Prediction of Sodium Hazard of Irrigation Purpose using Artificial Neural Network Modelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Development of ANN Model
2.2.2. Selection of Input and Output Layer
2.2.3. Hidden Layers
2.2.4. Data Normalization
2.2.5. Training and Testing of Data
2.2.6. Statistical Performance Evaluation of ANN Model
Correlation Coefficient (R)
Root Mean Square Error (RMSE)
Mean Bias Error (MBE)
Index of Agreement (IA)
3. Result and Discussions
3.1. Prediction of Irrigation Water Quality Parameters
3.1.1. Performance Evaluation of Sodium Absorption Ratio (SAR)
3.1.2. Performance Evaluation of % Na
3.1.3. Performance Evaluation of Residual Sodium Carbonate (RSC)
3.1.4. Performance Evaluation of Kelly’s Ratio (KR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Central Ground Water Board. Groundwater quality in shallow aquifers of India; Ministry of Water Resources, Govt. of India: Nagpur, India, 2010; p. 294. [Google Scholar]
- Gazzaz, N.M.; Yusoff, M.K.; Aris, A.Z. Artificial neural network modelling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Pollut. Bull. 2012, 64, 2409–2420. [Google Scholar] [CrossRef] [PubMed]
- Wagh, V.M.; Panaskar, D.B.; Muley, A.A.; Mukate, S.V. Groundwater suitability evaluation by CCME WQI model for Kadava River Basin, Nashik, Maharashtra, India. Model. Earth Syst. Environ. 2017, 3, 557–565. [Google Scholar] [CrossRef]
- Keesari, T.; Ramakumar, K.L.; Chidambaram, S.; Pethperumal, S.; Thilagavathi, R. Understanding the hydro chemical behavior of groundwater and its suitability for drinking and agricultural purposes in Pondicherry area, South India–A step towards sustainable development. Groundw. Sustain. Dev. 2016, 2, 143–153. [Google Scholar] [CrossRef]
- Howladar, M.F. An assessment of surface water chemistry with its possible sources of pollution around the Barapukuria Thermal Power Plant Impacted Area, Dinajpur, Bangladesh. Groundw. Sustain. Dev. 2017, 5, 38–48. [Google Scholar] [CrossRef]
- Lakshmi, S.P.; Sankari, S.G.; Prasanna, S.M.; Madhurambal, G. Evaluation of Water Quality Suitability for Drinking using Drinking Water Quality Index in Nagapattinam district, Tamil Nadu in Southern India. Groundw. Sustain. Dev. 2017, 6, 43–49. [Google Scholar]
- Mukate, S.; Panaskar, D.; Wagh, V.; Muley, A.; Jangam, C.; Pawar, R. Impact of anthropogenic inputs on water quality in Chincholi industrial area of Solapur, Maharashtra, India. Groundw. Sustain. Dev. 2018, 7, 359–371. [Google Scholar] [CrossRef]
- Kelley, W.P. Use of saline irrigation water. Soil Sci. 1963, 95, 385–391. [Google Scholar] [CrossRef]
- Doneen, L.D. Water Quality for Agriculture; Department of Irrigation, University of Calfornia: Oakland, CA, USA, 1985. [Google Scholar]
- Kouadri, S.; Pande, C.B.; Panneerselvam, B. Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models. Environ. Sci. Pollut. Res. 2022, 29, 21067–21091. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Q.; Lian, C. Point Lane Net: Efficient End-to-End CNNs for Accurate Real-Time Lane Detection; IEEE Intelligent Vehicles Symposium: Paris, France, 2019; pp. 2563–2568. [Google Scholar] [CrossRef]
