Coping Capacity, Adaptive Capacity, and Transformative Capacity Preliminary Characterization in a “Multi-Hazard” Resilience Perspective: The Soccavo District Case Study (City of Naples, Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identifying Coping Capacity, Adaptive Capacity, and Transformative Capacity Parameters
2.2. Test Site Overview
2.3. Analyzing Main Key Aspects of Multi-Stakeholder and Civil Society Engagement
2.3.1. Community Building
- Identification of potentials and criticalities (as strengths and weaknesses) in Soccavo, that can be useful for planning and design purposes;
- Identification of shared solutions for sustainable and resilient urban regeneration/transformation in a multi-hazard territorial context;
- Collection of additional peculiar information concerning the direct experience of inhabitants with one or more risks;
- Identification of local actors and definition of possible collaborative networks for future interactions.
2.3.2. Multi-Risk Collaborative Mapping and Co-Design Processes
2.3.3. Multi-Risk Survey
- What degree of geo-environmental risk perception and awareness do the inhabitants of Soccavo have? What degree of specific risk perception (e.g., volcanic, seismic, climate change-related, etc.)?
- If they perceive one or more risks within the district, what frequency do they associate with each of them? Where do they eventually localize the related natural events?
- What knowledge do they have of geo-environmental risks, and where did they find the information about them?
- How would they deal with an emergency condition?
- What is the predisposition of inhabitants to make structural and energy retrofits to their houses? What improvements do they think are needed for the public space?
3. Preliminary Results
3.1. Multi-Risk Collaborative Mapping and Co-Design Processes
- Many areas were perceived as particularly hot in the summer season, such as primary (e.g., Raccordo di Soccavo and Viale Traiano) and secondary (e.g., Via Adriano) roads, and large public or private adjacent areas (e.g., within Rione Traiano), characterized by impermeable surfaces and poor vegetation;
- Areas nearby underpasses (e.g., Via Giustiniano and Via Cassiodoro close to Tangenziale A56, the Circumflegrea railway line, and Raccordo di Soccavo), primary (e.g., Raccordo di Soccavo, Viale Traiano, and Via Vicinale Cupa Cintia) and secondary (e.g., Via Adriano, Via Risorgimento, and Via Pigna) roads, and large public and private adjacent areas (e.g., within Rione Traiano) are usually affected by frequent pluvial floods due to extremes;
- The Camaldoli Park hill is often affected by wildfires (mostly arson) and, according to the inhabitants involved, by landslides in the North-western side of the district;
- Many abandoned and/or ruined buildings are recognized as potentially useful for public or private purposes within the district;
- Many public or private green areas, located in the Southern macro-sector of Soccavo, are underused or abandoned and represent one of the major criticalities perceived by the inhabitants involved;
- Primary roads (e.g., Viale Traiano) are perceived as physical barriers in the urban landscape, isolating some key sectors (e.g., Rione Traiano);
- Most of the primary roads (e.g., Via dell’Epomeo, Via Provinciale Montagna Spaccata, Via Vicinale Cupa Cintia, and Via Giustiniano) and secondary roads (e.g., Via Antonio Pio) are particularly busy during rush hour and heavy rainfalls;
- Many areas in the Southern macro-sector, along secondary or local roads, are poorly maintained and often affected by micro-criminality (e.g., uneven roads, rubbish along the roads).
- Social places for culture and leisure (indoors and outdoors), sports facilities, and covered equipped areas, which should be located close to or within the large pre-existent urban green areas of the Southern macro-sector, are needed;
- Public or private commercial areas (e.g., shops, farmer markets, supermarkets) and medical health centers, located along the primary (e.g., Via dell’Epomeo) and secondary (e.g., Via Risorgimento and Via Adriano) roads, should be improved;
- Urban green areas, mainly located in the Northern hilly side and Southern macro-sector (e.g., Rione Traiano) of the Soccavo district, should be increased or regenerated in terms of semi-permeable/permeable surfaces, green mobility infrastructures (pedestrian, cycle, and trekking paths), and services.
