Homogeneous Photosensitized Oxidation for Water Reuse in Cellars: A Study of Different Photosensitizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Methods
2.2. Photosensitizers and Wastewater
2.3. Experimental Methodology
3. Results and Discussion
3.1. Photolysis
3.2. Photooxidation
3.3. The Effect of Initial Wastewater pH on the Photooxidation Process
3.4. The Effect of the Initial PS Concentration on the Photooxidation Process
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Jiménez, B.; Navarro, I. Wastewater Use in Agriculture: Public Health Considerations. In Encyclopedia of Environmental Management, Four Volume Set; Jorgensen, S.E., Ed.; CRC Press: Boca Raton, FL, USA, 2015; p. 15. ISBN 9781351235860. [Google Scholar]
- Bandinelli, R.; Acuti, D.; Fani, V.; Bindi, B.; Aiello, G. Environmental Practices in the Wine Industry: An Overview of the Italian Market. Br. Food J. 2020, 122, 1625–1646. [Google Scholar] [CrossRef]
- Oliveira, M.; Costa, J.M.; Fragoso, R.; Duarte, E. Challenges for Modern Wine Production in Dry Areas: Dedicated Indicators to Preview Wastewater Flows. Water Supply 2019, 19, 653–661. [Google Scholar] [CrossRef]
- Kumar, A.; Arienzo, M.; Quayle, W.; Christen, E.; Grocke, S.; Fattore, A.; Doan, H.; Gonzago, D.; Zandonna, R.; Bartrop, K.; et al. Developing a Systematic Approach to Winery Wastewater Management; Grape and Wine Research & Development Corporation: Adelaide, Australia, 2009. [Google Scholar]
- Oliveira, M.; Duarte, E. Winery Wastewater Treatment-Evaluation of the Air Micro-Bubble Bioreactor Performance. In Mass Transfer-Advanced Aspects; InTech: London, UK, 2011; pp. 79–113. ISBN 9781498728515. [Google Scholar]
- Vlyssides, A.G.; Barampouti, E.M.; Mai, S. Wastewater Characteristics from Greek Wineries and Distilleries. Water Sci. Technol. 2005, 51, 53–60. [Google Scholar] [CrossRef]
- Zacharof, M.P. Grape Winery Waste as Feedstock for Bioconversions: Applying the Biorefinery Concept. Waste Biomass Valorization 2017, 8, 1011–1025. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine Wine Production-First Estimates. Available online: https://www.oiv.int/sites/default/files/documents/PPTWorld%20Wine%20Production%20Outlook_2022_Press%20Conf.pdf (accessed on 3 April 2023).
- Rodrigues, R.P.; Gando-Ferreira, L.M.; Quina, M.J. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022, 27, 4709. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, L.A.; Puma, G.L.; Fatta-Kassinos, D. Treatment of Winery Wastewater by Physicochemical, Biological and Advanced Processes: A Review. J. Hazard. Mater. 2015, 286, 343–368. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal. Eur. Comm. 2019, 53, 24. [Google Scholar] [CrossRef]
- European Commission. A New Circular Economy Action Plan For a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Cañadas, R.; Díaz, I.; Rodríguez, M.; González, E.J.; González-Miquel, M. An Integrated Approach for Sustainable Valorization of Winery Wastewater Using Bio-Based Solvents for Recovery of Natural Antioxidants. J. Clean. Prod. 2022, 334, 130181. [Google Scholar] [CrossRef]
- Santos, J.R.F.; Rodrigues, R.P.; Quina, M.J.; Gando-Ferreira, L.M. Recovery of Value-Added Compounds from Winery Wastewater: A Review and Bibliometric Analysis. Water 2023, 15, 1110. [Google Scholar] [CrossRef]
- Miklas, V.; Touš, M.; Miklasová, M.; Máša, V.; Horňák, D. Winery Wastewater Treatment Technologies: Current Trends and Future Perspective. Chem. Eng. Trans. 2022, 94, 847–852. [Google Scholar] [CrossRef]
