Limits of Performance of Polyurethane Blowing Agents
Abstract
:1. Introduction
- Accuracy enhancement;
- Enhancing the basic form of the governing equations (and the associated physical constants) to expand their applicability (extrapolation to other conditions and reagents);
- Increasing versatility via the use of group contribution methods (such as heat capacity, viscosity, and reaction rate constants);
- Usage as an alternate strategy for studying and comprehending polymer science;
- Developing it to be used in predicting polymer physical characteristics (e.g., thermal conductivity, compressive strength);
- Increase its use as an analytical technique.
2. Experimental Procedure
2.1. Materials
2.2. Preparation of PU Foam
3. Results and Discussion
3.1. Gel Reaction
3.2. n-Pentane
3.3. Methyl Formate
3.4. Water
3.5. Cyclohexane
4. Limits of Performance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Field, M.J. Simulating chemical reactions in complex systems. In Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2003; Volume 10, pp. 667–697. [Google Scholar]
- Ayash, A.A. 2-D parametric analysis of Gas-Liquid Contacting in a Spinning Spiral Contactor. In Proceedings of the 6th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT′19), Ottawa, ON, Canada, 18–19 June 2019; p. FFHMT 144. [Google Scholar]
- Higham, D.J. Modeling and Simulating Chemical Reactions. SIAM Rev. 2008, 50, 347–368. [Google Scholar] [CrossRef]
- Ayash, A.A.; MacInnes, J.M. Mass transfer prediction of gas-liquid contacting in a rotating spiral channel. In Proceedings of the 4th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT′17), Toronto, ON, Canada, 21–23 August 2017; p. 132. [Google Scholar]
- Zhang, B.; Yi, C.; Wu, D.; Qiao, J.; Zhang, L. A High-Permeance Organic Solvent Nanofiltration Membrane via Polymerization of Ether Oxide-Based Polymeric Chains for Sustainable Dye Separation. Sustainability 2023, 15, 3446. [Google Scholar] [CrossRef]
- Al-Moameri, H.H.; Ayash, A.A.; Al-Najjar, S.Z.A.; Lubguban, A.A.; Malaluan, R.M. Simulation Study of the Liquid–Solid Multistage Adsorption Process. Sustainability 2023, 15, 3345. [Google Scholar] [CrossRef]
- Ayash, A.A.; Al-Moameri, H.H.; Salman, A.A.; Lubguban, A.A.; Malaluan, R.M. Analysis and Simulation of Blood Cells Separation in a Polymeric Serpentine Microchannel under Dielectrophoresis Effect. Sustainability 2023, 15, 3444. [Google Scholar] [CrossRef]
- D’Agostino, D.; Landolfi, R.; Nicolella, M.; Minichiello, F. Experimental Study on the Performance Decay of Thermal Insulation and Related Influence on Heating Energy Consumption in Buildings. Sustainability 2022, 14, 2947. [Google Scholar] [CrossRef]
- Król, P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog. Mater. Sci. 2007, 52, 915–1015. [Google Scholar] [CrossRef]
- Ionescu, M. Chapter 2-Basic chemistry of polyurethanes. In Chemistry and Technology of Polyols for Polyurethanes; De Gruyter: Berlin/Heidelberg, Germany; Boston, MA, USA, 2019; Volume 1, pp. 11–26. [Google Scholar]
- Ashida, K. Polyurethane and Related Foams: Chemistry and Technology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006; p. 154. [Google Scholar]
- Szycher, M. Szycher’s Handbook of Polyurethanes; CRC Press: Boca Raton, FL, USA, 2012; p. 1144. [Google Scholar]
- Lee, S.-T.; Ramesh, N.S. Polymeric Foams: Mechanisms and Materials, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004; p. 360. [Google Scholar]
- Cavaco, L.I.; Melo, J.A. Polyurethane: Properties, Structure and Applications, 1st ed.; Nova Science Publishers, Incorporated: Hauppauge, NY, USA, 2012; p. 162. [Google Scholar]
- Andersons, J.; Modniks, J.; Kirpluks, M. Estimation of the effective diffusivity of blowing agents in closed-cell low-density polyurethane foams based on thermal aging data. J. Build. Eng. 2021, 44, 103365. [Google Scholar] [CrossRef]
