The Performance and Distribution of Polyurethane-Modified Asphalt That Exhibits Different Molecular Weights
Abstract
:1. Introduction
2. Raw Materials and Test Methods
2.1. Raw Materials
2.1.1. Polyol
2.1.2. Isocyanate
2.1.3. Asphalt
2.2. Preparation
2.2.1. Polyurethane Prepolymer
2.2.2. Polyurethane-Modified Asphalt
2.3. Polyurethane Testing
2.3.1. FTIR Testing
2.3.2. GPC Test
2.4. Polymer-Modified Asphalt Performance Testing
2.4.1. Physical Characteristics Testing
2.4.2. Storage Stability
2.4.3. Rheological Performance Test
- (1)
- DSR test
- (2)
- BBR test
- (3)
- Multi-stress repeat test (MSCR)
2.4.4. Microscopic Performance Testing
3. Results and Analysis
3.1. Polyurethane Test Results
3.1.1. FTIR Test Results
3.1.2. GPC Test Results
3.2. Analysis of Polyurethane-Modified Asphalt Test Results
3.2.1. Physical Properties Test Results
3.2.2. Storage Stability Test Results
3.2.3. Rheological Performance Test Results
- (1)
- DSR test results
- (2)
- Multi-stress repetitive creep test results
- (3)
- BBR test results
- (4)
- DSC test results
4. Discussion
5. Conclusions
- (1)
- Polyols of different molecular weights (PTMG650, PTMG1000, and PTMG1400) exert similar modification effects on the penetration, softening point, and ductility of asphalt, and the effect on ductility is the most apparent.
- (2)
- The polyurethane modification that affects asphalt is not a simple physical blend; polyurethane and asphalt can generate a complex network structure that increases the viscosity of the modified asphalt, and when the molecular weight of the polyol is increased, the viscosity of the modified asphalt increases.
- (3)
- Polyurethane can enhance the deformation resistance of asphalt, and the difference in the rutting resistance of the three polyurethane-modified asphalt samples, which exhibited different molecular weights, was small.
- (4)
- During the reaction with MDI, when the molecular weight of the polyol was high, the number of soft segments that were generated increased, and the low-temperature performance of the modified asphalt was enhanced, which coheres with the results of the BBR test and DSC test.
- (5)
- The polyols selected in this paper are more expensive and have certain difficulties in actual engineering promotion, and in future research, the compound method can be used to prepare low-cost polyurethane for asphalt modification.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polacco, G.; Filippi, S.; Merusi, F.; Stastna, G. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Adv. Colloid Interface Sci. 2015, 224, 72–112. [Google Scholar] [CrossRef]
- Xu, S.; Liu, X.; Tabaković, A.; Schlangen, E. A novel self-healing system: Towards a sustainable porous asphalt. J. Clean. Prod. 2020, 259, 120815. [Google Scholar] [CrossRef]
- Xu, S.; Liu, X.; Tabaković, A.; Lin, P.; Zhang, Y.; Nahar, S.; Lommerts, B.J.; Schlangen, E. The role of rejuvenators in embedded damage healing for asphalt pavement. Mater. Des. 2021, 202, 109564. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Zhu, Y.; Sun, J.; Wang, L.; Huang, T.; Chen, L. Modification of asphalt using polyurethanes synthesized with different isocyanates. Constr. Build. Mater. 2022, 327, 126959. [Google Scholar] [CrossRef]
- Sengoz, B.; Isikyakar, G. Evaluation of the properties and microstructure of SBS and EVA polymer modified bitumen. Constr. Build. Mater. 2008, 22, 1897–1905. [Google Scholar] [CrossRef]
- Gallu, R.; Méchin, F.; Dalmas, F.; Gérard, J.-F.; Perrin, R.; Loup, F. Rheology-morphology relationships of new polymer-modified bitumen based on thermoplastic polyurethanes (TPU). Constr. Build. Mater. 2020, 259, 120404. [Google Scholar] [CrossRef]
- Habbouche, J.; Hajj, E.Y.; Sebaaly, P.E.; Piratheepan, M. A critical review of high polymer-modified asphalt binders and mixtures. Int. J. Pavement Eng. 2018, 21, 686–702. [Google Scholar] [CrossRef]