3.2. Multi-Risk Survey
4. Discussion
- The sample involved cannot be considered scientifically representative since it was made up of a small number of inhabitants (about 0.04% of the total population of Soccavo). The workshop did not imply any restrictions on age, gender, status, or number of participants in order to include the widest variety of people as possible. Indeed, a free event in which anyone could participate was organized. This approach to the selection of the sample may result in not reaching a sufficient number of participants and, consequently, a scarcity of collected data. Therefore, the proposed methodology requires that the entire workshop be carried out several times within the same areas;
- The workshop required from 3 to 5 h to be carried out, and this could represent a limit. Furthermore, the collaborative mapping and co-design processes usually need facilitators, whose numbers may vary in relation to the number of participants (i.e., 1 facilitator for every 6 people);
- Suitable graphic/cartographic material, which is useful to describe key concepts, goals, and activities of the workshop (e.g., geophysical and climate change-related hazards, multi-risk, DRR/CCA strategies and measures, and participatory urban regeneration), had to be produced before the activities, and this required time for processing data.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gencer, E.; Folorunsho, R.; Linkin, M.; Wang, X.; Natenzon, C.E.; Wajih, S.; Mani, N.; Esquivel, M.; Ali, I.S.; Tsuneki, H.; et al. Disasters and risk in cities. In Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network, 1st ed.; Rosenzweig, C., Solecki, W., Romero-Lankao, P., Mehrotra, S., Dhakal, S., Ali Ibrahim, S., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 61–98. [Google Scholar]
- Zuccaro, G.; Leone, F.M. Climate Service to Support Disaster Risk Reduction and Climate Change Adaptation in Urban Areas: The CLARITY Project and the Napoli Case Study. Front. Environ. Sci. 2021, 9, 693319. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 1–151. [Google Scholar]
- UNDRO. Natural Disaster and Vulnerability Analysis. Report of Expert Group Meeting, 9—12 July 1979, 1st ed.; UNDRO: Geneva, Switzerland, 1980; pp. 1–48.
- UN-DHA. Internationally Agreed Glossary of Basic Terms Related to Disaster Management, 1st ed.; DNA193136; UN-DHA: Geneva, Switzerland, 1993; pp. 1–81. [Google Scholar]
- Coburn, A.W.; Spence, R.J.S.; Pomonis, A. Vulnerability and Risk Assessment, 2nd ed.; UNDP Disaster Management Training Programme: Cambridge, UK, 1994; pp. 1–64. [Google Scholar]
- Sainz de Murieta, E.; Galarraga, I.; Olazabal, M. How well do climate adaptation policies align with risk-based approaches? An assessment framework for cities. Cities 2021, 109, 103018. [Google Scholar] [CrossRef]
- GIZ. The Vulnerability Sourcebook. Concepts and Guidelines for Standardised Vulnerability Assessment; Fritzsche, K., Schneiderbauer, S., Bubeck, P., Kienberger, S., Buth, M., Zebisch, M., Kahlenborn, W., Eds.; GIZ: Boon, Germany, 2014; pp. 1–177. [Google Scholar]
- IPCC. Climate Change 2023: AR6 Synthesis Report. Contribution of Working Groups I, II and III to the Seventh Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., Barrett, K., et al., Eds.; IPCC: Geneva, Switzerland, 2023; in press; Available online: https://report.ipcc.ch/ar6syr/pdf/IPCC_AR6_SYR_LongerReport.pdf (accessed on 27 May 2023).