- Reghunadhan, A.; Thomas, S. Chapter 1-Polyurethanes: Structure, Properties, Synthesis, Characterization, and Applications. In Polyurethane Polymers; Thomas, S., Datta, J., Haponiuk, J.T., Reghunadhan, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–16. [Google Scholar]
- Mohammed, M.M.; Al-Jarrah, M.M.; Lateef, A.A.A. Effect of NCO/OH on the Mechanical properties of Polyurethane Elastomers. Al-Nahrain J. Eng. Sci. 2008, 11, 485–493. [Google Scholar]
- Brondi, C.; Di Maio, E.; Bertucelli, L.; Parenti, V.; Mosciatti, T. Competing bubble formation mechanisms in rigid polyurethane foaming. Polymer 2021, 228, 123877. [Google Scholar] [CrossRef]
- Ferkl, P.; Kršková, I.; Kosek, J. Evolution of mass distribution in walls of rigid polyurethane foams. Chem. Eng. Sci. 2018, 176, 50–58. [Google Scholar] [CrossRef]
- Eaves, D. Handbook of Polymer Foams; Rapra Technology Limited: Shrewsbury, UK, 2004; p. 304. [Google Scholar]
- Andersons, J.; Modniks, J.; Kirpluks, M. Modelling the effect of morphology on thermal aging of low-density closed-cell PU foams. Int. Commun. Heat Mass Transf. 2022, 139, 106432. [Google Scholar] [CrossRef]
- Mishra, M. Encyclopedia of Polymer Applications; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, p. 2954. [Google Scholar]
- Baser, S.A.; Khakhar, D.V. Modeling of the Dynamics of Water and R-11 blown polyurethane foam formation. Polym. Eng. Sci. 1994, 34, 642–649. [Google Scholar] [CrossRef]
- Tesser, R.; Di Serio, M.; Sclafani, A.; Santacesaria, E. Modeling of polyurethane foam formation. J. Appl. Polym. Sci. 2004, 92, 1875–1886. [Google Scholar] [CrossRef]
- Al-Moameri, H.; Zhao, Y.; Ghoreishi, R.; Suppes, G.J. Simulation Blowing Agent Performance, Cell Morphology, and Cell Pressure in Rigid Polyurethane Foams. Ind. Eng. Chem. Res. 2016, 55, 2336–2344. [Google Scholar] [CrossRef]
- Zhao, Y.; Gordon, M.J.; Tekeei, A.; Hsieh, F.-H.; Suppes, G.J. Modeling reaction kinetics of rigid polyurethane foaming process. J. Appl. Polym. Sci. 2013, 130, 1131–1138. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, Y.; Tekeei, A.; Hsieh, F.-H.; Suppes, G.J. Density modeling of polyurethane box foam. Polym. Eng. Sci. 2014, 54, 1503–1511. [Google Scholar] [CrossRef]
- Ghoreishi, R.; Zhao, Y.; Suppes, G.J. Reaction modeling of urethane polyols using fraction primary secondary and hindered-secondary hydroxyl content. J. Appl. Polym. Sci. 2014, 131, 40388. [Google Scholar] [CrossRef]
- Al-Moameri, H.; Zhao, Y.; Ghoreishi, R.; Suppes, G.J. Simulation of liquid physical blowing agents for forming rigid urethane foams. J. Appl. Polym. Sci. 2015, 132, 42454. [Google Scholar] [CrossRef]
- Al-Moameri, H.; Jaf, L.; Suppes, G.J. Simulation approaches for the mechanisms of thermoset polymerization reactions. Mol. Cat. 2021, 504, 111485. [Google Scholar] [CrossRef]
- Ghoreishi, R.; Suppes, G.J. Chain growth polymerization mechanism in polyurethane-forming reactions. RSC Adv. 2015, 5, 68361–68368. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhong, F.; Tekeei, A.; Suppes, G.J. Modeling impact of catalyst loading on polyurethane foam polymerization. Appl. Catal. A Gen. 2014, 469, 229–238. [Google Scholar] [CrossRef]
- Zhao, Y.; Suppes, G.J. Simulation of Catalyzed Urethane Polymerization: An Approach to Expedite Commercialization of Bio-based Materials. Catal. Surv. Asia 2014, 18, 89–98. [Google Scholar] [CrossRef]
- Al-Moameri, H.; Ghoreishi, R.; Zhao, Y.; Suppes, G.J. Impact of the maximum foam reaction temperature on reducing foam shrinkage. RSC Adv. 2015, 5, 17171–17178. [Google Scholar] [CrossRef]
- Fu, Z.; Suppes, G.J. Group contribution modeling of viscosity during urethane reaction. J. Polym. Eng. 2015, 35, 11–20. [Google Scholar] [CrossRef]
- Jaf, L.; Al-Moameri, H.; Ghosh, T. Simulation approach for characterizing the isocyanates reactivity in polyurethane gel reactions. J. Polym. Res. 2022, 29, 92. [Google Scholar] [CrossRef]
- Al-Moameri, H.H.; Jaf, L.A.; Suppes, G.J. Simulation Approach to Learning Polymer Science. J. Chem. Educ. 2018, 95, 1554–1561. [Google Scholar] [CrossRef]
