Relative Importance of Barriers and Levers to Intercropping Systems Adoption: A Comparison of Farms and Co-Operatives
Abstract
:1. Introduction
2. Literature Review
2.1. Ecological and Economic Advantages of the Pea & Wheat Intercropping System
2.2. Barriers and Levers to Adoption and Internal/External Incentives
3. Material and Methods
3.1. Survey
3.2. Data Analysis
Relative Importance Index (RII)
4. Results and Discussion
4.1. The Farm and Co-Operative Barriers to Adoption
4.2. The Farmer and Co-Operative Levers to Adoption
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meynard, J.M.; Charrier, F.; Fares, M.; Le Bail, M.; Magrini, M.B.; Charlier, A.; Messéan, A. Socio-technical lock-in hinders crop diversification in France. Agron. Sustain. Dev. 2018, 38, 54. [Google Scholar] [CrossRef] [Green Version]
- Holmes, T.P.; Allen, W.; Haight, R.G.; Keskitalo, E.C.H.; Marzano, M.; Pettersson, M.; Quine, C.P.; Langer, E.R. Fundamental Economic Irreversibilities Influence Policies for Enhancing International Forest Phytosanitary Security. Curr. For. Rep. 2017, 3, 244–254. [Google Scholar] [CrossRef]
- Aka, J. Market approval of phytosanitary active substances in Europe: An empirical duration analysis. Food Policy 2017, 68, 143–153. [Google Scholar] [CrossRef]
- Harman, G.; Khadka, R.; Doni, F.; Uphoff, N. Benefits to plant health and productivity from enhancing plant microbial symbionts. Front. Plant Sci. 2021, 11, 610065. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre Hellou, G.; Jensen, E.S.; Justes, E. Grain Legume–Cereal Intercropping Systems. In Burleigh Dodds Series in Agricultural Science; Formerly International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India; Sivasankar, S., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 243–256. ISBN 978-1-78676-136-1. [Google Scholar]
- Zhang, C.; Dong, Y.; Tang, L.; Zheng, Y.; Makowski, D.; Yu, Y.; Zhang, F.; van der Werf, W. Intercropping cereals with faba bean reduces plant disease incidence regardless of fertilizer input; a meta-analysis. Eur. J. Plant Pathol. 2019, 154, 931–942. [Google Scholar] [CrossRef]
- Demie, D.T.; Döring, T.F.; Finckh, M.R.; Van Der Werf, W.; Enjalbert, J.; Seidel, S.J. Mixture× genotype effects in cereal/legume intercropping. Front. Plant Sci. 2022, 13, 846720. [Google Scholar] [CrossRef] [PubMed]
- Corre-Hellou, G.; Brisson, N.; Launay, M.; Fustec, J.; Crozat, Y. Effect of root depth penetration on soil nitrogen competitive interactions and dry matter production in pea-barley intercrops given different soil nitrogen supplies. Field Crop Resour. 2007, 103, 76–85. [Google Scholar] [CrossRef]
- Gałęzewski, L.; Jaskulska, I.; Jaskulski, D.; Wilczewski, E.; Kościński, M. Strip Intercrop of Barley, Wheat, Triticale, Oat, Pea and Yellow Lupine—A Meta-Analysis. Sustainability 2022, 14, 15651. [Google Scholar] [CrossRef]
- Garland, G.; Edlinger, A.; Banerjee, S.; Degrune, F.; García-Palacios, P.; Pescador, D.S.; Herzog, C.; Romdhane, S.; Saghai, A.; Spor, A.; et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2021, 2, 28–37. [Google Scholar] [CrossRef]
