Changes in Physical and Water Retention Properties of Technosols by Agricultural Reclamation with Wheat–Rapeseed Rotation in a Post-Mining Area of Central Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Experiment
2.3. Soil Sampling
2.4. Soil Analyses
2.5. Statistical Analysis
3. Results
3.1. Soil Texture, SOC and CaCO3
3.2. Soils’ Density and Porosity
3.3. Technosols’ Water Retention and Physical State (S Indicator)
3.4. Multivariate Approach
4. Discussion
4.1. Development of Pedogenic Processes
4.2. Changes in Technosols’ Properties
4.3. Technosols’ Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Montanarella, L.; Pennock, D.J.; McKenzie, N.; Badraoui, M.; Chude, V.; Baptista, I.; Mamo, T.; Yemefack, M.; Singh Aulakh, M.; Yagi, K.; et al. World’s soils are under threat. Soil 2016, 2, 79–82. [Google Scholar] [CrossRef]
- Widera, M.; Kasztelewicz, Z.; Ptak, M. Lignite mining and electricity generation in Poland: The current state and future prospects. Energy Pol. 2016, 92, 151–157. [Google Scholar] [CrossRef]
- Martins, W.B.R.; Lima, M.D.R.; Junior, U.D.O.B.; Amorim, L.S.V.B.; de Assis Oliveira, F.; Schwartz, G. Ecological methods and indicators for recovering and monitoring ecosystems after mining: A global literature review. Ecol. Eng. 2020, 145, 105707. [Google Scholar] [CrossRef]
- Wyrwa, A.; Suwała, W.; Pluta, M.; Raczyński, M.; Zyśk, J.; Tokarski, S. A new approach for coupling the short-and long-term planning models to design a pathway to carbon neutrality in a coal-based power system. Energy 2022, 239, 122438. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Jing, M.; Wang, S.; Huang, Y.; Geng, B.; Cao, Y. Changes in reconstructed soil physicochemical properties in an opencast mine dump in the loess plateau area of China. Int. J. Environ. Res. Public Health 2022, 19, 706. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wang, J.; Bai, Z.; Reading, L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth Sci. Rev. 2019, 191, 12–25. [Google Scholar] [CrossRef]
- USS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Placek-Lapaj, A.; Grobelak, A.; Fijalkowski, K.; Singh, B.R.; Almas, A.R.; Kacprzak, M. Post-mining soil as carbon storehouse under Polish conditions. J. Environ. Manag. 2019, 238, 307–314. [Google Scholar] [CrossRef]
- Gonçalves, J.O.; Fruto, C.M.; Barranco, M.J.; Oliveira, M.L.S.; Ramos, C.G. Recovery of degraded areas through Technosols and mineral nanoparticles: A review. Sustainability 2022, 14, 993. [Google Scholar] [CrossRef]
- Kumari, S.; Maiti, S.K. Nitrogen recovery in reclaimed mine soil under different amendment practices in tandem with legume and non-legume revegetation: A review. Soil Use Manag. 2022, 38, 1113–1145. [Google Scholar] [CrossRef]
- Čížková, B.; Woś, B.; Pietrzykowski, M.; Frouz, J. Development of soil chemical and microbial properties in reclaimed and unreclaimed grasslands in heaps after opencast lignite mining. J. Ecol. Eng. 2018, 123, 103–111. [Google Scholar] [CrossRef]
- Otremba, K.; Kozłowski, M.; Tatuśko-Krygier, N.; Pająk, M.; Kołodziej, B.; Bryk, M. Impact of alfalfa and NPK fertilization in agricultural reclamation on the transformation of Technosols in an area following lignite mining. Land Degrad. Dev. 2021, 32, 1179–1191. [Google Scholar] [CrossRef]
- Frouz, J. Soil recovery and reclamation of mined lands. In Soils and Landscape Restoration; Stanturf, J.A., Callaham, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 161–191. [Google Scholar] [CrossRef]
- Kozłowski, M.; Otremba, K.; Tatuśko-Krygier, N.; Komisarek, J.; Wiatrowska, K. The effect of an extended agricultural reclamation on changes in physical properties of Technosols in post-lignite-mining areas: A case study from central Europe. Geoderma 2022, 410, 115664. [Google Scholar] [CrossRef]
- Pihlap, E.; Vuko, M.; Lucas, M.; Steffens, M.; Schloter, M.; Veettrlein, D.; Endenich, M.; Kögel-Knabner, I. Initial soil formation in an agriculturally reclaimed open-cast mining area—The role of management and loess parent material. Soil Tillage Res. 2019, 191, 224–237. [Google Scholar] [CrossRef]