- The Council of the European Communities. Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-Water Treatment; LEX-FAOC013224; The Council of the European Communities: Luxembourg, 1991; pp. 14–15. [Google Scholar]
- Nidheesh, P.V.; Couras, C.; Karim, A.V.; Nadais, H. A Review of Integrated Advanced Oxidation Processes and Biological Processes for Organic Pollutant Removal. Chem. Eng. Commun. 2022, 209, 390–432. [Google Scholar] [CrossRef]
- Kundu, D.; Dutta, D.; Samanta, P.; Dey, S.; Sherpa, K.C.; Kumar, S.; Dubey, B.K. Valorization of Wastewater: A Paradigm Shift towards Circular Bioeconomy and Sustainability. Sci. Total Environ. 2022, 848, 157709. [Google Scholar] [CrossRef]
- Obreza, T.A.; Boman, B.J.; Kadyampakeni, D.; Zekri, M.; Morgan, K.; Vashisth, T. Fertilizer Sources and Formulations. In Nutrition of Florida Citrus Trees; EDIS: Miami, FL, USA, 2020; Volume 2020, pp. 39–44. [Google Scholar]
- Etchebarne, F.; Aveni, P.; Escudier, J.-L.; Ojeda, H. Reuse of Treated Wastewater in Viticulture: Can It Be an Alternative Source of Nutrient-Rich Water? BIO Web Conf. 2019, 12, 01009. [Google Scholar] [CrossRef]
- Milani, M.; Consoli, S.; Marzo, A.; Pino, A.; Randazzo, C.; Barbagallo, S.; Cirelli, G.L. Treatment of Winery Wastewater with a Multistage Constructedwetland System for Irrigation Reuse. Water 2020, 12, 1260. [Google Scholar] [CrossRef]
- European Union. Regulation 2020/741. Off. J. Eur. Union 2022, 1–55. [Google Scholar]
- Salgot, M.; Folch, M. Wastewater Treatment and Water Reuse. Curr. Opin. Env. Sci. Health 2018, 2, 64–74. [Google Scholar] [CrossRef]
- Kim, H.; Kim, W.; MacKeyev, Y.; Lee, G.S.; Kim, H.J.; Tachikawa, T.; Hong, S.; Lee, S.; Kim, J.; Wilson, L.J.; et al. Selective Oxidative Degradation of Organic Pollutants by Singlet Oxygen-Mediated Photosensitization: Tin Porphyrin versus C60 Aminofullerene Systems. Environ. Sci. Technol. 2012, 46, 9606–9613. [Google Scholar] [CrossRef]
- Valkov, A.; Raik, K.; Mualem-Sinai, Y.; Nakonechny, F.; Nisnevitch, M. Water Disinfection by Immobilized Photosensitizers. Water 2018, 11, 26. [Google Scholar] [CrossRef]
- Sarma, S.J.; Das, R.K.; Brar, S.K. Singlet Oxygen Production by Organic Matter and Disintegration of Pathogens and Pollutants during Wastewater Treatment: How Important? Hydrol. Curr. Res. 2013, 4, e109. [Google Scholar] [CrossRef]
- Zhang, Y.; Sivakumar, M.; Yang, S.; Enever, K.; Ramezanianpour, M. Application of Solar Energy in Water Treatment Processes: A Review. Desalination 2018, 428, 116–145. [Google Scholar] [CrossRef]
- Pandey, A.K.; Reji Kumar, R.; Kalidasan, B.; Laghari, I.A.; Samykano, M.; Kothari, R.; Abusorrah, A.M.; Sharma, K.; Tyagi, V.V. Utilization of Solar Energy for Wastewater Treatment: Challenges and Progressive Research Trends. J. Environ. Manag. 2021, 297, 113300. [Google Scholar] [CrossRef]
- Tai, C.; Zhang, S.; Wang, J.; Yin, Y.; Shi, J.; Wu, H.; Mao, Y. Solar-Induced Generation of Singlet Oxygen and Hydroxyl Radical in Sewage Wastewaters. Environ. Chem. Lett. 2017, 15, 515–523. [Google Scholar] [CrossRef]
- DeRosa, M.C.; Crutchley, R.J. Photosensitized Singlet Oxygen and Its Applications. Coord. Chem. Rev. 2002, 233–234, 351–371. [Google Scholar] [CrossRef]
- Foszpańczyk, M.; Bilińska, L.; Gmurek, M.; Ledakowicz, S. Heterogeneous Oxidation of Phenolic Compounds with Photosensitizing Catalysts Incorporated into Chitosan. Catalysts 2019, 9, 891. [Google Scholar] [CrossRef]
- Thandu, M.; Comuzzi, C.; Goi, D. Phototreatment of Water by Organic Photosensitizers and Comparison with Inorganic Semiconductors. Int. J. Photoenergy 2015, 2015, 521367. [Google Scholar] [CrossRef]
