Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)
Abstract
:1. Introduction
2. Methods
Keywords and String Selection
3. Results
3.1. Term Frequency–Inverse Document Frequency (TF-IDF)
- TF (word, document) = (Number of times the word appears in the document)/(Total number of words in the document)
- IDF (word) = log_e (Total number of documents/Number of documents containing the word)
3.2. Recent Trends Identification Using K-Means Clustering
4. Discussion
4.1. Cluster I: Green Marketing and Consumer Behavior
4.2. Cluster II: Sustainable Social Media Marketing
4.3. Cluster III: Influencer Social Media Marketing Practices
4.4. Cluster IV: Consumers and Social Media Communications
4.5. Cluster V: Creative Social Media Advertising
5. Implications
6. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elkington, J. Partnerships fromcannibals with forks: The triple bottom line of 21st-century business. Environ. Qual. Manag. 1998, 8, 37–51. [Google Scholar] [CrossRef]
- Minton, E.; Lee, C.; Orth, U.; Kim, C.-H.; Kahle, L. Sustainable Marketing and Social Media. A Cross-Country Analysis of Motives for Sustainable Behaviors. J. Advert. 2012, 41, 69–84. [Google Scholar] [CrossRef]
- Kautish, P.; Dash, G. Environmentally concerned consumer behavior: Evidence from consumers in Rajasthan. J. Model. Manag. 2017, 12, 712–738. [Google Scholar] [CrossRef]
- Gordon, R.; Carrigan, M.; Hastings, G. A framework for sustainable marketing. Mark. Theory 2011, 11, 143–163. [Google Scholar] [CrossRef]
- Ottman, J.A.; Stafford, E.R.; Hartman, C.L. Avoiding Green Marketing Myopia: Ways to Improve Consumer Appeal for Environmentally Preferable Products. Environ. Sci. Policy Sustain. Dev. 2006, 48, 22–36. [Google Scholar] [CrossRef]
- Kaur, B.; Gangwar, V.P.; Dash, G. Green Marketing Strategies, Environmental Attitude, and Green Buying Intention: A Multi-Group Analysis in an Emerging Economy Context. Sustainability 2022, 14, 6107. [Google Scholar] [CrossRef]
- Lee, K. Opportunities for green marketing: Young consumers. Mark. Intell. Plan. 2008, 26, 573–586. [Google Scholar] [CrossRef]
- Chakraborty, D.; Dash, G. Using the consumption values to investigate consumer purchase intentions towards natural food products. Br. Food J. 2022, 125, 551–569. [Google Scholar] [CrossRef]
- Rex, E.; Baumann, H. Beyond ecolabels: What green marketing can learn from conventional marketing. J. Clean. Prod. 2007, 15, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the future of digital and social media marketing research: Perspectives and research propositions. Int. J. Inf. Manag. 2020, 59, 102168. [Google Scholar] [CrossRef]
- Dash, G.; Chakraborty, D. Digital Transformation of Marketing Strategies during a Pandemic: Evidence from an Emerging Economy during COVID-19. Sustainability 2021, 13, 6735. [Google Scholar] [CrossRef]
- Dash, G.; Sharma, K.; Yadav, N. The diffusion of mobile payments: Profiling the adopters and non-adopters, Roger’s way. J. Retail. Consum. Serv. 2023, 71, 103219. [Google Scholar] [CrossRef]
- de Vries, L.; Gensler, S.; Leeflang, P.S. Popularity of Brand Posts on Brand Fan Pages: An Investigation of the Effects of Social Media Marketing. J. Interact. Mark. 2012, 26, 83–91. [Google Scholar] [CrossRef]
- Rajput, S.; Dash, G.; Upamannyu, N.; Sharma, B.K.; Singh, P. Social media campaigns and domestic products consumption: A study on an emerging economy. Cogent Bus. Manag. 2022, 9, 2143018. [Google Scholar] [CrossRef]