- Lin, B.B. Resilience in agriculture through crop diversification: Adaptive management for environmental change. BioScience 2011, 61, 183–193. [Google Scholar] [CrossRef] [Green Version]
- He, H.M.; Liu, L.N.; Munir, S.; Bashir, N.H.; Wang, Y.; Yang, J.; Li, C.Y. Crop diversity and pest management in sustainable agriculture. J. Integr. Agric. 2019, 18, 1945–1952. [Google Scholar] [CrossRef]
- Duru, M.; Fares, M.; Therond, O. Designing agroecological transitions; A review. Agron. Sustain. Dev. 2015, 35, 1237A–1257. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Bei, S.; Li, J.; Bao, X.; Zhang, J.; Schultz, P.A.; Li, H.; Li, L.; Zhang, F.; Bever, J.D.; et al. Soil microbial legacy drives crop diversity advantage: Linking ecological plant–soil feedback with agricultural intercropping. J. Appl. Ecol. 2020, 58, 496–506. [Google Scholar] [CrossRef]
- Lv, Q.; Chi, B.; He, N.; Zhang, D.; Dai, J.; Zhang, Y.; Dong, H. Cotton-Based Rotation, Intercropping, and Alternate Intercropping Increase Yields by Improving Root–Shoot Relations. Agronomy 2023, 13, 413. [Google Scholar] [CrossRef]
- Kremen, C.; Iles, A.; Bacon, C. Diversified farming systems: An agroecological, systems-based alternative to modern industrial agriculture. Ecol. Soc. 2012, 17, 44. [Google Scholar] [CrossRef]
- Morel, K.; Revoyron, E.; San Cristobal, M.; Baret, P.V. Innovating within or Outside Dominant Food Systems? Different Challenges for Contrasting Crop Diversification Strategies in Europe. PLoS ONE 2020, 15, e0229910. [Google Scholar] [CrossRef]
- Othman, K.; Khallaf, R. Identification of the Barriers and Key Success Factors for Renewable Energy Public-Private Partnership Projects: A Continental Analysis. Buildings 2022, 12, 1511. [Google Scholar] [CrossRef]
- Lai, H.; Gao, F.; Su, H.; Zheng, P.; Li, Y.; Yao, H. Nitrogen Distribution and Soil Microbial Community Characteristics in A Legume–cereal Intercropping System: A Review. Agronomy 2022, 12, 1900. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley. Nutr. Cycl. Agroecosystems 2003, 65, 289–300. [Google Scholar] [CrossRef]
- Naudin, C.; van der Werf, H.M.; Jeuffroy, M.H.; Corre-Hellou, G. Life cycle assessment applied to pea-wheat intercrops: A new method for handling the impacts of co-products. J. Clean. Prod. 2014, 73, 80–87. [Google Scholar] [CrossRef]
- Chamkhi, I.; Cheto, S.; Geistlinger, J.; Zeroual, Y.; Kouisni, L.; Bargaz, A.; Ghoulam, C. Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Ind. Crops Prod. 2022, 183, 114958. [Google Scholar] [CrossRef]
- Lin, S.; Pi, Y.; Long, D.; Duan, J.; Zhu, X.; Wang, X.; He, J.; Zhu, Y. Impact of Organic and Chemical Nitrogen Fertilizers on the Crop Yield and Fertilizer Use Efficiency of Soybean–Maize Intercropping Systems. Agriculture 2022, 12, 1428. [Google Scholar] [CrossRef]
- Malézieux, E.; Crozat, Y.; Dupraz, C.; Laurans, M.; Makowski, D. Mixing plant species in cropping systems: Concepts, tools and models. A review. Agron. Sustain. Dev. 2009, 29, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Corre-Hellou, G.; Bedoussac, L.; Bousseau, D.; Chaigne, G.; Chataigner, C.; Celette, F.; Foissy, D. Associations blé-pois multi-services. Innov. Agron. 2013, 30, 41–57. Available online: https://hal.science/hal-01186880 (accessed on 1 February 2023).
