration" Sustainability 15, no. 6: 5414. https://doi.org/10.3390/su15065414
APA StyleZhang, X., Simayi, Z., Yang, S., Mamitimin, Y., Shen, F., & Zhang, Y. (2023). Vulnerability Assessment of Ecological–Economic–Social Systems in Urban Agglomerations in Arid Regions—A Case Study of Urumqi–Changji–Shihezi Urban Agglomeration. Sustainability, 15(6), 5414. https://doi.org/10.3390/su15065414