- Karmugilan, K.; Pachayappan, M. Sustainable manufacturing with green environment: An evidence from social media. Mater. Today Proc. 2020, 22, 1878–1884. [Google Scholar] [CrossRef]
- Sharma, C.; Sakhuja, S.; Nijjer, S. Recent trends of green human resource management: Text mining and network analysis. Environ. Sci. Pollut. Res. 2022, 29, 84916–84935. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Batra, I.; Sharma, S.; Malik, A.; Hosen, A.S.M.S.; Ra, I.-H. Predicting Trends and Research Patterns of Smart Cities: A Semi-Automatic Review Using Latent Dirichlet Allocation (LDA). IEEE Access 2022, 10, 121080–121095. [Google Scholar] [CrossRef]
- Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering. Engineering 2007, 45, 1051. [Google Scholar]
- Tseng, M.-L.; Islam, M.S.; Karia, N.; Fauzi, F.A.; Afrin, S. A literature review on green supply chain management: Trends and future challenges. Resour. Conserv. Recycl. 2019, 141, 145–162. [Google Scholar] [CrossRef]
- Fillbrunn, A.; Dietz, C.; Pfeuffer, J.; Rahn, R.; Landrum, G.A.; Berthold, M.R. KNIME for reproducible cross-domain analysis of life science data. J. Biotechnol. 2017, 261, 149–156. [Google Scholar] [CrossRef]
- Dietz, C.; Berthold, M.R. KNIME for Open-Source Bioimage Analysis: A Tutorial. In Focus on Bio-Image Informatics; Springer International Publishing: Cham, Switzerland, 2016; Volume 219, pp. 179–197. [Google Scholar] [CrossRef]
- Xie, L.; Chen, Z.; Wang, H.; Zheng, C.; Jiang, J. Bibliometric and Visualized Analysis of Scientific Publications on Atlantoaxial Spine Surgery Based on Web of Science and VOSviewer. World Neurosurg. 2020, 137, 435–442.e4. [Google Scholar] [CrossRef]
- Chiche, A.; Yitagesu, B. Part of speech tagging: A systematic review of deep learning and machine learning approaches. J. Big Data 2022, 9, 1–25. [Google Scholar] [CrossRef]
- Dwivedi, D.N.; Wójcik, K.; Vemareddyb, A. Identification of Key Concerns and Sentiments Towards Data Quality and Data Strategy Challenges Using Sentiment Analysis and Topic Modeling. In Modern Classification and Data Analysis; Springer: Berlin/Heidelberg, Germany, 2022; pp. 19–29. [Google Scholar] [CrossRef]
- Garg, N.; Sharma, K. Text pre-processing of multilingual for sentiment analysis based on social network data. Int. J. Electr. Comput. Eng. IJECE 2022, 12, 776–784. [Google Scholar] [CrossRef]
- Yalcin, K.; Cicekli, I.; Ercan, G. An external plagiarism detection system based on part-of-speech (POS) tag n-grams and word embedding. Expert Syst. Appl. 2022, 197, 116677. [Google Scholar] [CrossRef]
- Pramana, R.; Subroto, J.J.; Gunawan, A.A.S. Systematic Literature Review of Stemming and Lemmatization Performance for Sentence Similarity. In Proceedings of the 2022 IEEE 7th International Conference on Information Technology and Digital Applications (ICITDA), Yogyakarta, Indonesia, 4–5 November 2022; pp. 1–6. [Google Scholar]
- Jones, K.S. A statistical interpretation of term specificity and its application in retrieval. J. Doc. 1972, 28, 11–21. [Google Scholar] [CrossRef]
- Wu, H.C.; Luk, R.W.P.; Wong, K.F.; Kwok, K.L. Interpreting TF-IDF term weights as making relevance decisions. ACM Trans. Inf. Syst. 2008, 26, 1–37. [Google Scholar] [CrossRef]
- Ramos, J. Using tf-idf to determine word relevance in document queries. In Proceedings of the First Instructional Conference on Machine Learning, Volume 242; No. 1; pp. 29–48. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b3bf6373ff41a115197cb5b30e57830c16130c2c (accessed on 5 January 2023).