- Maitra, S.; Ray, D.P. Enrichment of biodiversity, influence in microbial population dynamics of soil and nutrient utilization in cereal-legume intercropping systems: A Review. Int. J. Bioresour. Sci. 2019, 6, 11–19. [Google Scholar] [CrossRef]
- Ndzana-Abanda, R.F.X. Régulation des Bio-Agresseurs Dans les Cultures Associées de Blé Dur et de Pois: Impact de la Diversité Végétale Sur la Démographie des Pucerons du Pois. Ph.D. Thesis, de l’Université de Toulouse, Toulouse, France, 2012. [Google Scholar]
- Louarn, G.; Corre-Hellou, G.; Fustec, J.; Lô-Pelzer, E.; Julier, B.; Litrico, I.; Hinsinger, P.; Lecomte, C. Déterminants écologiques et physiologiques de la productivité et de la stabilité des associations graminées-légumineuses. Innov. Agron. 2010, 11, 79–99. [Google Scholar]
- Pelzer, E.; Bazot, M.; Makowski, D.; Corre-Hellou, G.; Naudin, C.; Al Rifaï, M.; Baranger, E.; Bedoussac, L.; Biarnès, L.; Boucheny, P.; et al. Pea–wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. Eur. J. Agron. 2012, 40, 39–53. [Google Scholar] [CrossRef]
- Schulz, V.S.; Schumann, C.; Weisenburger, S.; Müller-Lindenlauf, M.; Stolzenburg, K.; Möller, K. Row-Intercropping Maize (Zea mays L.) with biodiversity-enhancing flowering-partners—Effect on plant growth, silage yield, and composition of harvest material. Agriculture 2020, 10, 524. [Google Scholar] [CrossRef]
- Hüber, C.; Zettl, F.; Hartung, J.; Müller-Lindenlauf, M. The impact of maize-bean intercropping on insect biodiversity. Basic Appl. Ecol. 2022, 61, 1–9. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jensen, E.S. Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability. Field Crops Res. 2001, 72, 185–196. [Google Scholar] [CrossRef]
- Ferandez-Aparicio, M.C.; Sillero, J.; Rubiales, D. Intercropping with cereals reduces infection by Orobanche crenata in legumes. Crop Prot. 2006, 26, 1166–1172. [Google Scholar] [CrossRef]
- Christoffoleti, P.J.; de Carvalho, S.J.P.; Lopez-Ovejero, R.F.; Nicolai, M.; Hidalgo, E.; da Silva, J.E. Conservation of natural resources in Brazilian agriculture: Implications on weed biology and management. Crop Prot. 2007, 26, 383–389. [Google Scholar] [CrossRef]
- David, C.; Jeuffroy, M.H.; Henning, J.; Meynard, J.M. Yield variation in organic winter wheat: A diagnostic study in the Southeast of France. Agron. Sustain. Dev. 2005, 25, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Mamine, F.; Fares, M. Barriers and Levers to Developing Wheat–Pea Intercropping in Europe: A Review. Sustainability 2020, 12, 6962. [Google Scholar] [CrossRef]
- Maitra, S.; Shankar, T.; Banerjee, P. Potential and advantages of maize-legume intercropping system. In Maize: Production and Use; Hossain, A., Ed.; IntechOpen: London, UK, 2020; pp. 1–14. [Google Scholar]
- Li, Y.Y.; Yu, C.B.; Cheng, X.; Li, C.J.; Sun, J.H.; Zhang, F.S.; Lambers, H.; Li, L. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant Soil 2009, 323, 295–308. [Google Scholar] [CrossRef]
- Schoeny, A.; Jumel, S.; Rouault, F.; Lemarchand, E.; Tivoli, B. Effect and underlying mechanisms of pea–cereal intercropping on the epidemic development of ascochyta blight. Eur. J. Plant Pathol. 2010, 126, 317–331. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant Soil 2010, 3, 19–35. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: Application to durum wheat–winter pea intercrops. Field Crops Res. 2011, 124, 25–36. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Vlachostergios, D.N.; Dordas, C.A.; Damalas, C.A. Dry matter yield, nitrogen content, and competition in pea-cereal intercropping systems. Eur. J. Agron. 2011, 34, 287–294. [Google Scholar] [CrossRef]
- Banik, P. Evaluation of wheat (Triticum aestivum) and legume intercropping under 1:1 and 2:1 Row-replacement series system. J. Agron. Crop Sci. 1996, 176, 289–294. [Google Scholar] [CrossRef]
- Subedi, K.D. Wheat intercropped with tori (Brassica campestris var. toria) and pea (Pisum sativum) in the subsistence farming system of the Nepalese hills. J. Agric. Sci. 1997, 128, 283–289. [Google Scholar] [CrossRef]
- Adham, K.; Siwar, C. Empirical investigation of government green procurement (GGP) practices in Malaysia. OIDA Int. J. Sustain. Dev. 2012, 4, 77–88. [Google Scholar]