- Yilma, M.; Kiflie, Z.; Windsperger, A.; Gessese, N. Application of artificial neural network in water quality index prediction: A case study in Little Akaki River, Addis Ababa, Ethiopia. Model. Earth Syst. Environ. 2018, 4, 175–187. [Google Scholar] [CrossRef]
- Wagh, V.M.; Panaskar, D.B.; Varade, A.M. Major ion chemistry and quality assessment of the groundwater resources of Nanded tehsil, a part of southeast Deccan Volcanic Province, Maharashtra, India. Environ. Earth Sci. 2016, 75, 1–26. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Pande, C.B.; Kouadri, S.; Islam, A.R.M.T. Applications of various data-driven models for the prediction of groundwater quality index in the Akot basin, Maharashtra, India. Environ. Sci. Pollut. Res. 2022, 22, 17591–17605. [Google Scholar] [CrossRef] [PubMed]
- Bouwer, H. Wastewater Reuse in Arid Area Water Reuse; Middlebrook, E.J., Ed.; Ann Arbor Science Publisher, Inc.: Ann Arbor, MI, USA, 1976; pp. 137–180. [Google Scholar]
- Ogunfowokan, A.O.; Obisanya, J.F.; Ogunkoya, O.O. Salinity and sodium hazards of three streams of different agricultural land use systems in Ile-Ife, Nigeria. Appl. Water Sci. 2013, 3, 19–28. [Google Scholar] [CrossRef]
- Gautam, V.K.; Kothari, M.; Singh, P.K.; Bhakar, S.R.; Yadav, K.K. Spatial mapping of groundwater quality using GIS for Jakham River basin of Southern Rajasthan. Environ. Conserv. J. 2022, 23, 22–32. [Google Scholar] [CrossRef]
- Gautam, V.K.; Kothari, M.; Singh, P.K.; Bhakar, S.R.; Yadav, K.K. Decadal groundwater level changes in Pratapgarh District of Southern Rajasthan, India. Ecol. Environ. Conserv. 2022, 28, 283–289. [Google Scholar] [CrossRef]
- Kadam, A.K.; Wagh, V.M.; Muley, A.A.; Umrikar, B.N.; Sankhua, R.N. Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India. Model. Earth Syst. Environ. 2019, 5, 951–962. [Google Scholar] [CrossRef]
- Keskin, T.E.; Düğenci, M.; Kaçaroğlu, F. Prediction of water pollution sources using artificial neural networks in the study areas of Sivas, Karabük and Bartın (Turkey). Env. Earth Sci. 2015, 73, 5333–5347. [Google Scholar] [CrossRef]
- Indian Council of Agriculture Research, New Delhi. Available online: www.icar.org (accessed on 22 April 2023).
- Machiwal, D.; Jha, M.K.; Mal, B.C. GIS-based assessment and characterization of groundwater quality in a hard-rock hilly terrain of Western India. Environ. Monit. Assess. 2011, 174, 645–663. [Google Scholar] [CrossRef]
- Central Ground Water Board. Groundwater Quality in Shallow Aquifers of India; Ministry of Water Resources, Govt. of India: Nagpur, India, 2013; p. 294. [Google Scholar]
- Singh, P.K.; Singh, M. Technical Bulletin on Water Budgeting of Rajasthan; Agrotech Publishing House: Udaipur, India, 2020; pp. 50–60. [Google Scholar]
- Shafie, A.; Najah, A.; Alsulami, H.M.; Jahanbani, H. Optimized Neural Network Prediction Model for Potential Evapotranspiration Utilizing Ensemble Procedure. Water Resour. Manag. 2014, 28, 947–967. [Google Scholar] [CrossRef]
- Tarassenko, L. A Guide to Neural Computing Applications; Arnold Publishers: London, UK, 1998. [Google Scholar]
- Wang, F. The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment. Environ. Plan. 1994, 26, 265–284. [Google Scholar] [CrossRef]
- Piramuthu, S.; Shaw, M.J.; Gentry, J.A. A classification approach using multi-layered neural networks. Decis. Support Syst. 1994, 11, 509–525. [Google Scholar] [CrossRef]
