Use of Agro-Industrial Waste for Biosurfactant Production: A Comparative Study of Hemicellulosic Liquors from Corncobs and Sunflower Stalks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Biosurfactant Production
2.2. Waste Preparation
Alkaline Extraction of Hemicelluloses
2.3. Cell Concentration
2.4. Surface Tension
2.5. Emulsification Index
2.6. Data Analysis
3. Results
3.1. Chemical Composition Analysis of Corncob and Sunflower Stalk
3.2. Effects of Glucose Concentration on Biosurfactant Production
3.3. Effects of Liquor Concentration on Biosurfactant Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Fayaz, F.; Alara, O.R. Biosurfactants—A new frontier for social and environmental safety: A mini review. Biotechnol. Res. Innov. 2018, 2, 81–90. [Google Scholar] [CrossRef]
- Sałek, K.; Euston, S.R. Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process Biochem. 2019, 85, 143–155. [Google Scholar] [CrossRef]
- Jahan, R.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci. 2020, 275, 102061. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.C.; Fabbri, M.; Fiorini, M.; Mancini, M.; Ribani, P.L. Magnetic removal of surfactants from wastewater using micrometric iron oxide powders. Sep. Purif. Technol. 2011, 83, 180–188. [Google Scholar] [CrossRef]
- Badmus, S.O.; Amusa, H.K.; Oyehan, T.A.; Saleh, T.A. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. 2021, 28, 62085–62104. [Google Scholar] [CrossRef]
- Cserháti, T.; Forgács, E.; Oros, G. Biological activity and environmental impact of anionic surfactants. Environ. Int. 2002, 28, 337–348. [Google Scholar] [CrossRef]
- Johnson, P.; Trybala, A.; Starov, V.; Pinfield, V.J. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv. Colloid Interface Sci. 2021, 288, 102340. [Google Scholar] [CrossRef]
- Cotou, E.; Castritsi-Catharios, I.; Moraitou-Apostolopoulou, M. Surfactant-based oil dispersant toxicity to developing nauplii of Artemia: Effects on ATPase enzymatic system. Chemosphere 2001, 42, 959–964. [Google Scholar] [CrossRef]
- Olkowska, E.; Ruman, M.; Polkowska, Ż. Occurrence of Surface Active Agents in the Environment. J. Anal. Methods Chem. 2014, 2014, 769708. [Google Scholar] [CrossRef]
- Sobrinho, H.B.; Luna, J.M.; Rufino, R.D.; Porto, A.L.; Sarubbo, L.A. Biosurfactants: Classification, properties and environmental applications. Recent Dev. Biotechnol. 2013, 11, 1–29. [Google Scholar]
- Nikolova, C.; Gutierrez, T. Biosurfactants and Their Applications in the Oil and Gas Industry: Current State of Knowledge and Future Perspectives. Front. Bioeng. Biotechnol. 2021, 9, 626639. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.K.; Kant, C.; Verma, H.; Kumar, D.; Singh, P.P.; Modi, A.; Droby, S.; Kesawat, M.S.; Alavilli, H.; et al. Microbial Biosurfactant: A New Frontier for Sustainable Agriculture and Pharmaceutical Industries. Antioxidants 2021, 10, 1472. [Google Scholar] [CrossRef]
- Bezerra, K.G.; Silva, I.G.; Almeida, F.C.; Rufino, R.D.; Sarubbo, L.A. Plant-derived biosurfactants: Extraction, characteristics and properties for application in cosmetics. Biocatal. Agric. Biotechnol. 2021, 34, 102036. [Google Scholar] [CrossRef]
- Mouafo, H.T.; Sokamte, A.T.; Mbawala, A.; Ndjouenkeu, R.; Devappa, S. Biosurfactants from lactic acid bacteria: A critical review on production, extraction, structural characterization and food application. Food Biosci. 2022, 46, 101598. [Google Scholar] [CrossRef]
- Evonik Biosurfactants by Evonik—Entering a New Era of Surfactants. Available online: https://household-care.evonik.com/en/products/biosurfactants (accessed on 4 April 2023).