- Artama, M.; Sukajaya, I.N.; Indrawan, G. Classification of official letters using TF-IDF method. J. Physics Conf. Ser. 2020, 1516, 012001. [Google Scholar] [CrossRef]
- Patil, R.S.; Kolhe, S.R. Supervised classifiers with TF-IDF features for sentiment analysis of Marathi tweets. Soc. Netw. Anal. Min. 2022, 12, 51. [Google Scholar] [CrossRef]
- Yalcinkaya, M.; Singh, V. Patterns and trends in Building Information Modeling (BIM) research: A Latent Semantic Analysis. Autom. Constr. 2015, 59, 68–80. [Google Scholar] [CrossRef]
- Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R. Indexing by Latent Semantic Analysis. J. Am. Soc. Inf. Sci. 1990, 41, 391–407. [Google Scholar] [CrossRef]
- Ch, T.R.; Awan, T.M.; Malik, H.A.; Fatima, T. Unboxing the green box: An empirical assessment of buying behavior of green products. World J. Entrep. Manag. Sustain. Dev. 2021, 17, 690–710. [Google Scholar] [CrossRef]
- Yao, J.; Guo, X.; Wang, L.; Jiang, H. Understanding Green Consumption: A Literature Review Based on Factor Analysis and Bibliometric Method. Sustainability 2022, 14, 8324. [Google Scholar] [CrossRef]
- Foltean, F.S. Bridging marketing theory—Practice gap to enhance firm performance: Introduction to the special issue. J. Bus. Res. 2019, 104, 520–528. [Google Scholar] [CrossRef]
- Sharmin, F.; Sultan, M.; Badulescu, D.; Badulescu, A.; Borma, A.; Li, B. Sustainable Destination Marketing Ecosystem through Smartphone-Based Social Media: The Consumers’ Acceptance Perspective. Sustainability 2021, 13, 2308. [Google Scholar] [CrossRef]
- Rezn’ičková, M.; Zaušková, A. SOLOMO marketing in the eco-innovations of business entities. In Proceedings of the European Conference on Innovation and Entrepreneurship, Kalamata, Greece, 19–20 September 2019. [Google Scholar]
- Ambrose, G.J.; Meng, J.; Ambrose, P.J. Why do millennials use Facebook? Enduring insights. Qual. Mark. Res. Int. J. 2020, 23, 171–197. [Google Scholar] [CrossRef]
- ikić, F. Using Instagram as a Communication Channel in Green Marketing Digital Mix: A Case Study of bio\&bio Organic Food Chain in Croatia. In The Sustainability Debate; Emerald Publishing Limited: Bingley, UK, 2021; Volume 14, pp. 221–236. [Google Scholar]
- Oluwajana, D.; Adeshola, I.; Olowu, G. Do the customer relationship benefits influence expectation of continuity? Adoption of social customer relationship management to promote eco-friendly products. J. Public Aff. 2021, 22, e2701. [Google Scholar] [CrossRef]
- Urm’inová, M.; Kusá, A. Innovative approaches in marketing communication in sustainable fashion business. In Proceedings of the European Conference on Innovation and Entrepreneurship, Rome, Italy, 17–18 September 2020. [Google Scholar]
- Tien, N.H.; Ngoc, N.M.; Anh, D.B.H.; Huong, N.D.; Huong, N.T.T.; Phuong, T.N.M. Green marketing development strategy in post COVID-19 period in Vietnam. Int. J. Multidiscip. Res. Growth Eval. 2020, 1, 101–106. [Google Scholar]
- Prihandono, D.; Wijaya, A.P.; Rizqiana, I.; Yahya, W.K.; Prabumenang, A.K.R. Green marketing tools effect on consumer buying decision in the bottled water industry. Humanit. Soc. Sci. Rev. 2020, 8, 537–546. [Google Scholar] [CrossRef]
- Lakatos, E.-S.; Nan, L.-M.; Bacali, L.; Ciobanu, G.; Ciobanu, A.-M.; Cioca, L.-I. Consumer Satisfaction towards Green Products: Empirical Insights from Romania. Sustainability 2021, 13, 10982. [Google Scholar] [CrossRef]
- Witek, L.; Kuźniar, W. Green Purchase Behavior: The Effectiveness of Sociodemographic Variables for Explaining Green Purchases in Emerging Market. Sustainability 2020, 13, 209. [Google Scholar] [CrossRef]