- An, S.; Shen, L.; Suppes, G.J. Group contribution modeling of heat capacities in urethane-forming reactions. Fibers Polym. 2017, 18, 1031–1039. [Google Scholar] [CrossRef]
- Al-Moameri, H.; Ghoreishi, R.; Suppes, G. Impact of inter- and intra-molecular movements on thermoset polymerization reactions. Chem. Eng. Sci. 2017, 161, 14–23. [Google Scholar] [CrossRef]
- Al-Moameri, H.; Jaf, L.; Suppes, G.J. Viscosity-dependent frequency factor for modeling polymerization kinetics. RSC Adv. 2017, 7, 26583–26592. [Google Scholar] [CrossRef]
- Kolodziej, P.; Macosko, C.W.; Ranz, W.E. The influence of impingement mixing on striation thickness distribution and properties in fast polyurethane polymerization. Polym. Eng. Sci. 1982, 22, 388–392. [Google Scholar] [CrossRef]
Feature | Failure Mode |
---|---|
Blowing agent concentration | The blowing agent does not evaporate completely during foaming. |
Temperature | The temperature of the reaction is either too low or too high. |
Recipes concentration | Not all the isocyanate, polyol, and/or blowing agents reacted. |
Height | The height of the foam is very short. |
Degree of polymerization | Low degree of polymerization. |
Feature | Failure Mode |
---|---|
Surface | Rough and stiff. Not rigid enough. |
Bubbles at the surface | No bubbles at the surface. Too many bubbles at the surface. |
Failure to form a cell network | At the start of foaming, bubbles rupture without preservation of the cell. The gooey surface persists all the way to the end of the foaming process. |
Failure to retain cell structure | When foam cools (0.05–4 h), the sides of foam collapse in. |
Cell morphology problems | Too high an open cell content. Smaller than normal. Larger than normal. |
Foam has inadequate compressive strength | Easy to smash. |
Property | V360 | PMDI |
---|---|---|
Density, g·cm−3 | 1.081 | 1.23 |
Viscosity, mPa.s @25 °C | 3500 | 150–220 |
Average molecular weight | 728 | 369.9 |
Vapor pressure, mmHg @25 °C | - | <10−5 |
Functionality | 4.5 | 2.7 |
Equivalent weight | 155.55 | 137 |
Hydroxyl number, mg KOH g−1 | 360 | - |
NCO content by weight, % | - | 31.4 |
Specific heat at 25 °C (gcal/g) | - | 0.43 |
Exp no. | Blowing Agent | Weight (g) | PMDI (1.1 Index) | Catalyst 8 | Catalyst 5 |
---|---|---|---|---|---|
1 | n-pentane | 2 | 43 | 0.5 | 0 |
2 | n-pentane | 4 | 43 | 0.5 | 0 |
3 | n-pentane | 8 | 43 | 0.5 | 0 |
4 | n-pentane | 12 | 43 | 0.5 | 0 |
5 | methyl formate | 2 | 43 | 0.5 | 0 |
6 | methyl formate | 6 | 43 | 0.5 | 0 |
7 | methyl formate | 10 | 43 | 0.5 | 0 |
8 | methyl formate | 14 | 43 | 0.5 | 0 |
9 | water | 0.2 | 46.26 | 0.12 | 0.32 |
10 | water | 0.5 | 51.2 | 0.12 | 0.32 |
11 | water | 1 | 59.46 | 0.12 | 0.32 |
12 | water | 2 | 75.96 | 0.12 | 0.32 |
13 | cyclohexane | 1 | 43 | 0.5 | 0 |
14 | cyclohexane | 2 | 43 | 0.5 | 0 |
15 | water/cyclohexane | 0.5/2 | 51.2 | 0.12 | 0.32 |
16 | water/cyclohexane | 0.5/4 | 51.2 | 0.12 | 0.32 |
17 | water/cyclohexane | 0.5/6 | 51.2 | 0.12 | 0.32 |
18 | water/cyclohexane | 0.5/12 | 51.2 | 0.12 | 0.32 |
19 | water/n-pentane | 0.5/4 | 51.2 | 0.12 | 0.32 |
20 | n-pentane/methyl formate | 3/3 | 43 | 0.5 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaf, L.; Al-Moameri, H.H.; Ayash, A.A.; Lubguban, A.A.; Malaluan, R.M.; Ghosh, T. Limits of Performance of Polyurethane Blowing Agents. Sustainability 2023, 15, 6737. https://doi.org/10.3390/su15086737
Jaf L, Al-Moameri HH, Ayash AA, Lubguban AA, Malaluan RM, Ghosh T. Limits of Performance of Polyurethane Blowing Agents. Sustainability. 2023; 15(8):6737. https://doi.org/10.3390/su15086737
Chicago/Turabian StyleJaf, Luay, Harith H. Al-Moameri, Ahmed A. Ayash, Arnold A. Lubguban, Roberto M. Malaluan, and Tushar Ghosh. 2023. "Limits of Performance of Polyurethane Blowing Agents" Sustainability 15, no. 8: 6737. https://doi.org/10.3390/su15086737
APA StyleJaf, L., Al-Moameri, H. H., Ayash, A. A., Lubguban, A. A., Malaluan, R. M., & Ghosh, T. (2023). Limits of Performance of Polyurethane Blowing Agents. Sustainability, 15(8), 6737. https://doi.org/10.3390/su15086737