- Leguédois, S.; Séré, G.; Auclerc, A.; Cortet, J.; Huot, H.; Ouvrard, S.; Watteau, F.; Schwartz, C.; Morel, J.L. Modelling pedogenesis of Technosols. Geoderma 2016, 262, 199–212. [Google Scholar] [CrossRef]
- Spasić, M.; Boruvka, L.; Vacek, O.; Drábek, O.; Tejnecký, V. Pedogenesis problems on reclaimed coal mining sites. Soil Water Res. 2021, 16, 137–150. [Google Scholar] [CrossRef]
- Bartuska, M.; Frouz, J. Carbon accumulation and changes in soil chemistry in reclaimed open? Cast coal mining heaps near Sokolov using repeated measurement of chronosequence sites. Eur. J. Soil Sci. 2015, 66, 104–111. [Google Scholar] [CrossRef]
- Liu, X.; Bai, Z.; Zhou, W.; Cao, Y.; Zhang, G. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China. Ecol. Eng. 2017, 98, 228–239. [Google Scholar] [CrossRef]
- Montanarella, L.; Panagos, P. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 2021, 100, 104950. [Google Scholar] [CrossRef]
- Zhang, P.; Cui, Y.; Zhang, Y.; Jia, J.; Wang, X.; Zhang, X. Changes in soil physical and chemical properties following surface mining and reclamation. Soil Sci. Soc. Am. J. 2016, 80, 1476–1485. [Google Scholar] [CrossRef]
- Dexter, A.R. Soil physical quality. Part I: Theory, effects of soil texture, density and organic matter and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. A laboratory study on amending mine soil quality. Water Air Soil Pollut. 2013, 224, 1679. [Google Scholar] [CrossRef]
- Bender, J. Reclamation of post-mining areas in Poland. Adv. Agric. Sci. Prob. ISS 1995, 418, 75–86. (In Polish) [Google Scholar]
- ISO 11277; Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. ISO: Geneva, Switzerland, 2009.
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph No. 9; ASA, SSSA: Madison, WI, USA, 1982; pp. 539–580. [Google Scholar] [CrossRef]
- Pieri, C.J.M.G. Establishing the Organic Matter Balance in Cultivated Soils. In Fertility of Soils; Pieri, C.J.M.G., Ed.; Springer: Berlin, Germany, 1992; Volume 10, pp. 244–261. [Google Scholar] [CrossRef]
- ISO 11272; Soil Quality—Determination of Dry Bulk Density. ISO: Geneva, Switzerland, 2017.
- ISO 11508; Soil Quality—Determination of Particle Density. ISO: Geneva, Switzerland, 2017.
- Campbell, G.S.; Gee, G.W. Water Potential: Miscellaneous Methods. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; Volume 6, pp. 619–633. [Google Scholar] [CrossRef]
- Klute, A. Water Retention: Laboratory Methods. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; Volume 6, pp. 635–662. [Google Scholar] [CrossRef]
- van Genuchten, M.T.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils (EPA/600/2-91/065); US Environmental Protection Agency: Ada, OK, USA, 1991. [Google Scholar]
- Reynolds, W.D.; Drury, C.F.; Yang, X.M.; Tan, C.S. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 2008, 146, 466–474. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Dexter, A.R.; Czyż, E.A. Applications of S-theory in the study of soil physical degradation and its consequences. Land Degrad. Dev. 2007, 18, 369–381. [Google Scholar] [CrossRef]
- FAO. Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006. [Google Scholar]
- Scalenghe, R.; Ferraris, S. The first forty years of a Technosol. Pedosphere 2009, 19, 40–52. [Google Scholar] [CrossRef]
- Séré, G.; Schwartz, C.; Ouvrard, S.; Renat, J.C.; Watteau, F.; Villemin, G.; Morel, J.L. Early pedogenic evolution of constructed Technosols. J. Soils Sediments 2010, 10, 1246–1254. [Google Scholar] [CrossRef]
- Huot, H.; Simonnot, M.O.; Marion, P.; Yvon, J.; De Donato, P.; Morel, J.L. Characteristics and potential pedogenetic processes of a Technosol developing on iron industry deposits. J. Soils Sediments 2013, 13, 555–568. [Google Scholar] [CrossRef]
- Wick, A.F.; Daniels, W.L.; Orndorff, Z.W.; Alley, M.M. Organic matter accumulation post-mineral sands mining. Soil Use Manag. 2013, 29, 354–364. [Google Scholar] [CrossRef]
- Uzarowicz, Ł.; Wolińska, A.; Błońska, E.; Szafranek-Nakonieczna, A.; Kuźniar, A.; Słodczyk, Z.; Kwasowski, W. Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: Microbiological activity as an indicator of soil development following land reclamation. Appl. Soil Ecol. 2020, 156, 103699. [Google Scholar] [CrossRef]