- Lipofabrik Accueil—Eléphant Vert. Available online: https://www.elephant-vert.com/ (accessed on 4 April 2023).
- Biosurfactants|Jeneil Biotech. Available online: https://www.jeneilbiotech.com/biosurfactants (accessed on 4 April 2023).
- Banat, I.M.; Satpute, S.K.; Cameotra, S.S.; Patil, R.; Nyayanit, N.V. Cost effective technologies and renewable substrates for biosurfactants’ production. Front. Microbiol. 2014, 5, 697. [Google Scholar] [CrossRef]
- Das, A.J.; Kumar, R. Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix. Bioresour. Technol. 2018, 260, 233–240. [Google Scholar] [CrossRef]
- Nalini, S.; Parthasarathi, R. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour. Technol. 2014, 173, 231–238. [Google Scholar] [CrossRef]
- Ji, F.; Li, L.; Ma, S.; Wang, J.; Bao, Y. Production of rhamnolipids with a high specificity by Pseudomonas aeruginosa M408 isolated from petroleum-contaminated soil using olive oil as sole carbon source. Ann. Microbiol. 2016, 66, 1145–1156. [Google Scholar] [CrossRef]
- Jadhav, J.V.; Pratap, A.P.; Kale, S.B. Evaluation of sunflower oil refinery waste as feedstock for production of sophorolipid. Process Biochem. 2019, 78, 15–24. [Google Scholar] [CrossRef]
- Vecino, X.; Rodríguez-López, L.; Gudiña, E.; Cruz, J.; Moldes, A.; Rodrigues, L. Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. J. Ind. Eng. Chem. 2017, 55, 40–49. [Google Scholar] [CrossRef]
- Vieira, W.T.; de Farias, M.B.; Spaolonzi, M.P.; da Silva, M.G.C.; Vieira, M.G.A. Endocrine-disrupting compounds: Occurrence, detection methods, effects and promising treatment pathways—A critical review. J. Environ. Chem. Eng. 2021, 9, 104558. [Google Scholar] [CrossRef]
- Makkar, R.S.; Cameotra, S.S. Biosurfactant production by microorganisms on unconventional carbon sources. J. Surfactants Deterg. 1999, 2, 237–241. [Google Scholar] [CrossRef]
- Ruzene, D.S.; Silva, D.P.; Vicente, A.A.; Gonçalves, A.R.; Teixeira, J.A. An Alternative Application to the Portuguese Agroindustrial Residue: Wheat Straw. Appl. Biochem. Biotechnol. 2008, 147, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. Applications of Lignocellulose Biotechnology in Bioenergy. In Biotechnology of Lignocellulose; Springer: Berlin/Heidelberg, Germany, 2014; pp. 213–245. [Google Scholar] [CrossRef]
- Sharma, L.; Alam, N.M.; Roy, S.; Satya, P.; Kar, G.; Ghosh, S.; Goswami, T.; Majumdar, B. Optimization of alkali pretreatment and enzymatic saccharification of jute (Corchorus olitorius L.) biomass using response surface methodology. Bioresour. Technol. 2023, 368, 128318. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.U.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Patel, A.K.; Pant, D.; Banu, J.R.; Rao, C.V.; Kim, Y.-G.; Yang, Y.-H. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 2020, 300, 122724. [Google Scholar] [CrossRef]
- Wyman, C.E. BIOMASS ETHANOL: Technical Progress, Opportunities, and Commercial Challenges. Annu. Rev. Energy Environ. 1999, 24, 189–226. [Google Scholar] [CrossRef]
- FAO World Food and Agriculture—Statistical Yearbook 2021; FAO: Rome, Italy, 2021; ISBN 978-92-5-134332-6.