- García-Salirrosas, E.E.; Rondon-Eusebio, R.F. Green Marketing Practices Related to Key Variables of Consumer Purchasing Behavior. Sustainability 2022, 14, 8499. [Google Scholar] [CrossRef]
- Purcuarea, T.; Ioan-Franc, V.; Ionescu, S.-A.; Purcuarea, I.M.; Purcuarea, V.L.; Purcuarea, I.; Mateescu-Soare, M.C.; Platon, O.-E.; Orzan, A.-O. Major Shifts in Sustainable Consumer Behavior in Romania and Retailers’ Priorities in Agilely Adapting to It. Sustainability 2022, 14, 1627. [Google Scholar] [CrossRef]
- Severo, E.A.; De Guimarães, J.C.F.; Dellarmelin, M.L. Impact of the COVID-19 pandemic on environmental awareness, sustainable consumption and social responsibility: Evidence from generations in Brazil and Portugal. J. Clean. Prod. 2020, 286, 124947. [Google Scholar] [CrossRef] [PubMed]
- Camacho, S.; Barrios, A. Social commerce affordances for female entrepreneurship: The case of Facebook. Electron. Mark. 2021, 32, 1145–1167. [Google Scholar] [CrossRef]
- Vidili, I. Customer experience: The new competitive advantage for companies that want their customer at the center of their business. In Handbook of Research on User Experience in Web 2.0 Technologies and Its Impact on Universities and Businesses; IGI Global: Hershey, PA, USA, 2021; pp. 183–209. [Google Scholar]
- Felsberger, A.; Reiner, G. Sustainable Industry 4.0 in Production and Operations Management: A Systematic Literature Review. Sustainability 2020, 12, 7982. [Google Scholar] [CrossRef]
- Shen, H.; Wall, G. Social media, space and leisure in small cities. Asia Pac. J. Tour. Res. 2021, 26, 73–80. [Google Scholar] [CrossRef]
- Ki, C.-W.; Cuevas, L.M.; Chong, S.M.; Lim, H. Influencer marketing: Social media influencers as human brands attaching to followers and yielding positive marketing results by fulfilling needs. J. Retail. Consum. Serv. 2020, 55, 102133. [Google Scholar] [CrossRef]
- Campbell, C.; Farrell, J.R. More than meets the eye: The functional components underlying influencer marketing. Bus. Horizons 2020, 63, 469–479. [Google Scholar] [CrossRef]
- Seo, W.; Jung, H. Understanding the community of blind or visually impaired vloggers on YouTube. Univers. Access Inf. Soc. 2020, 20, 31–44. [Google Scholar] [CrossRef]
- Kim, E. Consumer Responses to Ads on Digital Video-Sharing Platforms: The Phenomenon of Intentional Ad-Viewing Behavior. Ph.D. Thesis, University of Minnesota, Twin Cities, MN, USA, 2022. [Google Scholar]
- Vrontis, D.; Makrides, A.; Christofi, M.; Thrassou, A. Social media influencer marketing: A systematic review, integrative framework and future research agenda. Int. J. Consum. Stud. 2021, 45, 617–644. [Google Scholar] [CrossRef]
- Hudders, L.; De Jans, S.; De Veirman, M. The Commercialization of Social Media Stars: A Literature Review and Conceptual Framework on the Strategic Use of Social Media Influencers. Int. J. Advert. 2021, 40, 327–375. [Google Scholar] [CrossRef]
- De Veirman, M.; Hudders, L.; Nelson, M.R. What Is Influencer Marketing and How Does It Target Children? A Review and Direction for Future Research. Front. Psychol. 2019, 10, 2685. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.; Ho, S.; Olusanya, O.; Antonini, M.V.; Lyness, D. The use of social media and online communications in times of pandemic COVID-19. J. Intensiv. Care Soc. 2020, 22, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Vitelar, A. National University of Political Studies and Public Administration Like Me: Generation Z and the Use of Social Media for Personal Branding. Manag. Dyn. Knowl. Econ. 2013, 7, 257–268. [Google Scholar] [CrossRef]