- Kumari, S.; Maiti, S.K. Reclamation of coalmine spoils with topsoil, grass, and legume: A case study from India. Environ. Earth Sci. 2019, 78, 1–14. [Google Scholar] [CrossRef]
- Lucas, M.; Schlüter, S.; Vogel, H.J.; Vetterlein, D. Soil structure formation along an agricultural chronosequence. Geoderma 2019, 350, 61–72. [Google Scholar] [CrossRef]
- Meurer, K.; Barron, J.; Chenu, C.; Coucheney, E.; Fielding, M.; Hallett, P.; Herrmann, A.M.; Keller, T.; Koestel, J.; Larsbo, M.; et al. A framework for modelling soil structure dynamics induced by biological activity. Glob. Chan. Biol. 2020, 26, 5382–5403. [Google Scholar] [CrossRef] [PubMed]
- Krümmelbein, J.; Raab, T. Development of soil physical parameters in agricultural reclamation after brown coal mining within the first four years. Soil Tillage Res. 2012, 125, 109–115. [Google Scholar] [CrossRef]
- Keller, T.; Colombi, T.; Ruiz, S.; Schymanski, S.J.; Weisskopf, P.; Koestel, J.; Sommer, M.; Stadelmann, V.; Breitenstein, D.; Kirchgessner, N.; et al. Soil structure recovery following compaction: Short-term evolution of soil physical properties in a loamy soil. Soil Sci. Soc. Am. J. 2021, 85, 1002–1020. [Google Scholar] [CrossRef]
- Santini, T.C.; Fey, M.V. Assessment of Technosol formation and in situ remediation in capped alkaline tailings. Catena 2016, 136, 17–29. [Google Scholar] [CrossRef]
- Allory, V.; Séré, G.; Ouvrard, S. A meta-analysis of carbon content and stocks in Technosols and identification of the main governing factors. Eur. J. Soil Sci. 2022, 73, 1–17. [Google Scholar] [CrossRef]
- Abakumov, E.V.; Frouz, J. Evolution of the soil humus status on the calcareous Neogene clay dumps of the Sokolov quarry complex in the Czech Republic. Eurasian Soil Sci. 2009, 42, 718–724. [Google Scholar] [CrossRef]
- Abakumov, E.V. Elemental composition and structural features of humic substances in young podzols developed on sand quarry dumps. Eurasian Soil Sci. 2009, 42, 616–622. [Google Scholar] [CrossRef]
- Kozłowski, M.; Komisarek, J. Groundwater chemistry and hydrogeochemical processes in a soil catena of the Poznań Lakeland, central Poland. J. Elem. 2017, 22, 681–695. [Google Scholar] [CrossRef]
- Kozłowski, M.; Komisarek, J. Influence of terrain attributes on organic carbon stocks distribution in soil toposequences of central Poland. Soil Sci. Ann. 2018, 69, 215–222. [Google Scholar] [CrossRef]
- Santini, T.C.; Fey, M.V. From tailings to soil: Long-term effects of amendments on progress and trajectory of soil formation and in situ remediation in bauxite residue. J. Soils Sediments 2018, 18, 1935–1949. [Google Scholar] [CrossRef]
- Koureh, H.K.; Asgarzadeh, H.; Mosaddeghi, M.R.; Khodaverdiloo, H. Critical values of soil physical quality indicators based on vegetative growth characteristics of spring wheat (Triticum aestivum L.). J. Soil Sci. Plant Nutr. 2020, 20, 493–506. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, Y.; Pietrzykowski, M.; Zhou, W.; Bai, Z. Spatial distribution characteristics of reconstructed soil bulk density of opencast coal-mine in the loess area of China. Catena 2021, 199, 105116. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Assessment of soil properties of different land usesgenerated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India. Catena 2016, 140, 155–163. [Google Scholar] [CrossRef]
- Haigh, M.; Woodruffe, P.; D’Aucourt, M.; Alun, E.; Wilding, G.; Fitzpatrick, S.; Filcheva, E.; Noustorova, M. Successful ecological regeneration of opencast coal mine spoils through forestation: From cradle to grove. Minerals 2020, 10, 461. [Google Scholar] [CrossRef]
- Stock, O.; Bens, O.; Hüttl, R.F. The interrelationship between the cultivation of crops and soil-strength dynamics. J. Plant Nutr. Soil Sci. 2007, 170, 713–720. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Bowman, B.T.; Drury, C.F.; Tan, C.S.; Lu, X. Indicators of good soil physical quality: Density and storage parameters. Geoderma 2002, 110, 131–146. [Google Scholar] [CrossRef]
- USDA-NRCS Soil Quality-Soil Compaction: Detection, Prevention, and Alleviation; Agronomy Technical Notes; National Soil Quality Institute: Auburn, Alabama, 2003; Volume 17.