- Da Silva, J.C.; De Oliveira, R.C.; Neto, A.D.S.; Pimentel, V.C.; Santos, A.D.A.D. Extraction, Addition and Characterization of Hemicelluloses from Corn Cobs to Development of Paper Properties. Procedia Mater. Sci. 2015, 8, 793–801. [Google Scholar] [CrossRef]
- Binici, H.; Eken, M.; Kara, M.; Dolaz, M. An environment-friendly thermal insulation material from sunflower stalk, textile waste and stubble fibers. In Proceedings of the 2013 International Conference on Renewable Energy Research and Applications, ICRERA, Madrid, Spain, 20–23 October 2013; pp. 833–846. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Morone, P.; Rosa, P.; Sassanelli, C.; Settembre-Blundo, D.; Shen, Y. Bioeconomy of Sustainability: Drivers, Opportunities and Policy Implications. Sustainability 2021, 14, 200. [Google Scholar] [CrossRef]
- Paraszkiewicz, K.; Bernat, P.; Kuśmierska, A.; Chojniak, J.; Płaza, G. Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. J. Environ. Manag. 2018, 209, 65–70. [Google Scholar] [CrossRef]
- Cooper, D.G.; Macdonald, C.R.; Duff, S.J.B.; Kosaric, N. Enhanced Production of Surfactin from Bacillus subtilis by Continuous Product Removal and Metal Cation Additions. Appl. Environ. Microbiol. 1981, 42, 408–412. [Google Scholar] [CrossRef]
- Sheppard, J.; Cooper, D. The response of Bacillus subtilis ATCC 21332 to manganese during continuous-phased growth. Appl. Microbiol. Biotechnol. 1991, 35, 180639. [Google Scholar] [CrossRef]
- Marin, C.P.; Kaschuk, J.J.; Frollini, E.; Nitschke, M. Potential use of the liquor from sisal pulp hydrolysis as substrate for surfactin production. Ind. Crop. Prod. 2015, 66, 239–245. [Google Scholar] [CrossRef]
- ASTM Standard Test Method for Acid-Insoluble Lignin in Wood. Available online: https://www.astm.org/d1106-21.html (accessed on 27 February 2023).
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. NREL/TP-510-42618 Analytical Procedure—Determination of Structural Carbohydrates and Lignin in Biomass; Technical Report; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- NREL: Biomass Research—What Is a Biorefinery? What Is a Biorefinery? NREL: Biomass Research—What Is a Biorefinery? Available online: http://www.nrel.gov/biomass/biorefinery.html?print (accessed on 14 January 2016).
- Cooper, D.G.; Goldenberg, B.G. Surface-Active Agents from Two Bacillus Species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef]
- Jesus, M.; Mata, F.; Batista, R.A.; Ruzene, D.S.; Albuquerque-Júnior, R.; Cardoso, J.C.; Vaz-Velho, M.; Pires, P.; Padilha, F.F.; Silva, D.P. Corncob as Carbon Source in the Production of Xanthan Gum in Different Strains Xanthomonas sp. Sustainability 2023, 15, 2287. [Google Scholar] [CrossRef]
- Jesus, M.S.; Romaní, A.; Genisheva, Z.; Teixeira, J.A.; Domingues, L. Integral valorization of vine pruning residue by sequential autohydrolysis stages. J. Clean. Prod. 2017, 168, 74–86. [Google Scholar] [CrossRef]
