Building Resilient Communities: The Environmental Observatory for Mining Projects and Climate Change Indicators
Abstract
:1. Introduction
2. Theoretical Approach
2.1. Definition of Resilience
2.2. Information, Participation, and Co-Creation
3. Materials and Methods
3.1. Research Methodology
3.2. Methodological Framework
- Stage 1: Study on the perception of access to public environmental management information
- Stage 2: Defining environmental management indicators for the mining industry
- S—Specific: The indicator is clearly defined so that there can be no other interpretation of the assessed aspect.
- M—Measurable: Data exist that enable the indicator to be quantitatively or qualitatively measured.
- A—Achievable: It is possible to achieve the generation of the indicator while considering the project’s resources and time constraints.
- R—Relevant: The indicator relates to a relevant theme that emerged from workshops and interviews conducted in the framework of the project.
- T—Time-bound: The indicator can be periodically updated to reflect possible changes in the underlying data.
- Stage 3: Technological development
- Database design and implementation;
- Scheduled data extraction and database storage;
- Data normalization;
- Design and development of the indicator calculation engine for the top ten ranked indicators that were feasible to calculate within the project’s development times.
- Stage 4: Development of a platform for visualizing and communicating indicators
4. Results
4.1. Identification of Indicators
4.2. Indicator Visualization and Communication Platform
5. Discussion and Conclusions
6. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calveras, A.; Ganuza, J.J. The role of public information in corporate social responsibility. J. Econ. Manag. Strategy 2016, 25, 990–1017. [Google Scholar] [CrossRef]
- Silva, A. Análisis De Las Excepciones Al Derecho De Acceso A La Información Ambiental En El Acuerdo De Escazú Y Sus Diferencias Con Chile. Justicia Ambient. Y Climática 2021, 13, 47–90. [Google Scholar]
- Bergamini, K.; Medina, J.I.; Rugiero, V.; Derecho Ambiental. Estudios Desde La Jurisprudencia Del Tribunal Ambiental De Santiago. V.II. 2022, pp. 17–45. Available online: https://tribunalambiental.cl/wp-content/uploads/2022/09/DERECHO-AMBIENTAL-Estudios-desde-la-jurisprudencia-V2.pdf (accessed on 25 November 2022).
- Banas, P.A. International ideal and local practice—Access to environmental information and local government in Poland. Environ. Policy Gov. 2010, 20, 44–56. [Google Scholar] [CrossRef]
- Creighton, J.L. The Public Participation Handbook: Making Better Decisions through Citizen Involvement; Jossey-Bass A Wiley and Sons Imprint: San Francisco, CA, USA, 2005; ISBN 0-7879-7307-6. [Google Scholar]
- Richardson, B.J.; Razzaque, J. Public Participation in Environmental Decision-Making. In Environmental Law for Sustainability; Richardson, B., Wood, S., Eds.; Hart Publishing: Oxford, UK, 2006; pp. 165–194. Available online: https://www.researchgate.net/profile/Jona-Razzaque/publication/228305864_Public_Participation_in_Environmental_Decision_Making/links/5771017808ae842225abfdb8/Public-Participation-in-Environmental-Decision-Making.pdf (accessed on 25 November 2022).
- Graveline, M.H.; Germain, D. Disaster Risk Resilience: Conceptual Evolution, Key Issues, and Opportunities. Int. J. Disaster Risk Sci. 2022, 13, 330–341. [Google Scholar] [CrossRef]
- Jeans, H.; Thomas, S.; Castillo, G. The Future is a Choice: The Oxfam Framework and Guidance for Resilient Development; Routeldge: Oxford, UK, 2016; Available online: https://oxfamilibrary.openrepository.com/bitstream/handle/10546/604990/ml-resilience-framework-guide-120416-en.pdf?sequence=1 (accessed on 30 November 2022).
- Norris, F.; Stevens, S.; Pfefferbaum, B.; Wyche, K.; Pfefferbaum, R. Community Resilience as a Metaphor, Theory, Set of Capacities, and Strategy for Disaster Readiness. Am. J. Community Psychol. 2008, 41, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Adger, N. Social and ecological resilience: Are they related? Prog. Hum. Geogr. 2000, 24, 347–364. Available online: https://journals.sagepub.com/doi/pdf/10.1191/030913200701540465?casa_token=c1hCMvN5WL0AAAAA:YwfclYPz5_L6HcBBLdLnu2vB9ndvZkiC7Pxc2S645FNZnQZfKD3bLVLZxrNB-c-n4LgFRYRWJ4aO (accessed on 25 November 2022). [CrossRef]
- Tompkins, E.; Adger, N. Building resilience to climate change through adaptive management of natural resources. In Working Paper 27; Tyndall Centre for Climate Change Research: Norwich, UK, 2003. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Special report on global warming of 1.5 °C. In Panel on Climate Change; Intergovernmental: Geneva, Switzerland, 2018. [Google Scholar]
- Abdul-Wahab, S.A. A Preliminary Investigation into the Environmental Awareness of the Omani Public and their Willingness to Protect the Environment. Am. J. Environ. Sci. 2008, 4, 39–49. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=af5bcd3ba70eb46e9cd5ee2882b3f40c393419aa (accessed on 22 November 2022).