- Sato, M.K.; de Lima, H.V.; de Oliveira, P.D.; Rodrigues, S. Critical soil bulk density for soybean growth in Oxisols. Int. Agrophys. 2015, 29, 441–447. [Google Scholar] [CrossRef]
- Fausey, N.R.; Hall, G.F.; Bigham, J.M.; Allred, B.J.; Christy, A.D. Properties of the fractured glacial till at the Madison County, Ohio, field workshop pit site. Ohio J. Sci. 2000, 100, 107–112. [Google Scholar]
- Bąkowska, A.; Dobak, D.; Gawriuczenkow, I.; Kiełbasiński, K.; Szczepański, T.; Trzciński, J.; Wójcik, E.; Zawrzykraj, P. Stress-strain behaviour analysis of Middle Polish glacial tills from Warsaw (Poland) based on the interpretation of advanced field and laboratory tests. Acta Geol. Pol. 2016, 66, 562–586. [Google Scholar] [CrossRef]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Viti, C.; Vonella, A.V. Effects of no-tillage and conventional tillage on physical and hydraulic properties of fine textured soils under winter wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef]
- Soares, M.B.; Tavanti, R.F.R.; Rigotti, A.R.; de Lima, J.P.; da Silva Freddi, O.; Petter, F.A. Use of cover crops in the southern Amazon region: What is the impact on soil physical quality? Geoderma 2021, 384, 114796. [Google Scholar] [CrossRef]
- Kiani, M.; Hernandez-Ramirez, G.; Quideau, S.; Smith, E.; Janzen, H.; Larney, F.J.; Puurveen, D. Quantifying sensitive soil quality indicators across contrasting long-term land management systems: Crop rotations and nutrient regimes. Agric Ecosyst Environ. 2017, 248, 123–135. [Google Scholar] [CrossRef]
- Stutler, K.; Pena-Yewtukhiw, E.; Skousen, J. Mine soil health on surface mined lands reclaimed to grassland. Geoderma 2022, 413, 115764. [Google Scholar] [CrossRef]
- Khlifa, R.; Rivest, D.; Grimond, L.; Bélanger, N. Stability of carbon pools and fluxes of a Technosol along a 7-year reclamation chronosequence at an asbestos mine in Canada. Ecol. Indic. 2023, 186, 106839. [Google Scholar] [CrossRef]
- Frouz, J.; Pižl, V.; Cienciala, E.; Kalčík, J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry 2009, 94, 111–121. [Google Scholar] [CrossRef]
- Malghani, A.L.; Malik, A.U.; Sattar, A.; Hussain, F.; Abbas, G.; Hussain, J. Response of growth and yield of wheat to NPK fertilizer. Sci. Int. 2010, 24, 185–189. [Google Scholar]
- Kostić, M.M.; Tagarakis, A.C.; Ljubičić, N.; Blagojević, D.; Radulović, M.; Ivošević, B.; Rakić, D. The effect of n fertilizer application timing on wheat yield on chernozem soil. Agronomy 2021, 11, 1413. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, X.; Fahmy, A.E.; Ding, Z.; Zhran, M.A.; Liu, Q.; Peng, J.; Zhang, Z.; Song, H.; Guan, C.; et al. Balanced fertilization under different plant densities for winter oilseed rape (Brassica napus L.) grown on paddy soils in Southern China. Ind. Crops Prod. 2020, 151, 112413. [Google Scholar] [CrossRef]