- Jin, X.; Guo, N.; You, Z.; Wang, L.; Wen, Y.; Tan, Y. Rheological properties and micro-characteristics of polyurethane composite modified asphalt. Constr. Build. Mater. 2019, 234, 117395. [Google Scholar] [CrossRef]
- Jia, M.; Zhang, Z.; Liu, H.; Peng, B.; Zhang, H.; Lv, W.; Zhang, Q.; Mao, Z. The synergistic effect of organic montmorillonite and thermoplastic polyurethane on properties of asphalt binder. Constr. Build. Mater. 2019, 229, 116867. [Google Scholar] [CrossRef]
- Gonzalez, M.N.G.; Levi, M.; Turri, S. Development of polyester binders for the production of sustainable polyurethane coatings: Technological characterization and life cycle assessment. J. Clean. Prod. 2017, 164, 171–178. [Google Scholar] [CrossRef]
- Fernández, C.; Bermúdez, M.; Versteegen, R.; Meijer, E.; Vancso, G.; Muñoz-Guerra, S. An overview on 12-polyurethane: Synthesis, structure and crystallization. Eur. Polym. J. 2010, 46, 2089–2098. [Google Scholar] [CrossRef]
- Izquierdo, M.; Navarro, F.; Martínez-Boza, F.; Gallegos, C. Bituminous polyurethane foams for building applications: Influence of bitumen hardness. Constr. Build. Mater. 2012, 30, 706–713. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Wang, J.; Yuan, J.; Jiang, F.; Yu, X.; Xiao, F. Recent applications and developments of Polyurethane materials in pavement engineering. Constr. Build. Mater. 2021, 304, 124639. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Jia, M.; Ban, X.; Wang, L.; Chen, L.; Huang, T.; Liu, H. Effects of Polyurethane Thermoplastic Elastomer on Properties of Asphalt Binder and Asphalt Mixture. J. Mater. Civ. Eng. 2021, 33, 04020477. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Jia, M.; Qi, B.; Zhang, H.; Lv, W.; Mao, Z.; Chang, P.; Peng, J.; Liu, Y. Study on a thermosetting polyurethane modified asphalt suitable for bridge deck pavements: Formula and properties. Constr. Build. Mater. 2020, 241, 118122. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Huang, Z.; Wang, F.; Jia, M.; Lv, W.; Ye, J. A laboratory study of epoxy/polyurethane modified asphalt binders and mixtures suitable for flexible bridge deck pavement. Constr. Build. Mater. 2020, 274, 122084. [Google Scholar] [CrossRef]
- Bazmara, B.; Tahersima, M.; Behravan, A. Influence of thermoplastic polyurethane and synthesized polyurethane additive in performance of asphalt pavements. Constr. Build. Mater. 2018, 166, 1–11. [Google Scholar] [CrossRef]
- Xia, L.; Cao, D.; Zhang, H.; Guo, Y. Study on the classical and rheological properties of castor oil-polyurethane pre polymer (C-PU) modified asphalt. Constr. Build. Mater. 2016, 112, 949–955. [Google Scholar] [CrossRef]
- Sun, M.; Zheng, M.; Qu, G.; Yuan, K.; Bi, Y.; Wang, J. Performance of polyurethane modified asphalt and its mixtures. Constr. Build. Mater. 2018, 191, 386–397. [Google Scholar] [CrossRef]
- Martín-Alfonso, M.; Partal, P.; Navarro, F.; García-Morales, M.; Gallegos, C. Use of a MDI-functionalized reactive polymer for the manufacture of modified bitumen with enhanced properties for roofing applications. Eur. Polym. J. 2008, 44, 1451–1461. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Z.; Wang, L.; Liu, H.; Ban, X.; Ye, J. Investigation on the epoxy/polyurethane modified asphalt binder cured with bio-based curing agent: Properties and optimization. Constr. Build. Mater. 2021, 320, 126221. [Google Scholar] [CrossRef]
- Lindberg, H.K.; Korpi, A.; Santonen, T.; Säkkinen, K.; Järvelä, M.; Tornaeus, J.; Ahonen, N.; Järventaus, H.; Pasanen, A.-L.; Rosenberg, C.; et al. Micronuclei, hemoglobin adducts and respiratory tract irritation in mice after inhalation of toluene diisocyanate (TDI) and 4,4′-methylenediphenyl diisocyanate (MDI). Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2011, 723, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Yang, F.; Guo, G.; Ren, M.; Shi, J.; Tan, L. The use of polyurethane for asphalt pavement engineering applications: A state-of-the-art review. Constr. Build. Mater. 2019, 225, 1012–1025. [Google Scholar] [CrossRef]