- Kusrini, E.; Qurtubi, Q.; Fathoni, N.H. Design Performance Measurement Model for Retail Services Using Halal Supply Chain Operation Reference (SCOR): A Case Study in a Retail in Indonesia. J. Adv. Manag. Sci. 2018, 6, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Sebillotte, C. Les microscénarios et leur construction. Un exemple sur les microscénarios de l’axe stratégique « alimentation animale » de la prospective «Compétitivité des oléagineux dans l’avenir». Oléagineux Corps Gras Lipides 2002, 9, 352–361. [Google Scholar] [CrossRef] [Green Version]
- Charrier, F.; Magrini, M.B.; Charlier, A.; Fares, M.; Le Bail, M.; Messéan, A.; Meynard, J.M. Alimentation animale et organisation des filières: Une comparaison pois protéagineux-lin oléagineux pour comprendre les facteurs freinant ou favorisant les cultures de diversification. OCL 2013, 20, D407. [Google Scholar] [CrossRef]
- Mooney, H.A.; Ehrlich, P.R.; Daily, G.E. Ecosystem services: A fragmentary history. Nat. Serv. Soc. Depend. Nat. Ecosyst. 1997, 1, 11–19. [Google Scholar]
- Schomers, S.; Matzdorf, B. Payments for ecosystem services: A review and comparison of developing and industrialized countries. Ecosyst. Serv. 2013, 6, 16–30. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Gormley, R. Food Science and Technology Challenges for the 21st Century: Research to Progress Society: Outcomes from the 31st EFFoST International Conference 2017, Sitges, Spain. Trends Food Sci. Technol. 2018, 73, 89–94. [Google Scholar] [CrossRef]
- Pojić, M.; Mišan, A.; Tiwari, B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. Technol. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Mourot, J.; De Tonnac, A. The Bleu Blanc Cœur path: Impacts on animal products and human health. OCL 2015, 22, D610. [Google Scholar] [CrossRef] [Green Version]
- Nelson, R.R.; Winter, S.G. The Schumpeterian Tradeoff Revisited. Am. Econ. Rev. 1982, 72, 114–132. [Google Scholar]
- Hodgson, G. Is There a Future for Heterodox Economics? In Institutions, Ideology and a Scientific Community; Edward Elgar: Cheltenham, UK, 2019. [Google Scholar]
- Cecere, G.; Corrocher, N.; Gossart, C.; Ozman, M. Lock-in and Path Dependence: An Evolutionary Approach to Eco-Innovations. J. Evol. Econ. 2014, 24, 1037–1065. [Google Scholar] [CrossRef]
- Jo, T.-H. A Veblenian Critique of Nelson and Winter’s Evolutionary Theory. J. Econ. Issues 2021, 55, 1101–1111. [Google Scholar] [CrossRef]
- Becker, M.; Knudsen, T. Nelson and Winter revisited. In Handbook on the Economics and Theory of the Firm; Dietrich, M., Krafft, J., Eds.; Edward Elgar: Cheltenham, UK, 2012; pp. 243–255. [Google Scholar]
- Galende, J.; de la Fuente, J.M. Internal factors determining a firm’s innovative behavior. Res. Policy 2003, 32, 715–736. [Google Scholar] [CrossRef]
- Bower, J.L.; Christensen, C.M. Disruptive technologies: Catching the wave. J. Prod. Innov. Manag. 1996, 1, 75–76. [Google Scholar]
- Waris, M.; Shahir Liew, M.; Khamidi, M.; Idrus, A. Criteria for the selection of sustainable onsite construction equipment. Int. J. Sustain. Built Environ. 2014, 3, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Loforte-Ribeiro, F.; Timóteo-Fernandes, M. Exploring agile methods in construction small and medium enterprises: A case study. J. Enterp. Inf. Manag. 2010, 23, 161–180. [Google Scholar] [CrossRef]
- Stella, A.E. An Assessment of Alternative Contract Award Methods and Contractor Performance in Local Governments in Uganda: A Case Study of Oyam District. Ph.D. Thesis, Kyambogo University: Kampala, Uganda, 2022; unpublished work. [Google Scholar]
- Chen, E.; Okudan, G.; Riley, D. Sustainable performance criteria for construction method selection in concrete building. Autom. Constr. 2010, 19, 235–244. [Google Scholar] [CrossRef]
- Jarkas, A.; Younes, J. Principle factors contributing to construction delays in the state of Qatar. Int. J. Constr. Proj. Manag. 2012, 6, 39–62. [Google Scholar]
- Hauck, J.; Schleyer, C.; Winkler, K.J.; Maes, J. Shades of greening: Reviewing the impact of the new EU agricultural policy on ecosystem services. Change Adapt. Socio-Ecol. Syst. 2014, 1, 51–62. [Google Scholar] [CrossRef]