- Schipper, E.L.F.; Revi, A.; Preston, B.L.; Carr, E.R.; Eriksen, S.H.; Fernandez-Carril, L.R.; Glavovic, B.C.; Hilmi, N.J.M.; Ley, D.; Mukerji, R.; et al. Climate Resilient Development Pathways. Supplementary material. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; IPCC: Geneva, Switzerland; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2655–2807. [Google Scholar]
- UNISDR. The Sendai Framework for Disaster Risk Reduction 2015–2030, 1st ed.; UNISDR: Geneva, Switzerland, 2015; pp. 1–32. [Google Scholar]
- New Urban Agenda. Available online: https://habitat3.org/the-new-urban-agenda/ (accessed on 3 July 2023).
- Leichenko, R. Climate change and urban resilience. Curr. Opin. Environ. Sustain. 2011, 3, 164–168. [Google Scholar] [CrossRef]
- Chelleri, L. From the ‘Resilient City’ to Urban Resilience. A review essay on understanding and integrating the resilience perspective for urban systems. Doc. Anàl. Geogr. 2012, 58, 287–306. [Google Scholar] [CrossRef]
- Chelleri, L.; Waters, J.J.; Olazabal, M.; Minucci, G. Resilience trade-offs: Addressing multiple scales and temporal aspects of urban resilience. Environ. Urban. 2015, 27, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Urban resilience for whom, what, when, where, and why? Urban Geogr. 2019, 40, 309–3029. [Google Scholar] [CrossRef]
- Sartorio, F.S.; Aelbrecht, P.; Kamalipour, H.; Frank, A. Towards an antifragile urban form: A research agenda for advancing resilience in the built environment. Urban Des. Int. 2021, 26, 135–158. [Google Scholar] [CrossRef]
- The Rockefeller Foundation; Arup. City Resilience Index: Understanding and Measuring City Resilience, 1st ed.; Arup: London, UK, 2016; pp. 1–44. [Google Scholar]
- Thayaparan, M.; Ingirige, M.J.B.; Pathirage, C.; Kulatunga, U.; Fernando, T.P. A resilience framework for critical infrastructure. In Proceedings of the 12th International Conference of the International Institute for Infrastructure Resilience and Reconstruction, Kandy, Sri Lanka, 5–7 August 2016. [Google Scholar]
- Figueiredo, L.; Honiden, T.; Schumann, A. Indicators for Resilient Cities, 1st ed.; OECD Regional Development Working Papers; OECD Publishing: Paris, France, 2018; pp. 1–66. [Google Scholar]
- Cardoso, M.A.; Brito, R.S.; Pereira, C.; Gonzalez, A.; Stevens, J.; Telhado, M.J. RAF Resilience Assessment Framework—A Tool to Support Cities’ Action Planning. Sustainability 2020, 12, 2349. [Google Scholar] [CrossRef] [Green Version]
- Leone, M.F.; Zuccaro, G. Climate-resilient urban transformation pathways as a multi-disciplinary challenge: The case of Naples. Techne J. Technol. Archit. Environ. 2021, 2, 159–164. [Google Scholar]
- Raven, J.; Stone, B.; Mills, G.; Towers, J.; Katzschner, L.; Leone, M.; Gaborit, P.; Georgescu, M.; Hariri, M. Urban planning and design. In Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network, 1st ed.; Rosenzweig, C., Solecki, W., Romero-Lankao, P., Mehrotra, S., Dhakal, S., Ali Ibrahim, S., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 139–172. [Google Scholar]
- Rosenzweig, C.; Solecki, W.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Ali Ibrahim, S. (Eds.) Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network, 1st ed.; Cambridge University Press: New York, NY, USA, 2018; pp. 1–811. [Google Scholar]
- Leone, M.F.; Raven, J. Multi-scale and Adaptive-mitigation Design Methods for Climate Resilient Cities. Techne J. Technol. Archit. Environ. 2018, 15, 299–310. [Google Scholar]