- Misebo, A.M.; Pietrzykowski, M.; Woś, B. Soil carbon sequestration in novel ecosystems at post-mine sites-a new insight into the determination of key factors in the restoration of terrestrial ecosystems. Forests 2022, 13, 63. [Google Scholar] [CrossRef]
- Gairola, S.U.; Bahuguna, R.; Bhatt, S.S. Native Plant Species: A Tool for Restoration of Mined Lands. J. Soil Sci. Plant Nutr. 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, I.; Suryaningtyas, D.T.; Baskoro, D.P.T.; Budi, S.W.; Gozali, I.; Saridi, S.; Masyhuri, M.; Dultz, S. The regulatory role of mine soil properties in the growth of revegetation plants in the post-mine landscape of East Kalimantan. Ecol. Indic. 2022, 139, 108877. [Google Scholar] [CrossRef]
Cultivated Plants | Fertilizer Combination | Soil Fertilization kg ha−1 | Tillage | Yield dt ha−1 | ||
---|---|---|---|---|---|---|
N | P | K | ||||
Winter wheat | 0-NPK | 0.0 | 0.0 | 0.0 | Disc harrow Pre-sow ploughing Cultivating and sowing unit | 9.5 |
I-NPK | 53 (fall) 107 (spring) | 17.5 (fall) | 66.5 (fall) | 34.8 | ||
II-NPK | 106 (fall) 214 (spring) | 35 (fall) | 133 (fall) | 39.8 | ||
Winter oilseed rape | 0-NPK | 0.0 | 0.0 | 0.0 | Disc harrow Pre-sow ploughing Cultivating sowing unit | 1.7 |
I-NPK | 66 (fall) 134 (spring) | 30.5 (fall) | 74.7 (fall) | 14.2 | ||
II-NPK | 132 (fall) 268 (spring) | 61.0 (fall) | 149.4 (fall) | 18.3 |
Year | Fertilizer Rate | Horizon * | Thickness | Matrix Color | Mottles * | Structure * | Consistency * |
---|---|---|---|---|---|---|---|
(cm) | |||||||
1978 | 0-NPK | C1 | 0.0–25.0 | 2.5Y5/2 | - | ma | fi |
C2 | 25.0–50.0 | 2.5Y5/2 | - | ma | fi | ||
C3 | 50.0–75.0 | 2.5Y5/2 | - | ma | fi | ||
2021 | 0-NPK control | AC | 0.0–18.5 | 2.5Y4/2–3/3 | - | we.fm.sb→mo.fm.gr | fr |
CA(C1) | 18.5–26.0 | 2.5Y4/2–4/3 | - | wm.fm.sa+wm.fm.sa→mo.vm.sa | fi | ||
Cd1 | 26.0–42.0 | 2.5Y5/2–4/3 | 5YR4/6–4/4 f.m.d | ma+ma→ms.fm.as | vfi | ||
Cd2 | 42.0–85 | 2.5Y5/2–4/3 | - | ma+ma→ms.fm.as | fvf | ||
I-NPK | Ap1 | 0.0–17.5 | 2.5Y4/2–3/3 | - | mo.fm.gr+we.fm.sb→mo.fm.gr | fr | |
Ap2 | 17.5–28.5 | 2.5Y4/2–3/3 | - | wm.fm.sa→(mo.fm.gr+wm.fi.sa) | frf | ||
Cd1 | 28.5–48.0 | 2.5Y5/2–4/4 | 7.5YR4/4 f.v–f.d 7.5YR5/8 v.m.d | ma+ma→mo.fm.as | vfi | ||
Cd2 | 48.0–85.0 | 2.5Y5/2–4/3 | 5YR4/6 v.f–m.d | ma+ma→ms.fm.ab | fvf | ||
II-NPK | Ap1 | 0.0–16.5 | 2.5Y4/2–3/3 | - | mo.fm.gr+we.fi.sb→mo.fm.gr | fr | |
Ap2 | 16.5–28.5 | 2.5Y4/2–3/3 | 7.5YR5/8–7/8 v.v.d 5YR4/6 f.v-f.d | we.me.sa→(mo.fm.gr+we.fi.sa) | frf | ||
Cd1 | 28.5–46.0 | 2.5Y5/2–4/3 | 5YR4/6–4/4 f.v-f.d 7.5YR5/8–7/8 v.m–a.d | ma+ma→ms.fm.as | vfi | ||
Cd2 | 46.0–90 | 2.5Y5/2–4/3 | 7.5YR4/6 v.m.d | ma+ma→ms.fm.as | fvf |
Year | Fertilizer Rate | Horizon | CaCO3 | SOC | SI | Fraction (%, w/w) | Soil Textural Class | |||
---|---|---|---|---|---|---|---|---|---|---|