- Wang, Y.; Sun, M.; Yang, X.; Yuan, X. Public awareness and willingness to pay for tackling smog pollution in China: A case study. J. Clean. Prod. 2016, 112, 1627–1634. [Google Scholar] [CrossRef]
- Gudynas, E. Diez tesis urgentes sobre el nuevo extractivismo. Extr. Política Y Soc. 2009, 187, 187–225. Available online: https://www.rosalux.org.ec/pdfs/extractivismo.pdf#page=187 (accessed on 25 November 2022).
- Alimonda, H. La Colonialidad De La Naturaleza, Una Aproximación A La Ecología Política. 2011. Available online: https://d1wqtxts1xzle7.cloudfront.net/46506089/alimonda-libre.pdf?1465990881=&response-content-disposition=inline%3B+filename%3DAlimonda.pdf&Expires=1681776354&Signature=RQiV7jJnBxPowdOaUExUAvem3hZzL~OvgSxReJJeeNlASvZ6JyRTL3vpo3E4sJN3AfjdUn3pQ20HU5-GAjTPPoBnKBu48tE~RtNAHJJzjriDj~cj3wGoauY-t0WlzWgT4KBQ6q-JSKby~~hjC6uN5zVuEyk1X8O422PxYDSVHDPVt0MpoHmBXFXP55VjyPgKQK7bQyBTB9EsguuhpRKYqykxJwsdUPk5lcP9jlQTg~PEiMOWnpuuzYjgx7eSS50waL2gl~6RBHjrQv~cjF36zzIpQGMif5w7nOR2B5itcA9G9EiV3oJKgARDebbgVufOBNxHhrftMDPx9GJaor-vFQ__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA#page=22 (accessed on 25 November 2022).
- Bebbington, A. Underground political ecologies: The second annual lecture of the Cultural and Political Ecology Specialty Group of the Association of American Geographers. Geoforum 2012, 43, 1152–1162. [Google Scholar] [CrossRef]
- Göbel, B.; Ulloa, A. (Eds.) Extractivismo Minero En Colombia Y América Latina; Grupo Cultura y Ambiente, Facultad de Ciencias Humanas, Universidad Nacional de Colombia: Bogota, Colombia; Ibero-Amerikanisches Institute: Berlin, Germany, 2014; pp. 15–36. ISBN 978-958-775-085-0. [Google Scholar]
- Dietz, K.; Engels, B. Contested Extractivism, Society and the State: An Introduction. In Contested Extractivism, Society and the State. Development, Justice and Citizenship; Engels, B., Dietz, K., Eds.; Palgrave Macmillan: London, UK, 2017. [Google Scholar] [CrossRef]
- Bustos, B.G.; Prieto, M.; Barton, J.R. (Eds.) Ecología Política En Chile: Naturaleza, Propiedad, Conocimiento Y Poder; Editorial Universitaria: Santiago, Chile, 2015; 268p, ISBN 9789561124653. [Google Scholar]
- Bergamini, K.; Dextre, R.-M. Exportación De La Contaminación En Chile: Análisis De Procedimientos Sancionatorios De La Superintendencia Del Medio Ambiente, 2013–2019. EURE 2022, 48, 1–27. [Google Scholar] [CrossRef]
- Valor Minero. Plataforma Diálogo Zona Central. Desarrollo Futuro De La Minería En La Zona Central: Diagnóstico y recomendaciones para la sostenibilidad de los territorios. Santiago, Chile. 2017. Available online: https://cambioglobal.uc.cl/images/proyectos/ValorMinero_Documento-Final-Preliminar-Zona-Central_oct-2017.pdf (accessed on 5 February 2023).