- Jesus, M.; Romaní, A.; Mata, F.; Domingues, L. Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review. Polymers 2022, 14, 1640. [Google Scholar] [CrossRef]
- Marrugo, G.; Valdés, C.F.; Chejne, F. Characterization of Colombian Agroindustrial Biomass Residues as Energy Resources. Energy Fuels 2016, 30, 8386–8398. [Google Scholar] [CrossRef]
- Pang, C.H.; Lester, E.; Wu, T. Influence of lignocellulose and plant cell walls on biomass char morphology and combustion reactivity. Biomass Bioenergy 2018, 119, 480–491. [Google Scholar] [CrossRef]
- Almeida, J.R.M.; Bertilsson, M.; Gorwa-Grauslund, M.F.; Gorsich, S.; Lidén, G. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 2009, 82, 625–638. [Google Scholar] [CrossRef]
- He, Y.; Wu, T.; Wang, X.; Chen, B.; Chen, F. Cost-effective biodiesel production from wet microalgal biomass by a novel two-step enzymatic process. Bioresour. Technol. 2018, 268, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Lin, J.; Wang, W.; Huang, H.; Li, S. Cost-Effective Production of Surfactin from Xylose-Rich Corncob Hydrolysate Using Bacillus subtilis BS-37. Waste Biomass-Valorization 2019, 10, 341–347. [Google Scholar] [CrossRef]
- He, X.-F.; Yang, L.; Wu, H.-J.; Liu, N.; Zhang, Y.-G.; Zhou, A.-N. Characterization and pyrolysis behaviors of sunflower stalk and its hydrolysis residue. Asia-Pac. J. Chem. Eng. 2016, 11, 803–811. [Google Scholar] [CrossRef]
- Sharma, S.K.; Kalra, K.L.; Grewal, H.S. Enzymatic saccharification of pretreated sunflower stalks. Biomass Bioenergy 2002, 23, 237–243. [Google Scholar] [CrossRef]
- Du, R.; Su, R.; Qi, W.; He, Z. Enhanced enzymatic hydrolysis of corncob by ultrasound-assisted soaking in aqueous ammonia pretreatment. 3 Biotech 2018, 8, 166. [Google Scholar] [CrossRef]
- Su, Y.; Du, R.; Guo, H.; Cao, M.; Wu, Q.; Su, R.; Qi, W.; He, Z. Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: Characterization of its major components. Food Bioprod. Process. 2015, 94, 322–330. [Google Scholar] [CrossRef]
- Yu, H.; Guo, J.; Chen, Y.; Fu, G.; Li, B.; Guo, X.; Xiao, D. Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1-58. Bioresour. Technol. 2017, 232, 168–175. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Silva, M.D.G.C.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Twigg, M.S.; Banat, I.M. Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- Jimoh, A.A.; Lin, J. Production and characterization of lipopeptide biosurfactant producing Paenibacillus sp. D9 and its biodegradation of diesel fuel. Int. J. Environ. Sci. Technol. 2019, 16, 4143–4158. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef]
- Phulpoto, I.A.; Yu, Z.; Hu, B.; Wang, Y.; Ndayisenga, F.; Li, J.; Liang, H.; Qazi, M.A. Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microb. Cell Factories 2020, 19, 145. [Google Scholar] [CrossRef]
- Vieira, I.M.M.; Santos, B.L.P.; Silva, L.S.; Ramos, L.C.; de Souza, R.R.; Ruzene, D.S.; Silva, D.P. Potential of pineapple peel in the alternative composition of culture media for biosurfactant production. Environ. Sci. Pollut. Res. 2021, 28, 68957–68971. [Google Scholar] [CrossRef]