- Gutman, P. Ecosystem services: Foundations for a new rural–urban compact. Ecol. Econ. 2007, 62, 383–387. [Google Scholar] [CrossRef]
- Plieninger, T.; Schleyer, C.; Schaich, H.; Ohnesorge, B.; Gerdes, H.; Hernández-Morcillo, M.; Bieling, C. Mainstreaming ecosystem services through reformed European agricultural policies. Conserv. Lett. 2012, 5, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Hauck, J.; Paracchini, M.L.; Ratamäki, O.; Hutchins, M.; Termansen, M.; Furman, E.; Perez-Soba, M.; Braat, L.; Bidoglio, G. Mainstreaming ecosystem services into EU policy. Curr. Opin. Environ. Sustain. 2013, 5, 128–134. [Google Scholar] [CrossRef]
- Starbuck, W.H.; Mezias, J.M. Opening Pandora’s box: Studying the accuracy of managers’ perceptions. J. Organ. Behav. 1996, 17, 99–117. [Google Scholar] [CrossRef]
- Freeman, C.; Soete, L. The Economics of Industrial Innovation, 3rd ed.; Pinter: Washington, DC, USA, 1997. [Google Scholar]
- Dawid, H. Agent-based models of innovation and technological change. In Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics; Tesfatsion, L., Judd, K.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Gary, M.S.; Dosi, G.; Lovallo, D. Boom and bust behavior: On the persistence of strategic decision biase. In The Oxford Handbook of Organizational Decision Making; Hodgkinson, G.P., Starbuck, W.H., Eds.; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Dosi, G.; Nelson, R.R. The evolution of technologies: An assessment of the State-of-the-Art. Eurasian Bus. Rev. 2013, 3, 3–46. [Google Scholar] [CrossRef]
- Labrada, R.; Officer, W. Farmer training on parasitic weed management. Progress on Farmer Training in Parasitic Weed Management 2008, 4, 1–5. [Google Scholar]
- Gwandu, T.; Mtambanengwe, F.; Mapfumo, P.; Mashavave, T.C.; Chikowo, R.; Nezomba, H. Factors influencing access to integrated soil fertility management information and knowledge and its uptake among smallholder farmers in Zimbabwe. J. Agric. Educ. Ext. 2014, 20, 79–93. [Google Scholar] [CrossRef]
- Alem, H.; Lien, G.; Kumbhakar, S.C.; Hardaker, J.B. Are diversification and structural change good policy? An empirical analysis of Norwegian agriculture. J. Agric. Appl. Econ. 2019, 51, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Garibaldi, L.A.; Pérez-Méndez, N.; Garratt, M.P.; Gemmill-Herren, B.; Miguez, F.E.; Dicks, L.V. Policies for ecological intensification of crop production. Trends Ecol. Evol. 2019, 34, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Rammel, C. Sustainable development and innovations: Lessons from the red queen. Int. J. Sustain. Dev. 2006, 6, 395–416. [Google Scholar] [CrossRef]
- Van den Bergh, J.C. Optimal diversity: Increasing returns versus recombinant innovation. J. Econ. Behav. Organ. 2008, 68, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Van den Bergh, J.C.J.M.; Oosterhuis, F. An evolutionary-economic analysis of energy transitions. In Managing the Transition to Renwable Energy: Theory and Practice from Local, Regional and Macro Perspectives; Edward Elgar: Cheltenham, UK, 2008; pp. 149–173. [Google Scholar]
- Bedoussac, L.; Journet, E.P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Petrusán, J.I.; Rawel, H.; Huschek, G. Protein-rich vegetal sources and trends in human nutrition: A review. Curr. Top. Pept. Protein Res. 2016, 17, 1–19. [Google Scholar]
- Pierreux, J. Autonomie Protéique Pour L’alimentation Du Porc: Les Perspectives Offertes Par La Culture En Association De Froment D’hiver Et De Pois Protéagineux D’hiver; AG Filière Porcine Wallone; Service Public de Wallonie: Namur, Belgium, 2013. [Google Scholar]
- Le Guillou, C.; Duflot, V. Oléoprotéagineux: Se démarquer par une démarche qualité. OCL 2018, 25, D201. [Google Scholar] [CrossRef] [Green Version]
- Tonin, P.; Gosselet, N.; Halle, E.; Henrion, M. Ideal oil and protein crops–what are users ideotypes, from the farmer to the consumer ? OCL 2018, 25, D605. [Google Scholar] [CrossRef]
- Vincourt, P. New ideotypes of oil & protein crops. OCL 2018, 25, D601. [Google Scholar]
- Kremen, A.; Greene, C.; Hanson, J. Organic Produce, Price Premiums, and Eco-Labeling in US Farmers’ Markets; Economic Research Service, USDA: Washington, DC, USA, 2004.