(g kg−1) | (g kg−1) | (%) | Sand/Silt/Clay | |||||||
1978 | 0-NPK | C1 | 87.6 | a.b.c | 5.20 | b.d | 1.9 | a.b | 54.7/26.3/19.0 | SL, CL * |
C2 | 89.8 | a.b.c | 4.68 | a.b.c | 1.6 | a.b | 54.5/28.7/16.8 | SL | ||
C3 | 95.1 | a.b.c | 5.13 | b.c.d | 1.8 | a.b | 52.8/28.0/19.2 | SL | ||
2021 | 0-NPK control | AC | 75.5 | a | 6.68 | d.e | 3.2 | d | 64.0/22.5/13.5 | SL |
CA(C1) | 79.7 | a | 5.96 | e | 2.9 | c.d | 64.0/20.5/15.5 | SL | ||
Cd1 | 98.8 | b.c | 5.31 | b.d | 2.4 | b.c | 61.5/23.0/15.5 | SL, SCL * | ||
Cd2 | 101.3 | c | 4.02 | a.c | 1.7 | a | 53.7/27.0/19.3 | SL | ||
I-NPK | Ap1 | 78.7 | a | 8.67 | f.g | 4.4 | e.f | 66.0/21.0/13.0 | SL | |
Ap2 | 79.7 | a | 7.94 | f | 4.0 | e | 66.0/20.0/14.0 | SL | ||
Cd1 | 85.9 | a.b.c | 4.58 | a.b.c | 2.2 | b | 62.5/22.5/15.0 | SL | ||
Cd2 | 97.7 | b.c | 3.84 | a | 1.9 | b | 68.5/16.5/15.0 | SL | ||
II-NPK | Ap1 | 76.3 | a | 9.84 | h | 5.1 | g | 66.5/21.0/12.5 | SL | |
Ap2 | 78.9 | a | 9.31 | g.h | 4.7 | f.g | 66.0/20.0/14.0 | SL | ||
Cd1 | 84.4 | a.b | 4.87 | b | 2.2 | b | 60.6/22.5/16.9 | SL | ||
Cd2 | 88.4 | a.b.c | 4.76 | a.b.c | 1.7 | a.b | 56.0/25.0/19.0 | SL, SCL* |
Principal Component | PC 1 | PC 2 |
---|---|---|
Eigenvalue | 8.56 | 2.69 |
Variance explained (%) | 65.8 | 20.7 |
Technosols’ property | correlation in the principal component | |
CaCO3 | −0.76 | 0.28 |
SOC | 0.92 | −0.27 |
SI | 0.88 | −0.35 |
sand | 0.48 | −0.79 |
silt | −0.27 | 0.82 |
BD | −0.94 | −0.32 |
PD | −0.93 | 0.13 |
SP | 0.94 | 0.32 |
AFP | 0.85 | 0.43 |
FC | 0.65 | −0.32 |
PAWC | 0.98 | −0.02 |
RFC | −0.76 | −0.44 |
S | 0.84 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowski, M.; Otremba, K.; Pająk, M.; Pietrzykowski, M. Changes in Physical and Water Retention Properties of Technosols by Agricultural Reclamation with Wheat–Rapeseed Rotation in a Post-Mining Area of Central Poland. Sustainability 2023, 15, 7131. https://doi.org/10.3390/su15097131
Kozłowski M, Otremba K, Pająk M, Pietrzykowski M. Changes in Physical and Water Retention Properties of Technosols by Agricultural Reclamation with Wheat–Rapeseed Rotation in a Post-Mining Area of Central Poland. Sustainability. 2023; 15(9):7131. https://doi.org/10.3390/su15097131
Chicago/Turabian StyleKozłowski, Michał, Krzysztof Otremba, Marek Pająk, and Marcin Pietrzykowski. 2023. "Changes in Physical and Water Retention Properties of Technosols by Agricultural Reclamation with Wheat–Rapeseed Rotation in a Post-Mining Area of Central Poland" Sustainability 15, no. 9: 7131. https://doi.org/10.3390/su15097131
APA StyleKozłowski, M., Otremba, K., Pająk, M., & Pietrzykowski, M. (2023). Changes in Physical and Water Retention Properties of Technosols by Agricultural Reclamation with Wheat–Rapeseed Rotation in a Post-Mining Area of Central Poland. Sustainability, 15(9), 7131. https://doi.org/10.3390/su15097131