- Laboratorio de Innovación Pública (LIP). La Co-Producción Del Usuario En Los Servicios Públicos. Documento De Trabajo N°1. 2017. Available online: https://static1.squarespace.com/static/61b25f2b8484122ce915c901/t/622f6a4cbfd060137e7fc7b7/1647274572596/2017+LIP_La-co-produccion_del_usuario_en_los_servicios_publicos_DT1.pdf (accessed on 2 March 2023).
- Laboratorio de Innovación Pública (LIP). Gestionar La Incertidumbre. La innovación Como Herramienta Para Abordar Problemas Complejos. Documento de Trabajo N°2. 2020. Available online: https://static1.squarespace.com/static/61b25f2b8484122ce915c901/t/61df9b6bc399be1c8e96bb24/1642044269405/5.LIP2020_Gestio%CC%81n-de-la-Incertidumbre.pdf (accessed on 2 March 2023).
- Comisión Desafíos Del Futuro: Ciencia, Tecnología E Innovación Del Senado De La República 2018–2022. Available online: https://www.bcn.cl/portal/publicaciones/ediciones-bcn/detalle_libro?id=10221.1%2F85083 (accessed on 14 November 2022).
- Fyfe, W. The environmental crisis: Quantifying geosphere interactions. Science 1981, 213, 105. [Google Scholar] [CrossRef] [PubMed]
- Forstner, U. Introduction. In Environmental Impacts of Mining Activities: Emphasis on Mitigation and Remedial Measures; Azcue, J.M., Ed.; Springer: Berlin, Heidelberg, 1999; pp. 1–3. ISBN 978-3-642-64169-5. [Google Scholar]
- Edwards, R. Toxic sludge flows through the Andes. New Sci. 1996, 152, 4. [Google Scholar]
- Macklin, M.G.; Brewer, P.A.; Balteanu, D.; Coulthard, T.J.; Driga, B.; Howard, A.J.; Zaharia, S. The long term fate and environmental significance of contaminant metals released by the January and March 2000 mining tailings dam failures in Maramures County, upper Tisa Basin, Romania. Appl. Geochem. 2003, 18, 241–257. [Google Scholar] [CrossRef]
- Macklin, M.G.; Brewer, P.A.; Hudson-Edwards, K.A.; Bird, G.; Coulthard, T.J.; Dennis, I.A.; Lechler, P.J.; Miller, J.R.; Turner, J.N. A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 2006, 79, 423–447. [Google Scholar] [CrossRef]
- Hudson-Edwards, K.A.; Macklin, M.G.; Jamieson, H.E.; Brewer, P.; Coulthard, T.J.; Howard, A.J.; Turner, J. The impact of tailings dam spills and clean-up operations on sediment and water quality in river systems: The Rios Agrio-Guadiamar, Aznalcollar, Spain. Appl. Geochem. 2003, 18, 221–239. [Google Scholar] [CrossRef]
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwaeds, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef]
- Davies, M.; Martin, T.; Lighthall, P. Mine Tailings Dams: When Things Go Wrong; Tailings Dams; Association of State Dam Safety Officials, U.S. Committee on Large Dams: Las Vegas, NV, USA, 2000; pp. 261–273. [Google Scholar]
- Rico, M.; Benito, G.; Díez-Herrero, A. Floods from tailings dam failures. J. Hazard. Mater. 2008, 154, 79–87. [Google Scholar] [CrossRef]
- Villarroel, L.F.; Miller, J.R.; Lechler, P.J.; Germanoski, D. Lead, zinc, and antimony contamination of the Rio Chilco-Rio Tupiza drainage system, Southern Bolivia. Environ. Geol. 2006, 51, 283–299. [Google Scholar] [CrossRef]
- Dobry, R.; Alvarez, L. Seismic Failures of Chilean Tailings Dams. J. Soil Mechaics Found. 1967, 93, 237–260. [Google Scholar] [CrossRef]
- Castro, G.; Troncoso, J.H. Efecto del terremoto chileno de 1985 en tres tranques de relave. In Proceedings of the 5ª Jornada Chilena de Sismología e Ingeniería Sísmica, Santiago, Chile; 1989. [Google Scholar]
- Villavicencio, G.; Espinace, R.; Palma, J.; Fourie, A.; Valenzuela, P. Failures of sand tailings dams in a highly seismic country. Can. Geotech. J. 2013, 51, 449–464. [Google Scholar] [CrossRef]
- Komljenovic, D.; Stojanovic, L.; Malbasic, V.; Lukic, A. A resilience-based approach in managing the closure and abandonment of large mine tailing ponds. Int. J. Min. Sci. Technol. 2020, 30, 737–746. [Google Scholar] [CrossRef]
- Plan de Acción Nacional de Cambio Climático de Chile, 2017–2022. Gobierno de Chile. 2020. Available online: https://climatepromise.undp.org/sites/default/files/research_report_document/undp-lecb-cpp-chile-action-plan-for-climate-change-spanish-2017-0824.pdf (accessed on 2 March 2023).