- Baptista, M.S.; Cadet, J.; Di Mascio, P.; Ghogare, A.A.; Greer, A.; Hamblin, M.R.; Lorente, C.; Nunez, S.C.; Ribeiro, M.S.; Thomas, A.H.; et al. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919. [Google Scholar] [CrossRef]
- Mostafa, S.; Rosario-Ortiz, F.L. Singlet Oxygen Formation from Wastewater Organic Matter. Environ. Sci. Technol. 2013, 47, 8179–8186. [Google Scholar] [CrossRef] [PubMed]
- Vivar, M.; Fuentes, M.; Torres, J.; Rodrigo, M.J. Solar Disinfection as a Direct Tertiary Treatment of a Wastewater Plant Using a Photochemical-Photovoltaic Hybrid System. J. Water Process Eng. 2021, 42, 102196. [Google Scholar] [CrossRef]
- Brkic’, D.; Forzatti, P.; Pasquon, I.; Trifiro’, F. Homogeneous and Heterogeneous Photo-Oxygenation of 2,3-Dimethyl-2-Butene. J. Mol. Catal. 1977, 3, 173–184. [Google Scholar] [CrossRef]
- Tratnyek, P.G.; Elovitz, M.S.; Colverson, P. Photoeffects of Textile Dye Wastewaters: Sensitization of Singlet Oxygen Formation, Oxidation of Phenols and Toxicity to Bacteria. Environ. Toxicol. Chem. 1994, 13, 27–33. [Google Scholar] [CrossRef]
- Faust, D.; Funken, K.H.; Horneck, G.; Milow, B.; Ortner, J.; Sattlegger, M.; Schäfer, M.; Schmitz, C. Immobilized Photosensitizers for Solar Photochemical Applications. Sol. Energy 1999, 65, 71–74. [Google Scholar] [CrossRef]
- Ozoemena, K.; Kuznetsova, N.; Nyokong, T. Photosensitized Transformation of 4-Chlorophenol in the Presence of Aggregated and Non-Aggregated Metallophthalocyanines. J. Photochem. Photobiol. A Chem. 2001, 139, 217–224. [Google Scholar] [CrossRef]
- Zhang, X.F.; Wang, Y.; Niu, L. Titanyl Phthalocyanine and Its Soluble Derivatives: Highly Efficient Photosensitizers for Singlet Oxygen Production. J. Photochem. Photobiol. A Chem. 2010, 209, 232–237. [Google Scholar] [CrossRef]
- Gryglik, D.; Gmurek, M. The Photosensitized Oxidation of Mixture of Parabens in Aqueous Solution. Environ. Sci. Pollut. Res. 2018, 25, 3009–3019. [Google Scholar] [CrossRef] [PubMed]
- Neves, C.M.B.; Filipe, O.M.S.; Mota, N.; Santos, S.A.O.; Silvestre, A.J.D.; Santos, E.B.H.; Neves, M.G.P.M.S.; Simões, M.M.Q. Photodegradation of Metoprolol Using a Porphyrin as Photosensitizer under Homogeneous and Heterogeneous Conditions. J. Hazard. Mater. 2019, 370, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Aimeur, M.; Baudu, M.; Zermane, F.; Joussein, E.; Bouras, O. Evaluation of the Use of Free or Supported Phenalenone Based on Natural Halloysite for Phenol Photodegradation in Aqueous Solution. J. Photochem. Photobiol. A Chem. 2021, 404, 112904. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Eds.; American Public Health Association: Washington, DC, USA; American Water Works Association: Austin, TX, USA; Water Environment Federation: Wythe, VA, USA, 2017; ISBN 9780875532875. [Google Scholar]
- Waterhouse, A.L. Determination of Total Phenolics. Curr. Protoc. Food Anal. Chem. 2002, 6, I1.1.1–I1.1.8. [Google Scholar]
- Remucal, C.K. The Role of Indirect Photochemical Degradation in the Environmental Fate of Pesticides: A Review. Environ. Sci. Process. Impacts 2014, 16, 628–653. [Google Scholar] [CrossRef]
- Ion, R.-M. Porphyrins and Phthalocyanines: Photosensitizers and Photocatalysts. In Phthalocyanines and Some Current Applications; InTech: Jakarta Selatan, Indonesia, 2017. [Google Scholar] [CrossRef]
- Darwent, J.R.; Douglas, P.; Harriman, A.; Porter, G.; Richoux, M.C. Metal Phthalocyanines and Porphyrins as Photosensitizers for Reduction of Water to Hydrogen. Coord. Chem. Rev. 1982, 44, 83–126. [Google Scholar] [CrossRef]
- Lindsey, J.S.; Taniguchi, M.; Du, H. PhotochemCAD. Available online: https://www.photochemcad.com/ (accessed on 11 April 2023).