- Lv, S.; Tan, L.; Peng, X.; Hu, L.; Cabrera, M.B. Experimental investigation on the performance of bone glue and crumb rubber compound modified asphalt. Constr. Build. Mater. 2021, 305, 124734. [Google Scholar] [CrossRef]
- Chen, Z.; Pei, J.; Wang, T.; Amirkhanian, S. High temperature rheological characteristics of activated crumb rubber modified asphalts. Constr. Build. Mater. 2018, 194, 122–131. [Google Scholar] [CrossRef]
- Reghunadhan, A.; Thomas, S. Polyurethanes: Structure, Properties, Synthesis, Characterization, and Applications. Polyurethane Polym. 2017, 1–16. [Google Scholar] [CrossRef]
- Fawcett, A.; McNally, T. Polystyrene and asphaltene micelles within blends with a bitumen of an SBS block copolymer and styrene and butadiene homopolymers. Colloid Polym. Sci. 2003, 281, 203–213. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U.; Ekblad, J. Phase Separation of SBS Polymer Modified Bitumens. J. Mater. Civ. Eng. 1999, 11, 51–57. [Google Scholar] [CrossRef]
- Chen, J.-S.; Wang, T.J.; Lee, C.-T. Evaluation of a highly-modified asphalt binder for field performance. Constr. Build. Mater. 2018, 171, 539–545. [Google Scholar] [CrossRef]
- Padhan, R.K.; Sreeram, A. Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives. Constr. Build. Mater. 2018, 188, 772–780. [Google Scholar] [CrossRef]
- Li, K.; Pan, Y.; Zhang, H.; Chen, L.; Zhang, J. Research Progress of Compatibility of Epoxy Asphalt for Steel Deck Pavement. Mater. Rev. 2018, 32, 1534–1540. [Google Scholar]
- Zhang, H.; Chen, Z.; Xu, G.; Shi, C. Physical, rheological and chemical characterization of aging behaviors of thermochromic asphalt binder. Fuel 2017, 211, 850–858. [Google Scholar] [CrossRef]
- Yang, X.; You, Z. High temperature performance evaluation of bio-oil modified asphalt binders using the DSR and MSCR tests. Constr. Build. Mater. 2014, 76, 380–387. [Google Scholar] [CrossRef]
- Hossain, Z.; Ghosh, D.; Zaman, M.; Hobson, K. Use of the Multiple Stress Creep Recovery (MSCR) Test Method to Characterize Polymer-Modified Asphalt Binders. J. Test. Evaluation 2015, 44, 507–520. [Google Scholar] [CrossRef]
- Masad, E.; Huang, C.W.; D’Angelo, J.; Little, D.N. Characterization of Asphalt Binder Resistance to Permanent Deformation Based on Nonlinear Viscoelastic Analysis of Multiple Stress Creep Recovery (MSCR) Test. J. Assoc. Asph. Paving Technol. 2009, 78, 535–566. [Google Scholar]
- Zhang, H.; Chen, Z.; Xu, G.; Shi, C. Evaluation of aging behaviors of asphalt binders through different rheological indices. Fuel 2018, 221, 78–88. [Google Scholar] [CrossRef]
- He, Q.; Zhang, H.; Li, J.; Duan, H. Performance evaluation of polyurethane/epoxy resin modified asphalt as adhesive layer material for steel-UHPC composite bridge deck pavements. Constr. Build. Mater. 2021, 291, 123364. [Google Scholar] [CrossRef]
- D’Angelo, J.A. The Relationship of the MSCR Test to Rutting. Road Mater. Pavement Design 2009, 10, 61–80. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, C.; Gao, F.; Li, T.-S.; Tan, Y.-Q. Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt. Constr. Build. Mater. 2016, 127, 466–474. [Google Scholar] [CrossRef]
- Liu, H.; Zeiada, W.; Al-Khateeb, G.G.; Shanableh, A.; Samarai, M. Use of the multiple stress creep recovery (MSCR) test to characterize the rutting potential of asphalt binders: A literature review. Constr. Build. Mater. 2020, 269, 121320. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Guo, G.; Zhao, B.; Yu, J. Effects of ZnO particle size on properties of asphalt and asphalt mixture. Constr. Build. Mater. 2018, 159, 578–586. [Google Scholar] [CrossRef]
- McNally, T. Introduction to polymer modified bitumen (PmB). Polym. Modif. Bitum. 2011, 1–21. [Google Scholar] [CrossRef]