- Keck, M.; Sakdapolrak, P. What is social resilience? Lessons learned and ways forward. Erdkunde 2013, 67, 5–19. [Google Scholar] [CrossRef]
- Leone, M.F. Vulnerabilità ai rischi naturali. In Adattarsi al Clima che Cambia. Innovare la Conoscenza per il Progetto Ambientale. Studi e Progetti, 1st ed.; Losasso, M., Lucarelli, M.T., Rigillo, M., Valente, R., Eds.; Maggioli Editori: Santarcangelo di Romagna, Italy, 2020; pp. 77–82. [Google Scholar]
- Leone, M.F. Adattamento climatico e gestione del rischio. In Adattarsi al Clima che Cambia. Innovare la Conoscenza per il Progetto Ambientale. Studi e Progetti, 1st ed.; Losasso, M., Lucarelli, M.T., Rigillo, M., Valente, R., Eds.; Maggioli Editori: Santarcangelo di Romagna, Italy, 2020; pp. 83–88. [Google Scholar]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 1–3056. [Google Scholar]
- Barberi, F.; Davis, M.S.; Isaia, R.; Nave, R.; Ricci, T. Volcanic risk perception in the Vesuvius population. J. Volcanol. Geotherm. Res. 2007, 172, 244–258. [Google Scholar] [CrossRef]
- Ricci, T.; Barberi, F.; Davis, M.S.; Isaia, R.; Nave, R. Volcanic risk perception in the Campi Flegrei area. J. Volcanol. Geotherm. Res. 2013, 254, 118–130. [Google Scholar] [CrossRef]
- Zuccaro, G.; Leone, M.F. The mitigation of volcanic risk as opportunity for an ecological and resilient city. Techne J. Technol. Archit. Environ. 2014, 7, 101–107. [Google Scholar]
- Menna, C.; Felicioni, L.; Negro, P.; Lupíšek, A.; Romano, E.; Prota, A.; Hájek, P. Review of methods for the combined assessment of seismic resilience and energy efficiency towards sustainable retrofitting of existing European buildings. Sustain. Cities Soc. 2022, 77, 103556. [Google Scholar] [CrossRef]
- Zuccaro, G.; Leone, M.F.; De Gregorio, D. All-hazards impact scenario assessment methodology as decision support tool in the field of resilience-based planning and emergency management. In RESILIENCE—The 2nd International Workshop on Modelling of Physical, Economic and Social Systems for Resilience Assessment, 1st ed.; ISPRA, Ed.; Publications Office of the European Union: Luxembourg, 2018; Volume 2, pp. 92–101. [Google Scholar]
- Zuccaro, G.; Leone, M.F. Building Resilient City: A Simulation-Based Scenario Assessment Methodology for the Integration of DRR and CCA in a Multi-Scale Design Perspective. Procedia Eng. 2018, 212, 871–878. [Google Scholar] [CrossRef]
- Magnaghi, A. Una metodologia analitica per la progettazione identitaria del territorio. In Rappresentare i Luoghi. Metodi e Tecniche, 1st ed.; Magnaghi, A., Ed.; Alinea Editrice: Florence, Italy, 2001; pp. 1–40. [Google Scholar]
- Magnaghi, A. Il Progetto Locale, 7th ed.; Bollati Boringhieri: Turin, Italy, 2010; pp. 1–313. [Google Scholar]
- Battaglini, A. Resilienza come esito stabile o processo di territorilizzazione? Uno studio di caso in Serbia. In Sociologia Urbana e Rurale. Disastri Socio-Naturali, Resilienza e Vulnerabilità: La Prospettiva Territorialista nel Dibattito Italiano Attuale, 1st ed.; Mela, A., Mugnano, S., Olori, D., Eds.; Franco Angeli: Milan, Italy, 2017; Volume 111, pp. 135–151. [Google Scholar]