- Kožuh, I.; Debevc, M. The utilisation of social media among users with hearing loss: An analysis of Facebook communities. Univers. Access Inf. Soc. 2019, 19, 541–555. [Google Scholar] [CrossRef]
- Lin, X.; Sarker, S.; Featherman, M. Users’ Psychological Perceptions of Information Sharing in the Context of Social Media: A Comprehensive Model. Int. J. Electron. Commer. 2019, 23, 453–491. [Google Scholar] [CrossRef]
- Kozuh, I. The Deaf and Hard of Hearing on Social Networking Sites: Identity, Community Building and Connections between Communities. Ph.D. Thesis, Univerza v Mariboru, Maribor, Slovenia, 2015. [Google Scholar]
- Chang, C.-C.; Chu, K.-H. A Recommender System Combining Social Networks for Tourist Attractions. In Proceedings of the 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks, Madrid, Spain, 5–7 June 2013; pp. 42–47. [Google Scholar] [CrossRef]
- Anandhan, A.; Shuib, L.; Ismail, M.A.; Mujtaba, G. Social Media Recommender Systems: Review and Open Research Issues. IEEE Access 2018, 6, 15608–15628. [Google Scholar] [CrossRef]
- Ibáñez-Sánchez, S.; Orús, C.; Flavián, C. Augmented reality filters on social media. Analyzing the drivers of playability based on uses and gratifications theory. Psychol. Mark. 2022, 39, 559–578. [Google Scholar] [CrossRef]
- Kompan, D.; Obaha, K.; Pahič, N.; Trop, S.; Podgorelec, V.; Kožuh, I. Social Media as a Channel for Cooperation, Co-creation and Communication between Companies. ATHENA Res. Book 2022, 1, 287–293. [Google Scholar] [CrossRef]
- Schneider, S.; Kokshagina, O. Digital transformation: What we have learned (thus far) and what is next. Creativity Innov. Manag. 2021, 30, 384–411. [Google Scholar] [CrossRef]
- Ruggieri, R.; Savastano, M.; Scalingi, A.; Bala, D.; D’Ascenzo, F. The impact of Digital Platforms on Business Models: An empirical investigation on innovative start-ups. Manag. Mark. 2018, 13, 1210–1225. [Google Scholar] [CrossRef] [Green Version]
- Lina, L.F.; Ahluwalia, L. Customers’ impulse buying in social commerce: The role of flow experience in personalized advertising. J. Manaj. Maranatha 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Grewal, D.; Hulland, J.; Kopalle, P.K.; Karahanna, E. The future of technology and marketing: A multidisciplinary perspective. J. Acad. Mark. Sci. 2020, 48, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Larimo, J.; Leonidou, L.C. Social media marketing strategy: Definition, conceptualization, taxonomy, validation, and future agenda. J. Acad. Mark. Sci. 2020, 49, 51–70. [Google Scholar] [CrossRef]
- Creevey, D.; Coughlan, J.; O’Connor, C. Social media and luxury: A systematic literature review. Int. J. Manag. Rev. 2021, 24, 99–129. [Google Scholar] [CrossRef]
- Wolter, L.-C.; Chan-Olmsted, S. Examining Ad Avoidance Consumers: A Collaborative Study with the Ad Blocker Industry. In Media Management Matters; Routledge: London, UK, 2020; pp. 107–120. [Google Scholar]
Stages | Description | Result |
---|---|---|
POS Tagging | Part-of-speech (POS) tagging labels each word in a text corpus as a noun, verb, adjective, adverb, etc. This approach helps machines grasp the grammatical structure of the text and can be utilized for NLP tasks, including text classification, information extraction, and text-to-speech conversion [23]. | [“Document”, “:”, “Social”, “Media”, “is”, “an”, “essential”, “tool”, “for”, “product”, “marketing”, “.”] |