- Lenard, M.J.; Alam, P.; Madey, G.R. The application of neural networks and a qualitative response model to the auditor’s going concern uncertainty decision. Decis. Sci. 1995, 26, 209–227. [Google Scholar] [CrossRef]
- Kanellopoulos, I.; Wilkinson, G. Strategies and best practice for neural network image classification. Int. J. Remote Sens. 1997, 18, 711–725. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Adamowski, J.; Gebremichael, M. Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modelling. J. Hydrol. 2013, 476, 228–243. [Google Scholar] [CrossRef]
- Chang, F.J.; Tsai, W.P.; Chen, H.K.; Yam, R.S.W.; Herricks, E.E. A self-organizing radial basis network for estimating riverine fish diversity. J. Hydrol. 2013, 476, 280–289. [Google Scholar] [CrossRef]
- Ghassan, A.A.; Aman, J. A new approach based on honeybee to improve intrusion detection system using neural network and Bees Algorithm. Software Engineering and Computer Systems. Commun. Comput. Inf. Sci. 2011, 181, 777–792. [Google Scholar]
- Bhange, H.N.; Mahale, D.M.; Ingle, P.M.; Singh, P.K. Prediction of Water Quality Parameters for Irrigation in Konkan Region using Artificial Neural Network Technique. J. Indian Soc. Coast. Agric. Res. 2018, 36, 122–127. [Google Scholar]
- Bhange, H.N.; Mahale, D.M.; Ingle, P.M.; Singh, P.K. Prediction of irrigation water quality technique in the K. Res. J. Recent Sci. 2019, 8, 12–16. [Google Scholar]
- Khudair, B.H.; Jasim, M.M.; Alsaqqar, A.S. Artificial neural network model for the prediction of groundwater quality. Civ. Eng. J. 2018, 4, 2959–2970. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Irrigation and Drainage Paper 29; FAO: Rome, Italy, 1994; p. 174. [Google Scholar]
- Jenkins, S.H. Standard Methods for the Examination of Water and Wastewater. Water Res. 1982, 16, 1495–1496. [Google Scholar] [CrossRef]
- Gautam, V.K.; Kothari, M.; Singh, P.K.; Bhakar, S.R.; Yadav, K.K. Determination of geomorphological characteristics of Jakham River Basin using GIS technique. Indian J. Ecol. 2021, 48, 1627–1634. [Google Scholar]
- Neural Networks. Neural Networks Professional Version 2.0 CPC-X Software, Copyright: 1997-2003. A Demo Version Downloaded from the Internet. Available online: http://www.geocities.com/neuralpower (accessed on 22 March 2023).
- Willmott, C.J. On the validation model. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Tuna, G.; Kılıçaslan, Y.; Gezer, G.; Gulez, K.; Arkoc, O.; Potirakis, S.M. ANN-Based Estimation of Groundwater Quality Using a Wireless Water Quality Network. Int. J. Distrib. Sens. Netw. 2014, 10, 458329. [Google Scholar] [CrossRef]
- Kouadri, S.; Elbeltagi, A.; Islam, A.R.M.T.; Kateb, S. Performance of machine learning methods in predicting water quality index based on irregular data set: Application on Illizi region (Algerian southeast). Appl. Water Sci. 2021, 11, 190–210. [Google Scholar] [CrossRef]
- Tian, W.; Liao, Z.; Zhang, J. An optimization of artificial neural network model for predicting chlorophyll dynamics. Ecol. Model 2017, 364, 42–52. [Google Scholar] [CrossRef]
- Moharir, K.; Pande, C.; Singh, S.; Choudhari, P.; Rawat, K.; Jeyakumar, L. Spatial interpolation approach-based appraisal of groundwater quality of arid regions in. Aqua J. 2019, 68, 431–447. [Google Scholar] [CrossRef]