- Cortés, S.; Molina-Lagos, L.; Burgos, S.; Adaros, H.; Ferreccio, C. Urinary metal levels in a Chilean Community 31 Years after the dumping of mine tailings. J. Health Pollut. 2016, 6, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Cortés, I.; Tchernitchin, A. Metales y metaloides en muestras de polvo depositados en diferentes sectores de Atacama, afectados por los aluviones de marzo 2015. In Aluviones y Resiliencia en Atacama, Construyendo Saberes Sobre Riesgos y Desastres; Easton, V., Pérez, S., y Aldunce, P., Eds.; Social-Ediciones: Santiago, Chile, 2018; pp. 181–200. ISBN 978-956-19-1115-4. [Google Scholar]
- Minería 2050, Política Nacional Minera. Available online: https://www.bcn.cl/leychile/navegar?i=1188415 (accessed on 21 November 2022).
- World Bank. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition. Climate-Smart Mining Facility. 2020. Available online: https://pubdocs.worldbank.org/en/961711588875536384/Minerals-for-Climate-Action-The-Mineral-Intensity-of-the-Clean-Energy-Transition.pdf (accessed on 3 February 2023).
- Viana-Ríos, R. Minería en América Latina y El Caribe, un enfoque socio-ambiental. Minería Socioambiental. Rev. U.D.C.A Act. Div. Cient. 2018, 21, 617–637. Available online: http://www.scielo.org.co/pdf/rudca/v21n2/0123-4226-rudca-21-02-00617.pdf (accessed on 25 November 2022). [CrossRef]
- Svampa, M.; Antonelli, M.A. Minería transnacional, narrativas del desarrollo y resistencias sociales. In Minería Transnacional, Narrativas Del Desarrollo Y Resistencias Sociales; Editorial Biblos: Buenos Aires, Argentina, 2019; pp. 1–319. ISBN 9789876919340. [Google Scholar]
- Sánchez-Vásquez, L.; Espinoza, M.G.; Eguiguren, M.B. Percepción de Conflictos socio-ambientales en zonas mineras: El caso del proyecto Mirador en Ecuador. Ambiente Soc. 2016, 19, 23–44. Available online: https://www.scielo.br/j/asoc/a/ZSzMHH9rCXtT3cK3vqwyvyr/?format=pdf&lang=es (accessed on 25 November 2022). [CrossRef]
- Velásquez, T.A. The science of corporate social responsibility (CSR): Contamination and conflict in a mining project in the southern Ecuadorian Andes. Resour. Policy 2012, 37, 233–240. [Google Scholar] [CrossRef]
- Twerefou, D.K. Mineral Exploitation, Environmental Sustainability and Sustainable Development in EAC, SADC and ECOWAS Regions; African Trade Policy Centre, Economic Commission for Africa: Addis Ababa, Ethiopia, 2009; p. 43. [Google Scholar]
- Day, T.; Mooldijk, S.; Hans, F.; Smit, S.; Posada, E.; Skribbe, R.; Woollands, S.; Fearnehough, H.; Kuramochi, T.; Warnecke, C.; et al. Corporate Climate Responsibility Monitor. Assessing the Transparency and Integrity of Companies Emission Reduction and Net Zero Targets. 2023. Available online: https://newclimate.org/sites/default/files/2023-02/NewClimate_CorporateClimateResponsibilityMonitor2023_Feb23.pdf (accessed on 22 December 2022).
- CEPAL. Serie Seminarios y Conferencias EN° 90 Minería Para Un Futuro Bajo En Carbono: Oportunidades Y Desafíos Para El Desarrollo Sostenible. 2019. Available online: https://repositorio.cepal.org/bitstream/handle/11362/44584/1/S1900199_es.pdf (accessed on 22 December 2022).