Case Converter | Case conversion is a preprocessing step intended to maintain the text document’s consistency and refers to modifying the case of text characters. This technique can standardize text or perform text categorization, information retrieval, and sentiment analysis tasks. The standard case conversion in the current study is lowercase [24]. | [“document”, “:”, “social”, “media”, “is”, “an”, “essential”, “tool”, “for”, “product”, “marketing”, “.”] |
Punctuation Mark Removal | All the punctuation marks, special characters such as semicolons, commas, @ characters, etc., are removed from the corpus [25]. | [“document”, “social”, “media”, “is”, “an”, “essential”, “tool”, “for”, “product”, “marketing”] |
Removal of Numbers | Single digits individually do not provide any information, so all the numbers are removed from the corpus [25]. | [“document”, “social”, “media”, “is”, “an”, “essential”, “tool”, “for”, “product”, “marketing”] |
Stop Word Removal | Removal of stop words is a common preprocessing procedural step. It is effective for decreasing noise, lowering dimensionality, enhancing precision, and enhancing the quality and efficiency of the subsequent analysis. Stop words, such as “the,” “and,” and “of,” are widespread in the English language but have little significance when used standalone [26]. | [“document”, “social”, “media”, “essential”, “tool”, “product”, “marketing”] |
Stemming | Stemming is the process of reducing words to their root form. For example, words like “running” and “runner” might potentially be shortened to “run” by stemming. The dimensionality of the data can be decreased, and synonyms can be clustered using this method [27]. | [“document”, “social”, “media”, “essenti”, “tool”, “product”, “market”] |
Rank | Country | TP | Rank | Author | TP | Rank | Journal | TP |
---|---|---|---|---|---|---|---|---|
1 | United States | 6 | 1 | Katsonis N. | 2 | 1 | Sustainability (Switzerland) | 9 |
2 | China | 5 | 1 | Szymoniuk B. | 2 | 2 | Proceedings of the ECIE | 2 |
3 | Greece | 3 | 1 | Tsekouropoulos G. | 2 | 3 | British Food Journal | 1 |
3 | India | 3 | 2 | Adeshola I. | 1 | 3 | Journal of Marketing Management | 1 |
3 | Pakistan | 3 | 2 | Ambrose G.J. | 1 | 3 | Journal of Public Affairs | 1 |
Rank | Country | TC | Rank | Author | TC | Rank | Journal | TC |
---|---|---|---|---|---|---|---|---|
1 | United States | 135 | 1 | Minton E | 117 | 1 | Journal of Advertising | 117 |
2 | South Korea | 119 | 1 | Lee C. | 117 | 2 | Sustainability (Switzerland) | 42 |
3 | Germany | 117 | 1 | Orth U. | 117 | 3 | International Journal of Retail and Distribution Management | 29 |
4 | China | 32 | 1 | Kim C.-H. | 117 | 4 | Journal of Promotion Management | 24 |
5 | Greece | 32 | 1 | Kahle L. | 117 | 5 | Environmental Communication | 10 |
Term | Doc 1 | Doc 2 | Doc 3 | Doc 4 | Doc 5 | Doc 6 | Doc 7 | Doc 33 | |
---|---|---|---|---|---|---|---|---|---|
social | 0.003 | 0.005 | 0.014 | 0.006 | 0.003 | 0.005 | 0.006 | ---- | 0.002 |
media | 0.011 | 0.008 | 0.014 | 0.012 | 0.005 | 0.004 | 0.006 | ---- | 0.004 |
market | 0.004 | 0.004 | 0.007 | 0.002 | 0.007 | 0.010 | 0.012 | ---- | 0.006 |
approach | 0.005 | 0.006 | 0.010 | 0.000 | 0.000 | 0.000 | 0.000 | ---- | 0.005 |
consum | 0.008 | 0.008 | 0.000 | 0.008 | 0.008 | 0.000 | 0.000 | ---- | 0.003 |
product | 0.005 | 0.005 | 0.000 | 0.005 | 0.000 | 0.000 | 0.012 | ---- | 0.000 |