- Heidkamp, P.; Hanink, D.M.; Cromley, R.G.A. land use model of the effects of eco-labeling in coffee markets. Ann. Reg. Sci. 2008, 42, 725–746. [Google Scholar] [CrossRef]
- Van Amstel, M.; Driessen, P.; Glasbergen, P. Eco-labeling and information asymmetry: A comparison of five eco-labels in the Netherlands. J. Clean. Prod. 2008, 16, 263–276. [Google Scholar] [CrossRef]
- Czarnezki, J.J. The Future of Food Eco-Labeling: Organic, Carbon Footprint, and Environmental Life-Cycle Analysis. Stanf. Environ. Law J. 2011, 30, 3. [Google Scholar]
- Delmas, M.A.; Grant, L.E. Eco-labeling strategies and price-premium: The wine industry puzzle. Bus. Soc. 2014, 53, 6–44. [Google Scholar] [CrossRef]
- Reed, M.S.; Moxey, A.; Prager, K.; Hanley, N.; Skates, J.; Bonn, A.; Evans, C.D.; Glenk, K.; Thomson, K. Improving the link between payments and the provision of ecosystem services in agri-environment schemes. Ecosyst. Serv. 2014, 9, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Liu, E.M. Time to change what to sow: Risk preferences and technology adoption decisions of cotton farmers in China. Rev. Econ. Stat. 2013, 95, 1386–1403. [Google Scholar] [CrossRef] [Green Version]
- MacRae, R.J.; Hill, S.B.; Henning, J.; Mehuys, G.R. Agricultural science and sustainable agriculture: A review of the existing scientific barriers to sustainable food production and potential solutions. Biol. Agric. Hortic. 1989, 6, 173–219. [Google Scholar] [CrossRef]
- Bradshaw, B.; Dolan, H.; Smit, B. Farm-level adaptation to climatic variability and change: Crop diversification in the Canadian prairies. Clim. Change 2004, 67, 119–141. [Google Scholar] [CrossRef]
- Rahman, S. Whether crop diversification is a desired strategy for agricultural growth in Bangladesh? Food Policy 2009, 34, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, H.; Rahman, S.A.; Envulus, E.E.; Oyewole, S.O. Income and crop diversification among farming households in a rural area of north central Nigeria. Agro-Science 2009, 8, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Mesfin, W.; Fufa, B.; Haji, J. Pattern, trend and determinants of crop diversification: Empirical evidence from smallholders in eastern Ethiopia. J. Econ. Sustain. Dev. 2011, 2, 78–89. [Google Scholar]
- Ogundari, K. Crop diversification and technical efficiency in food crop production: A study of peasant farmers in Nigeria. Int. J. Soc. Econ. 2013, 40, 267–287. [Google Scholar] [CrossRef]
- McCord, P.F.; Cox, M.; Schmitt-Harsh, M.; Evans, T. Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy 2015, 42, 738–750. [Google Scholar] [CrossRef]
- Makate, C.; Wang, R.; Makate, M.; Mango, N. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: Adaptive management for environmental change. SpringerPlus 2016, 5, 1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feliciano, D.; Nayak, D.R.; Vetter, S.H.; Hillier, J. CCAFS-MOT-A tool for farmers, extension services and policy-advisors to identify mitigation options for agriculture. Agric. Syst. 2017, 154, 100–111. [Google Scholar] [CrossRef] [Green Version]
Identified Barriers | RII | Importance | Rank | Category | |
---|---|---|---|---|---|
Farmers | Lack of large industrial | 0.76 | High | 2 | External |
Difficulty to manage the existing varieties | 0.75 | High | 2 | Internal | |
Lack of technical guidelines for production | 0.75 | High | 2 | Internal | |
No compensation for ecosystem services | 0.74 | High | 4 | External | |
Lack of specific advice | 0.73 | High | 5 | External | |
Problems with collection, sorting and storage | 0.71 | High | 6 | External | |
Non-competitive selling price | 0.70 | Medium | 7 | External | |
Insufficient control of phytosanitary problems | 0.69 | Medium | 8 | Internal | |
Unstable or inadequate performance | 0.67 | Medium | 9 | Internal | |
Lack of appropriate input suppliers | 0.66 | Medium | 10 | External | |
High production cost | 0.58 | Medium | 11 | Internal | |