- Kassab, K.; Al-Herrawy, A.Z. Photosensitized Inactivation of Cyst Forms of the Freshwater Amoeba Vahlkampfia Hartmanni by Aluminium (III) Phthalocyanine Tetrasulfonate. Environmentalist 2005, 25, 13–18. [Google Scholar] [CrossRef]
- Anderson, K.E.; Bloomer, J.R.; Bonkovsky, H.L.; Kushner, J.P.; Pierach, C.A.; Pimstone, N.R.; Desnick, R.J. Recommendations for the Diagnosis and Treatment of the Acute Porphyrias. Ann. Intern. Med. 2005, 142, 439. [Google Scholar] [CrossRef] [PubMed]
- Badminton, M.N.; Elder, G.H. Molecular Mechanisms of Dominant Expression in Porphyria. J. Inherit. Metab. Dis. 2005, 28, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.S. Rose Bengal-Sensitized Photooxidation of 2-Chlorophenol in Water Using Solar Simulated Light. Water Res. 2005, 39, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Wenk, J.; Graf, C.; Aeschbacher, M.; Sander, M.; Canonica, S. Effect of Solution PH on the Dual Role of Dissolved Organic Matter in Sensitized Pollutant Photooxidation. Environ. Sci. Technol. 2021, 55, 15110–15122. [Google Scholar] [CrossRef] [PubMed]
- Connor, M.O.; Helal, S.R.; Latch, D.E.; Arnold, W.A. Quantifying Photo-Production of Triplet Excited States and Singlet Oxygen from Ef Fl Uent Organic Matter. Water Res. 2019, 156, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Spagnul, C.; Turner, L.C.; Boyle, R.W. Immobilized Photosensitizers for Antimicrobial Applications. J. Photochem. Photobiol. B Biol. 2015, 150, 11–30. [Google Scholar] [CrossRef]
- Gerdes, R.; Wöhrle, D.; Spiller, W.; Schneider, G.; Schnurpfeil, G.; Schulz-Ekloff, G. Photo-Oxidation of Phenol and Monochlorophenols in Oxygen-Saturated Aqueous Solutions by Different Photosensitizers. J. Photochem. Photobiol. A Chem. 1997, 111, 65–74. [Google Scholar] [CrossRef]
- Nowakowska, M.; Kȩpczyński, M. Polymeric Photosensitizers 2. Photosensitized Oxidation of Phenol in Aqueous Solution. J. Photochem. Photobiol. A Chem. 1998, 116, 251–256. [Google Scholar] [CrossRef]
- Al-Nu’airat, J.; Dlugogorski, B.Z.; Gao, X.; Zeinali, N.; Skut, J.; Westmoreland, P.R.; Altarawneh, M. Reaction of Phenol with Singlet Oxygen. Phys. Chem. Chem. Phys. 2018, 21, 171–183. [Google Scholar] [CrossRef]
- Morris, D.R.; Levenson, C.W. Neurotoxicity of Zinc. Neurotox. Met. 2017, 18, 303–312. [Google Scholar] [CrossRef]
- Sousa, M.S.; Alves, J.L.; Freitas, J.C.S.; Miraldo, J.N.; Sampaio dos Aidos, F.D.S.; Santos, R.M.; Rosário, L.M.; Quinta-Ferreira, R.M.; Quinta-Ferreira, M.E.; Matias, C.M. A Model of Zinc Dynamics Evoked by Intense Stimulation at the Cleft of Hippocampal Mossy Fiber Synapses. Brain Res. 2023, 1807, 148322. [Google Scholar] [CrossRef] [PubMed]