onlin | 0.009 | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000 | ---- | 0.000 |
Sustain | 0.005 | 0.002 | 0.007 | 0.003 | 0.002 | 0.004 | 0.019 | ---- | 0.006 |
develop | 0.008 | 0.000 | 0.019 | 0.000 | 0.000 | 0.000 | 0.030 | ---- | 0.000 |
behavior | 0.009 | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | ---- | 0.000 |
research | 0.013 | 0.004 | 0.000 | 0.003 | 0.007 | 0.006 | 0.000 | ---- | 0.005 |
studi | 0.001 | 0.003 | 0.000 | 0.006 | 0.004 | 0.000 | 0.000 | ---- | 0.009 |
find | 0.005 | 0.000 | 0.000 | 0.006 | 0.004 | 0.000 | 0.000 | ---- | 0.000 |
effect | 0.007 | 0.022 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000 | ---- | 0.008 |
provid | 0.000 | 0.007 | 0.000 | 0.000 | 0.006 | 0.018 | 0.014 | ---- | 0.005 |
author | 0.000 | 0.005 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | ---- | 0.003 |
aim | 0.000 | 0.000 | 0.000 | 0.010 | 0.000 | 0.000 | 0.000 | ---- | 0.000 |
green | 0.000 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | ---- | 0.000 |
influenc | 0.000 | 0.000 | 0.000 | 0.000 | 0.006 | 0.000 | 0.000 | ---- | 0.000 |
environment | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ---- | 0.007 |
Cluster Value | Topic Label | High-Loading Terms |
---|---|---|
Cluster 1 | Green Marketing and Consumer Behavior | Green, industry, commun, product, consumpt, purchas, perceive, brand, food, internet, corpor, respons, india, sme, manag, active, mec |
Cluster 2 | Sustainable Social Media Marketing | Media, studi, social, research, market, consum, sustain, environment, commun, analysi, technologus, reveal, technologi |
Cluster 3 | Influencer Social Media Marketing Practices | Market, author, social, media, facebook, analysi, product, consum, environ, busi, field, adopt, valu, influenc, digit, effect, paper, busus, world, practice\ |
Cluster 4 | Consumers and Social Media Communications | Consum, market, social, media, research, studi, green, influenc, Sustain, companus, Green, question, analysi, result, paper, commun, product, inform, purchas, model, technologus, advertis |
Cluster 5 | Creative Social Media Advertising | Fashion, custom, student, behavior, organ, sme, influenc, psi, veget, Instagram, consumpt, intent, destin, relationship, natur, mobil, green, process, promot |
Cluster Value | Label | High-Loading Article | Score |
---|---|---|---|
Cluster 1 | Green Marketing and Consumer Behavior | [35] [36] | 0.4728 0.4670 |
Cluster 2 | Sustainable Social Media Marketing | [37] [38] | 0.3173 0.3168 |
Cluster 3 | Influencer Social Media Marketing Practices | [38] [39] | 0.2250 0.2244 |
Cluster 4 | Consumers and Social Media Communications | [40] [41] | 0.2243 0.0107 |
Cluster 5 | Creative Social Media Advertising | [42] [43] | 0.1521 0.1520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dash, G.; Sharma, C.; Sharma, S. Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP). Sustainability 2023, 15, 5443. https://doi.org/10.3390/su15065443
Dash G, Sharma C, Sharma S. Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP). Sustainability. 2023; 15(6):5443. https://doi.org/10.3390/su15065443
Chicago/Turabian StyleDash, Ganesh, Chetan Sharma, and Shamneesh Sharma. 2023. "Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP)" Sustainability 15, no. 6: 5443. https://doi.org/10.3390/su15065443
APA StyleDash, G., Sharma, C., & Sharma, S. (2023). Sustainable Marketing and the Role of Social Media: An Experimental Study Using Natural Language Processing (NLP). Sustainability, 15(6), 5443. https://doi.org/10.3390/su15065443