- Dai, Z.; Shen, J.; Shi, P.; Zhu, H.; Li, X. Nano-sized morphology of asphalt components separated from weathered asphalt binders. Constr. Build. Mater. 2018, 182, 588–596. [Google Scholar] [CrossRef]
- Ding, H.; Hesp, S.A. Another look at the use of modulated differential scanning calorimetry to study thermoreversible aging phenomena in asphalt binders. Constr. Build. Mater. 2020, 267, 121787. [Google Scholar] [CrossRef]
- Kovinich, J.; Hesp, S.A.; Ding, H. Modulated differential scanning calorimetry study of wax-doped asphalt binders. Thermochim. Acta 2021, 699, 178894. [Google Scholar] [CrossRef]
- Masson, J.F.; Polomark, G.M.J.T.A. Bitumen microstructure by modulated differential scanning calorimetry. Thermochim. Acta 2001, 374, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Portillo, O.; Cebon, D. Experimental and numerical investigation of fracture mechanics of bitumen beams. Eng. Fract. Mech. 2012, 97, 281–296. [Google Scholar] [CrossRef]
- Nam, K.; Bahia, H.U. Effect of binder and mixture variables on glass transition behavior of asphalt mixtures (with discussion). J. Assoc. Asph. Paving Technol. 2004, 73, 89–119. [Google Scholar]
Projects | PTMG650 | PTMG1000 | PTMG1400 |
---|---|---|---|
Appearance (23 °C) | White liquid | White liquid | White liquid |
Viscosity (40 °C cp) | 205 | 270 | 660 |
Hydroxyl value (mgKOH/g) | 166.2–175.5 | 106.9–118.1 | 80.2–84.3 |
Average molar mass (g/mol) | 650 ± 25 | 1000 ± 50 | 1500 ± 50 |
Melting point (Tm, °C) | 19 | 24 | 27 |
Projects | Indicators | Test Results |
---|---|---|
Color and status | Colorless or yellowish transparent liquid | Slightly yellow, transparent liquid |
Purity | ≥99.6% | —— |
2,4′-MDI isomer content | 50~54% | 52% |
-NCO mass fraction | 30~35% | 33.5% |
Relative density (50 °C/4 °C) | 1.19 | —— |
Functionality | 2 | 2 |
Hydrolysis chlorine mass fraction | ≤0.005% | —— |
Projects | Test Results | Technical Requirement | Test Method |
---|---|---|---|
Penetration (25 °C; 100 g; 5 s) (0.1 mm) | 68.2 | 60~80 | ASTM D5 |
Softening point (universal method) (°C) | 46.9 | 44~54 | ASTM D36 |
Density (g/cm3) | 1.023 | - | ASTM D70 |
Solubility (trichloroethylene) (%) | 99.7 | ≥99.5 | ASTM D2042 |
Quality loss/m% | 0.052 | −0.8~0.8 | ASTM D6 |
Penetration ratio/% | 63.7 | ≥58 | ASTM D5 |
10 °C ductility/cm | 25 | ≥20 | ASTM D113 |
Molecule Type | Mn (Number Average Molecular Weight) | Mw (Heavy Average Molecular Weight) | MP (Peak Molecular Weight) | Mz (Z-Average Molecular Weight) | Dispersibility (d) |
---|---|---|---|---|---|
PUP650 | 5436 | 6749 | 6335 | 8115 | 1.2415 |
PUP1000 | 7147 | 8545 | 6710 | 9947 | 1.1956 |
PUP1400 | 7317 | 8265 | 6768 | 9310 | 1.1302 |
Projects | Base Asphalt (JZ) | PU650-Modified Asphalt | PU1000-Modified Asphalt | PU1400-Modified Asphalt |
---|---|---|---|---|
Rdiff (%) | 76.65 | 88.34 | 85.81 | 86.31 |
Jnr-diff (%) | 6.03 | 54.86 | 52.90 | 65.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, X.; Zhang, Z.; Chang, P.; Zhang, S.; Liu, H.; Liang, Y.; Chen, Y. The Performance and Distribution of Polyurethane-Modified Asphalt That Exhibits Different Molecular Weights. Sustainability 2023, 15, 6627. https://doi.org/10.3390/su15086627
Ban X, Zhang Z, Chang P, Zhang S, Liu H, Liang Y, Chen Y. The Performance and Distribution of Polyurethane-Modified Asphalt That Exhibits Different Molecular Weights. Sustainability. 2023; 15(8):6627. https://doi.org/10.3390/su15086627
Chicago/Turabian StyleBan, Xiaoyi, Zengping Zhang, Pengtao Chang, Suyu Zhang, Hao Liu, Yuzi Liang, and Yujing Chen. 2023. "The Performance and Distribution of Polyurethane-Modified Asphalt That Exhibits Different Molecular Weights" Sustainability 15, no. 8: 6627. https://doi.org/10.3390/su15086627
APA StyleBan, X., Zhang, Z., Chang, P., Zhang, S., Liu, H., Liang, Y., & Chen, Y. (2023). The Performance and Distribution of Polyurethane-Modified Asphalt That Exhibits Different Molecular Weights. Sustainability, 15(8), 6627. https://doi.org/10.3390/su15086627