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the vulnerability of people and places: A case study of Georgetown Country, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Pelling, M. The vulnerability of cities. In Natural Disasters and Social Resilience; Earthscan Publications LTD: London, UK; Sterling, VA, USA, 2003; ISBN 1853838306. [Google Scholar]
- Holling, C. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Wisner, B. Risk and the neoliberal state: Why post-Mitch lessons didn’t reduce El Salvador’s earthquake losses. Disasters 2001, 25, 251–268. [Google Scholar] [CrossRef]
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk. In Natural Hazards, People’s Vulnerability and Disasters; Routledge: London, UK, 2005; p. 303. ISBN 0-203-97457-3. [Google Scholar]
- Werner, E.; Smith, R. Overcoming the Odds. High Risk Children from Birth to Adulthood; Cornell University Press: Ithaca, NY, USA, 1992; 304p, ISBN 0-8014-2584-0. [Google Scholar]
- McFarlane, A.C.; Norris, F. Definitions and concepts in disaster research. In Methods for Disaster Mental Health Research; Norris, F., Galea, S., Friedman, M., Watson, P., Eds.; Guilford Press: New York, NY, USA, 2006; pp. 3–19. [Google Scholar]
- United Nations. United Nations Common Guidance on Helping Build Resilient Societies; UN: New York, NY, USA, 2020. [Google Scholar]
- Sapirstein, G. Social resilience: The forgotten dimension of disaster risk reduction. Àmbá J. Disaster Risk Stud. 2006, 1, 54–63. Available online: https://jamba.org.za/index.php/jamba/article/view/8 (accessed on 28 December 2022). [CrossRef]
- Shahpari Sani, D.; Taghi Heidari, M.; Tahmasebi Mogaddam, H.; Nadizadeh Shorabeh, S.; Yousefvand, S.; Karmpour, A.; Jokar Arsanjani, J. An Assessment of Social Resilience Against Natural Hazards through Multi-Criteria Decision Making in Geographical Setting: A case study of Sarpol-e Zahab, Iran. Sustainability 2022, 14, 8304. [Google Scholar] [CrossRef]
- Butler, L.; Morland, L.; Leskin, G. Psychological resilience in the face of terrorism. In Psychology of Terrorism; Bongar, B., Brown, L., Beutler, L., Breckenridge, J., Zimbardo, P., Eds.; Oxford University Press: New York, NY, USA, 2007; pp. 400–417. [Google Scholar]
- Bruneau, M.; Chang, S.; Eguchi, R.; Lee, G.; O’Rourke, T.; Reinhorn, A. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Sonn, C.; Fisher, A. Sense of community: Community resilient responses to oppression and change. J. Community Psychol. 1998, 26, 457–472. [Google Scholar] [CrossRef]
- Ganor, M.; Ben-Lavy, Y.U.L.I. Community resilience: Lessons derived from Gilo under fire. J. Jew. Communal Serv. 2003, 79, 105–108. [Google Scholar]
- Pfefferbaum, B.; Reissman, D.; Pfefferbaum, R.; Klomp, R.; Gurwitch, R. Building resilience to mass trauma events. In Handbook on Injury and Violence Prevention Interventions; Doll, L., Bonzo, S., Mercy, J., Sleet, D., Eds.; Springer: Boston, MA, USA, 2008; pp. 347–358. [Google Scholar] [CrossRef]
- Galea, S.; Norris, F. Public mental health surveillance and monitoring. In Methods for Disaster Mental Health Research; Norris, F., Galea, S., Friedman, M., Watson, P., Eds.; Guilford Press: New York, NY, USA, 2016; pp. 177–193. [Google Scholar]
- Comfort, L. Risk, security, and disaster management. Annu. Rev. Political Sci. 2005, 8, 335–356. Available online: https://www.annualreviews.org/doi/pdf/10.1146/annurev.polisci.8.081404.075608 (accessed on 25 November 2022). [CrossRef]
- Herrera, E.A.; Moreno Ovando, P.; Escobedo Fernández, R. El Acceso A La Información Ambiental. Cuestiones Constitucionales. Rev. Mex. De Derecho Const. 2013, 29, 219–243. Available online: https://www.scielo.org.mx/pdf/cconst/n29/n29a7.pdf (accessed on 22 December 2022).
- Sand, P.H. The Right to Know: Environmental Information Disclosure by Government and Industry, in Conference Human Dimensions of Global Environmental Change: Knowledge for the Sustainability Transition, Berlin. 7 December 2002. Available online: https://d1wqtxts1xzle7.cloudfront.net/41629126/The_Right_to_Know_Environmental_Informat20160127-28594-1fiaia6-libre.pdf?1453898735=&response-content-disposition=inline%3B+filename%3DThe_Right_to_Know_Environmental_Informat.pdf&Expires=1681947470&Signature=PJmKngItuJR~zvgBeWAL~9jCynuOtwwONlasVPdSkAL0ANVnLhXfvSNSNSPGG84GttRNpqNtWN8NCK8uGwduuXNgVI7NidkLqSU9Ta4wjYpPvrXRZiAvcI9mzMNmYdkzHwr73EobzUUZBACNzbFedHQSkx3emF3CkaYUmzS1iAb-dtbzPvgzYl5ejf77xISMRWccMwgpMC2idDcakP-NEIe44QhagcfcdkEqZMw4y57NHIkesEZk2-SIpUrvTfxZ5ngWCyfaa9~DQ0cvuSx8WoMdxEUu9yHsN7lfUiQRtK0U00gbjs67xIvGtqtoL2aagLkDq0z7A3qJ5TxuG6~iBw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 18 December 2022).