- Sharma, J.; Kapley, A.; Sundar, D.; Srivastava, P. Characterization of a potent biosurfactant produced from Franconibacter sp. IITDAS19 and its application in enhanced oil recovery. Colloids Surf. B Biointerfaces 2022, 214, 112453. [Google Scholar] [CrossRef]
- Pathania, A.S.; Jana, A.K.; Jana, M.M. Valorization of waste frying oil to lipopeptide biosurfactant by indigenous Bacillus licheniformis through co-utilization in mixed substrate fermentation. Braz. J. Chem. Eng. 2021, 39, 369–385. [Google Scholar] [CrossRef]
- Singh, V. Assessment of biosurfactant as an emulsifier produced from Bacillus aryabhattai SPS1001 grown on industrial waste coal tar for recovery of bitumen from oil sands. Biomass-Convers. Biorefinery 2022, 1–12. [Google Scholar] [CrossRef]
- Meena, K.R.; Dhiman, R.; Singh, K.; Kumar, S.; Sharma, A.; Kanwar, S.S.; Mondal, R.; Das, S.; Franco, O.L.; Mandal, A.K. Purification and identification of a surfactin biosurfactant and engine oil degradation by Bacillus velezensis KLP2016. Microb. Cell Factories 2021, 20, 26. [Google Scholar] [CrossRef]
- Shu, C.-H. Fungal Fermentation for Medicinal Products. In Bioprocessing for Value-Added Products from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2007; pp. 447–463. [Google Scholar]
Chemical Composition | Corncob (%) | Sunflower Stalk (%) |
---|---|---|
Cellulose | 26.2 ± 0.6 | 35.6 ± 1.1 |
Hydroxymethylfurfural | 0.2 ± 0.05 | 0.1 ± 0.03 |
Hemicellulose | 25.3 ± 1.1 | 17.1 ± 0.8 |
Furfural | 1.1 ± 0.2 | 0.5 ± 0.05 |
Total Lignin | 34.7 ± 1.5 | 16.7 ± 1.3 |
Insoluble Lignin | 22.5 ± 1.8 | 15.9 ± 1.7 |
Soluble Lignin | 12.2 ± 1.2 | 0.8 ± 0.2 |
Chemical Composition | CC Liquor (%) | SS Liquor (%) |
---|---|---|
Cellulose | 9.8 ± 0.6 | 7.3 ± 0.8 |
Hydroxymethylfurfural | Not detected | Not detected |
Hemicellulose | 48.8 ± 1.2 | 65.7 ± 1.7 |
Furfural | Not detected | Not detected |
Soluble lignin | 13.5 ± 0.6 | 2.5 ± 0.8 |
Glucose (%) | Cell Concentration (g/L) | STRR (%) | EI24 (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hexane | Toluene | Kerosene | |||||||||||||
σ | 95% CI | σ | 95% CI | σ | 95% CI | σ | 95% CI | σ | 95% CI | ||||||
Tests with corncob liquor | |||||||||||||||
0 | 0.62 | 0.02 | 0.6; 0.64 | 42.47 | 0.23 | 42.44; 42.5 | 34.29 | 1.21 | 32.92; 35.66 | 28.66 | 2.32 | 26.04; 31.29 | 36.37 | 0.59 | 35.7; 37.04 |
2.5 | 2.92 | 0.17 | 2.1; 2.48 | 47.32 | 0.01 | 47.31; 47.33 | 56.90 | 1.60 | 55.09; 58.71 | 65.63 | 0.79 | 64.74; 66.52 | 64.86 | 0.69 | 64.08; 65.64 |
5.0 | 2.37 | 0.22 | 2.12; 2.62 | 44.58 | 0.03 | 44.55; 44.61 | 58.62 | 0.57 | 57.97; 59.27 | 25.40 | 0.93 | 24.35; 26.45 | 60.32 | 1.34 | 58.8; 61.84 |
Tests with sunflower stalk liquor | |||||||||||||||
0 | 1.25 | 0.01 | 1.24; 1.26 | 43.81 | 0.35 | 43.41; 44.21 | 3.70 | 0.05 | 3.64: 3.76 | 14.06 | 2.05 | 11.74; 16.38 | 7.56 | 0.16 | 7.38; 7.74 |