- Mela, A.; Mugnano, S.; Olori, D. “Vulnerable Italy”: Between academic debate and a moltitude of social and political actors. In Disastri Socio-Naturali, Resilienza e Vulnerabilità: La Prospettiva Territorialista nel Dibattito Italiano Attuale. Sociologia Urbana e Rurale, 1st ed.; Mela, A., Mugnano, S., Olori, D., Eds.; Franco Angeli: Milan, Italy, 2016; Volume 111, pp. 7–21. [Google Scholar]
- Birkmann, J.; Tetzlaff, G.; Zentel, K. Addressing the Challenge: Recommendations and Quality Criteria for Linking Disaster Risk Reduction and Adaptation to Climate Change. In DKKV Publication Series, 1st ed.; Birkmann, J., Tetzlaff, G., Zentel, K., Eds.; German Committee for Disaster Reduction: Bonn, Germany, 2009; Volume 39, pp. 1–56. [Google Scholar]
- Berman, R.; Quinn, C.; Paavola, J. The role of institution in the transformation of cooping capacity to sustainable adaptive capacity. Environ. Dev. 2012, 2, 86–100. [Google Scholar] [CrossRef]
- Wolfram, M. Conceptualizing urban transformative capacity: A framework for research and policy. Cities 2016, 51, 121–130. [Google Scholar] [CrossRef]
- Lemos, M.C.; Tompkins, E.L. Creating Less Disastrous Disasters. IDS Bull. 2008, 39, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Dynes, R.R. Social capital: Dealing with Community Emergencies. Homel. Secur. Aff. 2006, 2, 5. [Google Scholar]
- Olazabal, M.; Ruiz De Gopegui, M. Adaption planning in large cities is unlikely to be effective. Landsc. Urban Plan. 2021, 206, 103974. [Google Scholar] [CrossRef]
- Olazabal, M.; Galarraga, I.; Ford, J.; Sainz De Murieta, E.; Lesnikowski, A. Are local climate adaptation policies credible? A conceptual and operational assessment framework. Int. J. Urban Sustain. Dev. 2019, 11, 277–296. [Google Scholar] [CrossRef] [Green Version]
- Barnes, M.L.; Wang, P.; Cinner, J.; Graham, N.A.J.; Guerrero, A.M.; Jasny, L.; Lau, J.; Sutcliffe, S.R.; Zamborain-Mason, J. Social determinants of adaptive and transformative responses to climate change. Nat. Clim. Chang. 2020, 10, 823–828. [Google Scholar] [CrossRef]
- Decreto Legge 4 Giugno 2013, n.63—Disposizioni Urgenti per il Recepimento della Direttiva 2010/31/UE del Parlamento Europeo e del Consiglio del 19 Maggio 2010, Sulla Prestazione Energetica Nell’edilizia per la Definizione delle Procedure D’infrazione Avviate dalla Commissione Europea, Nonché altre Disposizioni in Materia di Coesione Sociale. Available online: https://www.edizionieuropee.it/LAW/HTML/200/zn40_05_150.html (accessed on 11 June 2023).
- ecreto Legge 19 Maggio 2020, n. 34—Misure Urgenti in Materia di Salute, Sostegno al Lavoro e All’economia, Nonché di Politiche Sociali Connesse All’emergenza Epidemiologica da COVID-19. Available online: https://www.gazzettaufficiale.it/eli/id/2020/05/19/20G00052/sg (accessed on 11 June 2023).
- ISTAT (2011)—15° Censimento della Popolazione e delle Abitazioni 2011. Available online: https://www.istat.it/it/censimenti-permanenti/censimenti-precedenti/popolazione-e-abitazioni/popolazione-2011 (accessed on 27 May 2023).
- Comune di Napoli—Dipartimento Edilizia Interventi Speciali. Servizio Edilizia Pubblica. In Programma di Recupero Urbano Ambito di Soccavo—Rione Traiano, Progetto Preliminare: Caratteri Storici e Morfologici—A.5. 1999, pp. 185–193. Available online: https://www.comune.napoli.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/16204/UT/systemPrint (accessed on 11 June 2023).
- Sit Regione Campania—Cavità di Pianura. Topografia. Available online: http://sit.regione.campania.it/cavitapianura/topografia.html (accessed on 25 January 2023).