- Lu, H.; Ma, X. Hybrid decision tree-based machine learning models for short term water quality prediction. Chemosphere 2020, 249, 126169. [Google Scholar] [CrossRef]
- Liu, P.; Wang, J.; Sangaiah, A.; Xie, Y.; Yin, X. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 2019, 11, 2058. [Google Scholar] [CrossRef]
- Pande, C.B.; Moharir, K.N.; Singh, S.K.; Dzwairo, B. Groundwater evaluation for drinking purposes using statistical index: Study of Akola and Buldhana districts of Maharashtra, India. Env. Dev. Sustain. 2020, 22, 7453–7471. [Google Scholar] [CrossRef]
- Pande, C.B.; Moharir, K. Spatial analysis of groundwater quality mapping in hard rock area in the Akola and Buldhana districts of Maharashtra, India. Appl. Water Sci. 2018, 8, 106. [Google Scholar] [CrossRef]
S.No. | Input Layer Parameter | Output Layer Parameter |
---|---|---|
1. | Na+, Ca2+, Mg2+ | Sodium Absorption Ratio (SAR) |
2. | Ca2+, Mg2+, CO32−, HCO3− | Residual Sodium Carbonate (RSC) |
3. | Na+, K+, Ca2+, Mg2+ | Percentage Sodium (%Na) |
4. | Na+, Ca2+, Mg2+, HCO3− | Permeability Index (PI) |
5. | Na+, Ca2+, Mg2+ | Kelly’s Ratio (KR) |
S.No. | Methods | Formulas |
---|---|---|
1. | Wang et al. [27] | 2 (I/3) |
2. | Piramuthu et al. [28] | 0.5 (I + O) |
3. | Lenard et al. [29] | 0.75 I |
4. | Kanellopoulos and Wilkinson [30] | 2 I |
Parameters | Mean | Maximum | Minimum | Recommend BIS/WHO Limits |
---|---|---|---|---|
pH | 8.17 | 8.47 | 8.01 | 6.5–8.5 |
EC | 864 | 1834 | 526 | 500 |
Na | 3.19 | 5.84 | 0.94 | 200 |
K | 0.17 | 0.73 | 0.06 | 10 |
Ca | 2.92 | 5.58 | 1.84 | 75 |
Mg | 2.96 | 5.85 | 1.90 | 50 |
HOC3 | 3.60 | 4.79 | 2.63 | 200 |
CO3 | 0.22 | 0.63 | 0.03 | - |
S.No. | WQ Parameter | ANN Model & Architecture | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R | RMSE | IA | MBE | R | RMSE | IA | MBE | |||
1 | SAR | ANN4 (3-12-1) | 1 | 0.18 | 1 | 0.0117 | 1 | 0.16 | 1 | 0.0137 |
2 | %Na | ANN4 (4-15-1) | 1 | 1.80 | 1 | 0.012 | 1 | 0.72 | 1 | 0.019 |
3 | RSC | ANN1 (4-5-1) | 1 | 0.38 | 0.99 | 0.0253 | 1 | 0.21 | 0.99 | 0.0137 |
4 | KR | ANN4 (3-12-1) | 1 | 0.17 | 0.99 | 0.0012 | 1 | 0.04 | 1 | 0.0050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gautam, V.K.; Pande, C.B.; Moharir, K.N.; Varade, A.M.; Rane, N.L.; Egbueri, J.C.; Alshehri, F. Prediction of Sodium Hazard of Irrigation Purpose using Artificial Neural Network Modelling. Sustainability 2023, 15, 7593. https://doi.org/10.3390/su15097593
Gautam VK, Pande CB, Moharir KN, Varade AM, Rane NL, Egbueri JC, Alshehri F. Prediction of Sodium Hazard of Irrigation Purpose using Artificial Neural Network Modelling. Sustainability. 2023; 15(9):7593. https://doi.org/10.3390/su15097593
Chicago/Turabian StyleGautam, Vinay Kumar, Chaitanya B. Pande, Kanak N. Moharir, Abhay M. Varade, Nitin Liladhar Rane, Johnbosco C. Egbueri, and Fahad Alshehri. 2023. "Prediction of Sodium Hazard of Irrigation Purpose using Artificial Neural Network Modelling" Sustainability 15, no. 9: 7593. https://doi.org/10.3390/su15097593
APA StyleGautam, V. K., Pande, C. B., Moharir, K. N., Varade, A. M., Rane, N. L., Egbueri, J. C., & Alshehri, F. (2023). Prediction of Sodium Hazard of Irrigation Purpose using Artificial Neural Network Modelling. Sustainability, 15(9), 7593. https://doi.org/10.3390/su15097593