2.5 | 4.56 | 0.03 | 4.53; 4.6 | 58.07 | 0.06 | 58.0; 58.14 | 53.69 | 1.21 | 52.32; 55.06 | 3.23 | 0.81 | 2.31; 4.15 | 4.85 | 0.08 | 4.76; 4.94 |
5.0 | 3.57 | 0.07 | 3.5; 3.65 | 55.76 | 0.24 | 55.49; 56.03 | 5.15 | 0.84 | 4.2; 6.1 | 7.69 | 1.25 | 6.28; 9.11 | 8.95 | 0.67 | 8.19; 9.71 |
Liquor (%) | Cell Concentration (g/L) | STRR(%) | EI24 (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hexane | Toluene | Kerosene | |||||||||||||
σ | 95% CI | σ | 95% CI | σ | 95% CI | σ | 95% CI | σ | 95% CI | ||||||
Tests with corncob liquor | |||||||||||||||
0 | 1.34 | 0.05 | 1.28; 1.4 | 41.64 | 0.02 | 41.62; 41.7 | 52.81 | 3.1 | 49.3; 56.32 | 32.98 | 2.18 | 30.51; 35.4 | 30.39 | 0.76 | 29.53; 31.25 |
20 | 2.84 | 0.04 | 2.8; 2.89 | 46.55 | 0.02 | 46.53; 46.6 | 56.90 | 1.87 | 54.78; 59.02 | 64.21 | 0.98 | 63.10; 65.32 | 63.08 | 2.49 | 60.26; 65.9 |
40 | 2.52 | 0.21 | 2.28; 2.76 | 41.03 | 0.16 | 41.12; 41.5 | 11.37 | 0.98 | 10.26; 12.48 | 19.49 | 1.78 | 17.48; 21.5 | 7.0 | 0.86 | 6.027; 7.97 |
Tests with sunflower stalk liquor | |||||||||||||||
0 | 2.31 | 0.03 | 2.28; 2.34 | 50.40 | 0.09 | 50.3; 50.5 | 18.49 | 0.22 | 18.24; 18.74 | 4.23 | 0.04 | 4.19; 4.28 | 12.50 | 2.43 | 9.75; 15.25 |
20 | 4.57 | 0.03 | 4.54; 4.6 | 56.88 | 1.04 | 55.7; 58.1 | 52.67 | 1.80 | 50.63; 54.71 | 3.05 | 0.23 | 2.79; 3.31 | 4.28 | 0.12 | 4.14; 4.42 |
40 | 2.03 | 0.01 | 2.02; 2.04 | 52.78 | 0.37 | 52.36; 53.2 | 22.84 | 2.05 | 20.52; 25.16 | 12.31 | 1.59 | 10.51; 14.1 | 9.59 | 0.08 | 9.5; 9.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, B.L.P.; Jesus, M.S.; Mata, F.; Prado, A.A.O.S.; Vieira, I.M.M.; Ramos, L.C.; López, J.A.; Vaz-Velho, M.; Ruzene, D.S.; Silva, D.P. Use of Agro-Industrial Waste for Biosurfactant Production: A Comparative Study of Hemicellulosic Liquors from Corncobs and Sunflower Stalks. Sustainability 2023, 15, 6341. https://doi.org/10.3390/su15086341
Santos BLP, Jesus MS, Mata F, Prado AAOS, Vieira IMM, Ramos LC, López JA, Vaz-Velho M, Ruzene DS, Silva DP. Use of Agro-Industrial Waste for Biosurfactant Production: A Comparative Study of Hemicellulosic Liquors from Corncobs and Sunflower Stalks. Sustainability. 2023; 15(8):6341. https://doi.org/10.3390/su15086341
Chicago/Turabian StyleSantos, Brenda Lohanny Passos, Meirielly Santos Jesus, Fernando Mata, Aline Alves Oliveira Santos Prado, Isabela Maria Monteiro Vieira, Larissa Castor Ramos, Jorge A. López, Manuela Vaz-Velho, Denise Santos Ruzene, and Daniel Pereira Silva. 2023. "Use of Agro-Industrial Waste for Biosurfactant Production: A Comparative Study of Hemicellulosic Liquors from Corncobs and Sunflower Stalks" Sustainability 15, no. 8: 6341. https://doi.org/10.3390/su15086341
APA StyleSantos, B. L. P., Jesus, M. S., Mata, F., Prado, A. A. O. S., Vieira, I. M. M., Ramos, L. C., López, J. A., Vaz-Velho, M., Ruzene, D. S., & Silva, D. P. (2023). Use of Agro-Industrial Waste for Biosurfactant Production: A Comparative Study of Hemicellulosic Liquors from Corncobs and Sunflower Stalks. Sustainability, 15(8), 6341. https://doi.org/10.3390/su15086341