- Mascarenhas, A.; Coelho, P.; Subtil, E.; Ramos, T. The Role of Common Local Indicators in Regional Sustainability Assessment. Ecol. Indic. 2010, 10, 646–656. Available online: https://www.sciencedirect.com/science/article/abs/pii/S1470160X09001897 (accessed on 28 November 2022). [CrossRef]
- Brown, T. Change By Design: How Design Thinking Transforms Organizations and Inspires Innovation. HarperCollins. MUT J. Bus. Adm. 2009, 9, 190–194. [Google Scholar]
- Salvatierra, R. Managing Strategic Participation Through Design Principles: A Model for Value Co-Creation in Service-Based Organizations. In Human Systems Engineering and Design III; Karwowski, W., Ahram, T., Etinger, D., Tankovic, N., Taiar, R., Eds.; Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1269, pp. 69–76. [Google Scholar] [CrossRef]
- Kuang, C.; Fabricant, R. User Friendly: How the Hidden Rules of Design Are Changing the Way We Live, Work, and Play; Random House: London, UK, 2019; ISBN 9780753551535. [Google Scholar]
- Seelos, C.; Mair, J. When innovation goes wrong. Organizational Development. Stanf. Soc. Innov. Rev. Fall. 2016, 2016, 27–33. [Google Scholar]
- Maton, K.; Salem, D.A. Organizational characteristics of empowering community settings: A multiple case study approach. Am. J. Común. Psychol. 1995, 23, 631–656. [Google Scholar] [CrossRef]
- Wandsmerman, A.; Florin, P. Citizen participation and community organizations. In Handbook of Community Psychology; Rappaport, J., Seidman, E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 247–272. [Google Scholar] [CrossRef]
- Mollenhauer, K.; Figueroa, B.; Tello, C.; Wuth, P. Uso del Prototipo en el diseño co-creativo de servicios públicos. Caso Fondart. In Intersecciones 2016. II Congreso Interdisciplinario de Investigación en Arquitectura, Diseño, Ciudad y Territorio; Encinas, F., Wechsler, A., Bustamante, W., y Díaz, F., Eds.; Ediciones ARQ: Santiago, Chile, 2017; pp. 205–223. ISBN 9789569571480. [Google Scholar]
- Katsonis, M. Designing effective public engagement: The case study of Future Melbourne 2026. Policy Des. Pract. 2019, 2, 215–228. [Google Scholar] [CrossRef]
- Blomkamp, E. The promise of co-design for Public Sector. Aust. J. Public Adm. 2018, 77, 729–743. [Google Scholar] [CrossRef]
- Hormazábal, M.; Mollenhauer, K.; Miettinen, S.; Sarantou, M. Building a Community Through Service Design and Responsiveness to Emotion. In Arts-Based Methods Decolonising Participatory Research; Seppala, T., Sarantou, M., Miettinen, S., Eds.; Rouledge: New York, NY, USA, 2021; pp. 123–145. ISBN 9781003053408. [Google Scholar]
- Stickdorn, M.; Schneider, J. This is Service Design Thonking: Basics, Tools, Cases; John Wiley and Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-118-15630-8. [Google Scholar]
- Soto, M. Emotional Skills for Service Designers in co-Creation Practices. Acta electronica Universitatis Lapponiensis 300; University of Lapland, Faculty of Art and Design: Rovaniemi, Finland, 2021; ISBN 978-952-337-242-9. Available online: https://lauda.ulapland.fi/bitstream/handle/10024/64495/Soto_Mariluz_Acta%20electronica%20Universitatis%20Lapponiensis300.pdf?sequence=1&isAllowed=y (accessed on 28 December 2022).
- Schomaker, M. Development of Environmental Indicators in UNEP. In Proceedings of the Land Quality Indicators and Their Use in Sustainable Agriculture and Rural Development, Rome, Italy; 1997; pp. 35–36. Available online: http://www.fao.org/3/w4745e/w4745e07.htm (accessed on 22 December 2022).