- Silva, G.; Tozzi, L. Napoli. Contro il Panorama, 1st ed.; Cronache Nottetempo: Naples, Italy, 2022; pp. 1–139. [Google Scholar]
- Dipartimento della Protezione Civile—Piano Nazionale di Protezione Civile Campi Flegrei. Available online: https://mappe.protezionecivile.gov.it/it/mappe-rischi/piano-nazionale-campi-flegrei (accessed on 30 January 2023).
- Rosi, M.; Acocella, V.; Cioni, R.; Bianco, F.; Costa, A.; De Martino, P.; Giordano, G.; Inguaggiato, S. Defining the pre-eruptive states of active volcanoes for improving eruption forecasting. Front. Earth Sci. 2022, 10, 795700. [Google Scholar] [CrossRef]
- Neri, A.; Bevilacqua, A.; Esposti Ongaro, T.; Isaia, R.; Aspinall, W.P.; Bisson, M.; Flandoli, F.; Baxter, P.J.; Bertagnini, A.; Iannuzzi, E.; et al. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps. J. Geophys. Res. Solid Earth 2015, 120, 2330–2349. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, A.; Neri, A.; Bisson, M.; Esposti Ongaro, T.; Flandoli, F.; Isaia, R.; Novellino, A.; D’Assisi Tramparulo, F.; Vitale, S. The effects of vent location, event scale, and time forecasts on pyroclastic density current hazard maps at Campi Flegrei caldera (Italy). Front. Earth Sci. 2017, 5, 72. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Macedonio, G.; Neri, A.; Orsi, G.; Petrosino, P. Volcanic Hazard Assessment at the Campi Flegrei Caldera, Italy. In Campi Flegrei: A Restless Caldera in a Densely Populated Area, 1st ed.; Orsi, G., D’Antonio, M., Civetta, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; Volume 12, pp. 311–355. [Google Scholar]
- D’Auria, L.; Pepe, S.; Castaldo, R.; Giudicepietro, F.; Macedonio, G.; Ricciolino, P.; Tizzani, P.; Casu, F.; Lanari, R.; Manzo, M.; et al. Magma injection beneath the urban area of Naples: A new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Sci. Rep. 2015, 5, 13100. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, A.; Neri, A.; De Martino, P.; Isaia, R.; Novellino, A.; Tramparulo, F.D.A.; Vitale, S. Radial interpolation of GPS and leveling data of ground deformation in a resurgent caldera: Application to Campi Flegrei (Italy). J. Geod. 2020, 94, 24. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, A.; De Martino, P.; Giudicepietro, F.; Ricciolino, P.; Patra, A.; Pitman, E.B.; Bursik, M.; Voight, B.; Flandoli, F.; Macedonio, G.; et al. Data analysis of the unsteadily accelerating GPS and seismic records at Campi Flegrei caldera from 2000 to 2020. Sci. Rep. 2022, 12, 19175. [Google Scholar] [CrossRef]
- Tramelli, A.; Giudicepietro, F.; Ricciolino, P.; Chiodini, G. The seismicity of Campi Flegrei in the contest of an evolving long-term unrest. Sci. Rep. 2022, 12, 2900. [Google Scholar] [CrossRef]
- Comune di Napoli. Variante al Prg—Relazione, Capitolo 1—Lo Stato dei Luoghi. 2004, pp. 1–104. Available online: https://www.comune.napoli.it/flex/cm/pages/ServeAttachment.php/L/IT/D/D.d70d2d1b50c8aa7af536/P/BLOB%3AID%3D1025/E/pdf?mode=inline (accessed on 11 June 2023).
- Comune di Napoli. Variante al Prg—Relazione Geologica. 2004, pp. 1–106. Available online: https://www.comune.napoli.it/flex/cm/pages/ServeAttachment.php/L/IT/D/D.cde96b5450479ce784f4/P/BLOB%3AID%3D1023/E/pdf?mode=inline (accessed on 3 July 2023).