Complexity in the storage management of the mixture | 0.91 | High | 1 | Internal | |
Co-operatives | Costly sorting of the mix | 0.81 | High | 2 | Internal |
Irregular supply by farmers | 0.72 | High | 3 | External | |
No technical solution for sorting the mixture | 0.65 | Medium | 4 | Internal | |
Risk in Investment | 0.57 | Medium | 5 | Internal | |
Adaptation cost of the product to market requirements | 0.55 | Medium | 6 | External | |
Insufficient production volume | 0.45 | Medium | 7 | External | |
Poor marketing of the intercrop | 0.38 | Low | 8 | External | |
Inadequacy of the intercrop with the industrial requirements | 0.37 | Low | 9 | Internal | |
Legal issues related to the marketing of products | 0.34 | Low | 10 | External | |
Poor knowledge of new distribution channels | 0.29 | Low | 11 | Internal | |
Lack of dedicated technical advisors | 0.25 | Low | 12 | Internal | |
To be a co-operative | 0.25 | Low | 13 | Internal | |
Lack of managerial skills | 0.24 | Low | 14 | Internal | |
Sale price instability | 0.24 | Low | 15 | External | |
Costly market access | 0.22 | Low | 16 | internal |
Identified Levers | RII | Importance | Rank | Category | |
---|---|---|---|---|---|
Farmers | Increasing Mix quality market value | 0.87 | High | 1 | External |
Specific training for farmers | 0.81 | High | 2 | External | |
Set-up of local procurement contracts | 0.79 | High | 3 | External | |
Involvement of R&D results in advice | 0.78 | High | 4 | External | |
Advice and extension for development | 0.76 | High | 5 | External | |
Eco-labeling the wheat–pea value chain | 0.72 | High | 6 | External | |
Role of public stakeholders in the value-chain building | 0.72 | High | 6 | External | |
Official public quality label | 0.71 | High | 8 | External | |
Profitability of the intercropping system | 0.70 | Medium | 9 | Internal | |
Role of supermarket | 0.64 | Medium | 10 | External | |
Co-operatives | Potential for certification | 0.67 | Medium | 1 | External |
Existence of marketing contracts | 0.64 | Medium | 2 | External | |
Change of the CAP | 0.60 | Medium | 3 | External | |
Logistical support from industrial partners | 0.58 | Medium | 4 | External | |
Geographical proximity to industrial buyers | 0.56 | Medium | 5 | External | |
Existence of production contracts with farmers | 0.55 | Medium | 6 | External | |
Third party contracting (farmer/co-operative/processor) | 0.50 | Medium | 7 | External | |
Bonus for quality of products | 0.49 | Medium | 8 | External | |
Sharing the marketing value | 0.49 | Medium | 9 | External | |
Benefit from tax reduction | 0.47 | Medium | 10 | External | |
Technical assistance for the intercropping system | 0.46 | Medium | 11 | Internal | |
Relationships network with public and private institutions | 0.42 | Medium | 12 | External | |
Access to new information sources | 0.39 | Low | 13 | Internal | |
Geographical proximity to the producers | 0.37 | Low | 14 | Internal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fares, M.; Mamine, F. Relative Importance of Barriers and Levers to Intercropping Systems Adoption: A Comparison of Farms and Co-Operatives. Sustainability 2023, 15, 6652. https://doi.org/10.3390/su15086652
Fares M, Mamine F. Relative Importance of Barriers and Levers to Intercropping Systems Adoption: A Comparison of Farms and Co-Operatives. Sustainability. 2023; 15(8):6652. https://doi.org/10.3390/su15086652
Chicago/Turabian StyleFares, M’hand, and Fateh Mamine. 2023. "Relative Importance of Barriers and Levers to Intercropping Systems Adoption: A Comparison of Farms and Co-Operatives" Sustainability 15, no. 8: 6652. https://doi.org/10.3390/su15086652
APA StyleFares, M., & Mamine, F. (2023). Relative Importance of Barriers and Levers to Intercropping Systems Adoption: A Comparison of Farms and Co-Operatives. Sustainability, 15(8), 6652. https://doi.org/10.3390/su15086652