- Niemeijer, D.; de Groot, R.S. A Conceptual Framework for Selecting Environmental Indicator Sets. Ecol. Indic. 2008, 8, 14–25. [Google Scholar] [CrossRef]
- Mazzi, A.; Mason, C.; Mason, M.; Scipioni, A. Is it possible to compare environmental performance indicators reported by public administrations? Results from an Italian survey. Ecol. Indic. 2012, 23, 653–659. [Google Scholar] [CrossRef]
- McCarthy, N.; Winters, P.; Linares, A.M.; Essam, T. Indicators to Assess the Effectiveness of Climate change Projects. 2012. Available online: https://www.uncclearn.org/wp-content/uploads/library/idb32.pdf (accessed on 3 December 2022).
- Singh, R.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An Overview of Sustainability Assessment Methodologies. Ecol. Indic. 2012, 15, 281–299. [Google Scholar] [CrossRef]
- Schaefer, H.C.; Jetz, W.; Bohning-Gaese, K. Impact of climate change on migratory birds: Community reassembly versus. Glob. Ecol. Biogeogr. 2008, 17, 1–38. [Google Scholar] [CrossRef]
- Sukhdev, P.; Kumar, P. The Economics of Ecosystems and Biodiversity (TEEB); European Communities: Wesseling, Germany, 2008. [Google Scholar]
- Biblioteca del Congreso Nacional de Chile (BCN). Convenio 169, OIT. Biblioteca del Congreso Nacional de Chile. Portal de la Biblioteca del Congreso Nacional de Chile. Available online: https://www.bcn.cl/portal/leyfacil/recurso/convenio-169-oit (accessed on 2 December 2022).
- Godoy, C. Minería Del Litio En Chile Y Conflictividad Social: Una Mirada Sobre Los Aspectos Político-Comercial, Geopolítico Y Socioambiental Desde Una Perspectiva Interméstica. Estud. Av. 2022, 36, 97–116. Available online: https://www.revistas.usach.cl/ojs/index.php/ideas/article/view/5650/26004249 (accessed on 2 December 2022). [CrossRef]
- Hernández, C.; Sazo, D. Movilización y Resistencia Verde: Los Conflictos Socio-ambientales en Chile, 2000–2013. Rev. De Gestión Pública 2015, 4, 217–251. [Google Scholar] [CrossRef]
Indicator | Area | Description | Ranking | Link with Climate Change/Impact on Information Users |
---|---|---|---|---|
Waste emission into waterways and bodies | Water | Pollutant emission into waterways and bodies by mining sites or associated activities | 1 | Reduced flow volume in watercourses in northern and central Chile linked to increased mining industry emissions will generate changes in the water cycle and a loss of water quality due to a higher concentration of pollutants per m3, thus reducing the dilution capacity and altering the ecological status of watercourses. |
Mining projects’ air emissions | Air | Air pollutant emissions according to pollutant and mining type | 2 | Climate change will affect human health by increasing ground-level ozone and/or particulate matter air pollution in some areas. |
Climate change | Air | Direct emissions contributing to climate change according to mining or associated activity type | 3 | Decarbonizing net-zero emissions from the energy matrix and production processes is a central goal of Chile’s long-term 2050 Climate Strategy. |
Water use | Water | Volume of water use rights per site or activity | 4 | This is strongly related to the need to make efficient use of resources in contexts of water stress and climate change scenarios. Central-southern Chile has been strongly affected by a mega-drought since 2010. |
Fulfilment of environmental standards | Environmental management | Sanctioning processes according to mining type | 5 | This is particularly relevant in the context of the Framework Law on Climate Change, where greenhouse gas emission standards will be introduced, thus requiring enforcement and monitoring measures. |
Hazardous waste | Waste | Hazardous waste generation per mining site or activity | 6 | In the case of hazardous waste treatment, GHG emissions from energy consumption, biological treatments, incineration processes, and material recovery must be considered. |
Tailing area and location (total) | Soils | Area and location of active, non-active, or abandoned tailings according to mining type | 7 | In the face of extreme events such as heavy rains and floods, territories with mine tailings are identified as vulnerable. Heavy rains can cause overflows in tailings deposits, thus activating and transporting high concentrations of pollutants towards human settlements. As evidence of the above, this vulnerability was identified in the Regional Climate Change Action Plan for the Atacama Region, especially the risks associated with tailings in the city of Copiapó, where there are mining tailings located in areas that are at risk of heavy rain and flooding. |
Conflicts caused by mining projects | Environmental management | Number and type of formal appeals (administrative and judicial) according to mining site and type | 8 | Links with climate change are observed insofar as these conflicts are related to the scarcity of water resources and water use demand by the agricultural sector, as well as detrimental effects on the provision of drinking water to human settlements. |