- Calcaterra, D.; Coppin, D.; De Vita, S.; Di Vito, M.A.; Orsi, G.; Palma, B.; Parise, M. Slope processes in weathered volcaniclastic deposits within the city of Naples: The Camaldoli Hill case. Geomorphology 2007, 87, 132–157. [Google Scholar] [CrossRef]
- Esposito, G.; Matano, F. A geodatabase of historical landslide events occurring in the highly urbanized volcanic area of Campi Flegrei, Italy. Earth Syst. Sci. Data 2023, 15, 1133–1149. [Google Scholar] [CrossRef]
- Clarity. Available online: https://clarity-h2020.eu/ (accessed on 6 March 2023).
- Comune di Napoli, Assessorato ai Beni Comuni e All’Urbanistica—Area Urbanistica. In NAPOLI 2019-2030. Città, Ambiente, Diritti e Beni Comuni. Preliminare del Piano Urbanistico Comunale. Documento Strategico. 2020, pp. 1–127. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwipsZL3uvv_AhWuVPUHHQifCJEQFnoECBgQAQ&url=https%3A%2F%2Fwww.comune.napoli.it%2Fflex%2Fcm%2Fpages%2FServeAttachment.php%2FL%2FIT%2FD%2F1%25252Fe%25252F9%25252FD.194f8300cdfa79d96fa4%2FP%2FBLOB%253AID%253D37912%2FE%2Fpdf&usg=AOvVaw0yrnAs1qXVlFyFUnucrHPh&opi=89978449 (accessed on 11 June 2023).
- Programma di Recupero Urbano di Ponticelli. Available online: https://www.ponticelli2030.it/programma-di-recupero-urbano/ (accessed on 6 March 2023).
- Comune di Napoli—Servizio Controlli Ambientali e Attuazione PAES. In PAESC—Piano d’Azione per l’Energia Sostenibile ed il Clima. Metodologia di Valutazione dei Rischi e delle Vulnerabilità, Impatti Attesi e Scenari di Cambiamento Climatico per il Comune di Napoli. 2020, pp. 1–119. Available online: https://www.comune.napoli.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/35107 (accessed on 11 June 2023).
- Rambaldi, G.; Kyem, P.A.K.; McCall, M.; Weiner, D. Participatory spatial information management and communication in developing countries. Electron. J. Inf. Syst. Dev. Ctries. 2006, 25, 1–9. [Google Scholar] [CrossRef]
- Palestino, M.F. The collaborative mapping of eastern Naples: Between climate change and community resilience. In Environmental Design for Climate Change Adaptation. Innovative Models for the Production of Knowledge, 1st ed.; D’Ambrosio, V., Leone, M.F., Eds.; CLEAN Edizioni: Naples, Italy, 2017; pp. 158–168. [Google Scholar]
- Visconti, C. Misure di adattamento community-based per il Water Sensitive Urban Design in contesti di vulnerabilità socioambientale. Techne J. Technol. Archit. Environ. 2017, 14, 352–361. [Google Scholar]
- Visconti, C. Co-production of knowledge for climate-resilient design and planning in Naples, Italy. Habitat Int. 2023, 135, 102748. [Google Scholar] [CrossRef]
- Corbetta, P. Metodologia e Tecniche della Ricerca Sociale, 2nd ed.; Il Mulino: Bologna, Italy, 2014; pp. 1–643. [Google Scholar]
- Na.Gio.Ja. Available online: https://www.nagiojacostruiamoopportunita.it/ (accessed on 22 November 2022).
- UCCRN Urban Climate Research Network. European Hub. Available online: https://www.uccrn-europe.org/ (accessed on 22 November 2022).
- CPRS Comitato Popolare per la Rinascita di Soccavo. Available online: https://www.facebook.com/comitatopopolarerinascitadisoccavo/ (accessed on 22 November 2022).