- Corceiro, V.N.; Bastos, F.C.; Matias, C.M.; Dionísio, J.C.; Santos, R.M.; Rosario, L.M.; Quinta-Ferreira, R.M.; Quinta-Ferreira, M.E. Sulfamethoxazole Induces Zinc Changes at Hippocampal Mossy Fiber Synapses from Pregnant Rats. Gen. Physiol. Biophys. 2018, 37, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Zhang, Y.; Si, W.; Zhong, X.; Cai, Y.; Zou, J.; Shao, J.; Yang, Z.; Dong, X. Zinc(II) Metalated Porphyrins as Photothermogenic Photosensitizers for Cancer Photodynamic/Photothermal Synergistic Therapy. ACS Appl. Mater. Interfaces 2018, 10, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Zhang, H.; Yan, M.; Xue, J.; Chen, J. A Novel Zinc Phthalocyanine-Indometacin Photosensitizer with “Three-in-One” Cyclooxygenase-2-Driven Dual Targeting and Aggregation Inhibition for High-Efficient Anticancer Therapy. Dye. Pigment. 2022, 198, 109997. [Google Scholar] [CrossRef]
COD (mg O2/L) | BOD (mg O2/L) | TSS (mol/L) | TPh (mg/L) | pH |
---|---|---|---|---|
125 ± 65.0 | 17.8 ± 5.23 | 26.6 ± 5.35 | 21.9 ± 1.90 | 7.45 ± 0.45 |
Assay | PS | [PS] (mol/L) | Wastewater pH | Average Solar Radiation (W/m2) |
---|---|---|---|---|
A1 | ZnPcS4 | 5 × 10−6 | 7.00 | 623 |
A2 | AlPcS4 | 480 | ||
A3 | RB | 590 | ||
A4 | TPP | 444 |
Assay | PS | [PS] (mol/L) | Wastewater pH | Average Solar Radiation (W/m2) |
---|---|---|---|---|
A5 | ZnPcS4 | 5 × 10−6 | 7.00 | 623 |
A6 | 3.00 | 310 | ||
A7 | 11.0 | 436 |
Assay | PS | [PS] (mol/L) | Wastewater pH | Average Solar Radiation (W/m2) |
---|---|---|---|---|
A8 | ZnPcS4 | 5 × 10−6 | 7 | 623 |
A9 | 3 × 10−6 | 378 | ||
A10 | 10 × 10−6 | 436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.D.; Gonçalves, D.; Martins, R.C.; Gmurek, M.; Nogueira, A.; Castro-Silva, S.; Castro, L.M.; Quinta-Ferreira, R. Homogeneous Photosensitized Oxidation for Water Reuse in Cellars: A Study of Different Photosensitizers. Sustainability 2023, 15, 6861. https://doi.org/10.3390/su15086861
Santos AD, Gonçalves D, Martins RC, Gmurek M, Nogueira A, Castro-Silva S, Castro LM, Quinta-Ferreira R. Homogeneous Photosensitized Oxidation for Water Reuse in Cellars: A Study of Different Photosensitizers. Sustainability. 2023; 15(8):6861. https://doi.org/10.3390/su15086861
Chicago/Turabian StyleSantos, Andreia D., Diana Gonçalves, Rui C. Martins, Marta Gmurek, Anabela Nogueira, Sérgio Castro-Silva, Luis M. Castro, and Rosa Quinta-Ferreira. 2023. "Homogeneous Photosensitized Oxidation for Water Reuse in Cellars: A Study of Different Photosensitizers" Sustainability 15, no. 8: 6861. https://doi.org/10.3390/su15086861
APA StyleSantos, A. D., Gonçalves, D., Martins, R. C., Gmurek, M., Nogueira, A., Castro-Silva, S., Castro, L. M., & Quinta-Ferreira, R. (2023). Homogeneous Photosensitized Oxidation for Water Reuse in Cellars: A Study of Different Photosensitizers. Sustainability, 15(8), 6861. https://doi.org/10.3390/su15086861