Area affected by mining activities | Soil | Surface area affected | 9 | No relationships observed. |
Environmental management activities in the territory | Environmental management | Management activities for mining projects, such as citizen participation and monitoring | 10 | Climate change management activities will play an important role under the Climate Change Framework Law 21.455, which states: ”Projects or activities that are submitted to environmental impact assessment according to the law shall consider the climate change variable in the relevant environmental components, as provided for in the respective regulations”. Also: “the climate change variable shall be considered for the purposes of the provisions of Article 25 of Law No. 19,300. For the purposes of the provisions of this paragraph, the administrative review procedure may be initiated ex officio, at the request of the owner, or at the request of the Superintendence of the Environment”. |
Mining-related jobs in the commune | Industrial and mining activities | Employees according to process stage as reported in the SEA. | 11 | No relationships observed. |
Non-hazardous waste | Waste | Proportion of non-hazardous waste recovered in relation to the total. | 12 | The reuse, recycling, and recovery of non-hazardous waste are recognized strategies for reducing greenhouse gas emissions. |
Project-related jobs in the Environmental Assessment System (SEA) | Industrial and mining activities | Employees according to the process stage as reported in SEA | 13 | No relationships observed. |
Average project approval times | Environmental management | Environmental assessment process times according to the project and mining type | 14 | No relationships observed. |
Protected and conservation areas | Biodiversity | Surface area and location of conservation areas | 15 | Ecosystem services associated with protected or conservation areas may include those needed to reduce climate risks. |
Water resource demand | Water | Water consumption (m3) according to mining type, site, or activity. | 16 | Water security (possibility of access to water in adequate quantity and quality) is a central element of the Climate Change Framework Law. In view of the current mega-drought, greater efficiency is required in industrial water consumption in Chile. |
Workplace safety | Human environment | Number of accidents by type of work or activity | 17 | No relationships observed. |
Complexity of environmental management of projects | Environmental management | Number of Environmental Certifications (RCAs) per site and associated activity | 18 | No relationships observed. |
Mining patents | Environmental management | Number of patents according to the mining type and associated activity | 19 | No relationships observed. |
Operational mining projects in the local region | Industrial and mining activities | Mining sites and associated processes operating in the district according to processed ore | 20 | No relationships observed. |
Approved investments | Industrial and mining activities | Approved investments in the district according to the mining type and project | 21 | No relationships observed. |
Abandoned mining projects | Landscape | Abandoned mining projects | 22 | No relationships observed. |
Investment in assessment | Industrial and mining activities | Investment in SEA in the district according to the mining type and project | 23 | No relationships observed. |
Mine closure | Soil | Mines and associated activities with closure plans | 24 | In accordance with Law 20.551, which regulates the closure of mining sites and facilities, and because of the vulnerability of mine tailings due to alluvial and flooding risks, mine closure should include measures aimed at reducing climate change risks. |
Projects submitted to the Environmental Assessment System (SEA). | Environmental management | Projects with or without Environmental Certification (RCA) | 25 | No relationships observed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergamini, K.; Ángel, P.; Rugiero, V.; Medina, J.I.; Mollenhauer, K. Building Resilient Communities: The Environmental Observatory for Mining Projects and Climate Change Indicators. Sustainability 2023, 15, 6947. https://doi.org/10.3390/su15086947
Bergamini K, Ángel P, Rugiero V, Medina JI, Mollenhauer K. Building Resilient Communities: The Environmental Observatory for Mining Projects and Climate Change Indicators. Sustainability. 2023; 15(8):6947. https://doi.org/10.3390/su15086947
Chicago/Turabian StyleBergamini, Kay, Piroska Ángel, Vanessa Rugiero, José Ignacio Medina, and Katherine Mollenhauer. 2023. "Building Resilient Communities: The Environmental Observatory for Mining Projects and Climate Change Indicators" Sustainability 15, no. 8: 6947. https://doi.org/10.3390/su15086947
APA StyleBergamini, K., Ángel, P., Rugiero, V., Medina, J. I., & Mollenhauer, K. (2023). Building Resilient Communities: The Environmental Observatory for Mining Projects and Climate Change Indicators. Sustainability, 15(8), 6947. https://doi.org/10.3390/su15086947