- Zuccaro, G.; De Gregorio, D. Time and space dependency in impact damage evaluation of a sub-Plinian eruption at Mount Vesuvius. Nat. Hazards 2013, 68, 1399–1423. [Google Scholar] [CrossRef]
- Mavrouli, O.; Fotopoulou, S.; Pitilakis, K.; Zuccaro, G.; Corominas, J.; Santo, A.; Cacace, F.; De Gregorio, D.; Di Crescenzo, G.; Foerster, E.; et al. Vulnerability assessment for reinforced concrete buildings exposed to landslides. Bull. Eng. Geol. Environ. 2014, 73, 265–289. [Google Scholar] [CrossRef]
- Masi, E.B.; Segoni, S.; Tofani, V. Root reinforcement in Slope Stability Models: A Review. Geosciences 2021, 11, 212. [Google Scholar] [CrossRef]
- Marzocchi, W.; Garcia-Arstizabal, A.; Gasparini, P.; Mastellone, M.L.; Di Ruocco, A. Basic principles of multi-risk assessment: A case study in Italy. Nat. Hazards 2012, 62, 551–573. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef] [Green Version]
- Pescaroli, G.; Alexander, D. Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework. Risk Anal. 2018, 38, 2245–2257. [Google Scholar] [CrossRef] [PubMed]
Parameter | Resilience Determinants | ||
---|---|---|---|
Coping Capacity | Adaptive Capacity | ||
Assets (financial capital) | Per capita GDP | x | x |
Access to credit (e.g., banks, other institutions, etc.) | x | ||
Tax relief (e.g., bonus) | x | ||
Assigned budget for: Urban Regeneration Plans, Ecosystem Restoration and Conservation Plans and Programs, DRR/CCA measures | x | ||
Assigned budget for emergency measures | x | ||
Governance | Sectorial legislation/regulation | x | |
Urban Regeneration Plans | x | ||
Ecosystem Restoration and Conservation Plans and Programs | x | ||
Civil Protection Plan | x | ||
Multi-stakeholder collaborative agreements | x | x | |
Technologies and Instruments | Monitoring networks and Early warning systems | x | x |
Dissemination programs | x |
Parameter | Resilience Determinants | |
---|---|---|
Transformative Capacity | ||
Governance | Multi-stakeholder and civil society engagement (e.g., structured participatory process) | x |
(a) Urban space perception and Bottom-up urban regeneration/transformation
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turchi, A.; Lumino, R.; Gambardella, D.; Leone, M.F. Coping Capacity, Adaptive Capacity, and Transformative Capacity Preliminary Characterization in a “Multi-Hazard” Resilience Perspective: The Soccavo District Case Study (City of Naples, Italy). Sustainability 2023, 15, 10877. https://doi.org/10.3390/su151410877
Turchi A, Lumino R, Gambardella D, Leone MF. Coping Capacity, Adaptive Capacity, and Transformative Capacity Preliminary Characterization in a “Multi-Hazard” Resilience Perspective: The Soccavo District Case Study (City of Naples, Italy). Sustainability. 2023; 15(14):10877. https://doi.org/10.3390/su151410877
Chicago/Turabian StyleTurchi, Agnese, Rosaria Lumino, Dora Gambardella, and Mattia Federico Leone. 2023. "Coping Capacity, Adaptive Capacity, and Transformative Capacity Preliminary Characterization in a “Multi-Hazard” Resilience Perspective: The Soccavo District Case Study (City of Naples, Italy)" Sustainability 15, no. 14: 10877. https://doi.org/10.3390/su151410877
APA StyleTurchi, A., Lumino, R., Gambardella, D., & Leone, M. F. (2023). Coping Capacity, Adaptive Capacity, and Transformative Capacity Preliminary Characterization in a “Multi-Hazard” Resilience Perspective: The Soccavo District Case Study (City of Naples, Italy). Sustainability, 15(14), 10877. https://doi.org/10.3390/su151410877