Improving the Physical Properties and Water Retention of Sandy Soils by the Synergistic Utilization of Natural Clay Deposits and Wheat Straw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Soil and Clay Deposit Samples
2.2. Characterization of the Soil and Natural Clay Deposits
2.3. Set-Up of the Pot Experiment
2.4. Evaporation and Infiltration
2.5. Hydraulic Conductivity and Soil Water Retention
2.6. Soil and Plant Analysis
2.7. Statistical Analysis
3. Results and Discussions
3.1. Soil and Clay Characterization
3.2. Impacts of Amendments on Soil Chemical Characteristics
3.3. Impacts of Amendments on Soil Physical Properties
3.4. Impacts of Amendments on Evaporation and Infiltration
3.5. Effects of Soil Amendments on Available P and K
3.6. Effects of Soil Amendments on Micronutrients and Heavy Metals
3.7. Impacts of Soil Amendments on Plant Growth and Nutrient Content
3.8. Plant Nutrient and Heavy Metal Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alghamdi, A.G.; Aly, A.A.; Al-Omran, A.M.; Alkhasha, A. Impact of biochar, bentonite, and compost on physical and chemical characteristics of a sandy soil. Arab. J. Geosci. 2018, 11, 670. [Google Scholar] [CrossRef]
- Šimanský, V.; Juriga, M.; Jonczak, J.; Uzarowicz, Ł.; Stępień, W. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 2019, 342, 75–84. [Google Scholar] [CrossRef]
- Mubarak, A.R.; Ragab, O.E.; Ali, A.A.; Hamed, N.E. Short-term studies on use of organic amendments for amelioration of a sandy soil. Afr. J. Agric. Res. 2009, 4, 621–627. [Google Scholar]
- Jaggard, K.W.; Qi, A.; Ober, E.S. Possible changes to arable crop yields by 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2835–2851. [Google Scholar] [CrossRef] [PubMed]
- Chimuka, L.; Manungufala, T.E.; Martín-Gil, J. Sources, bioavailability and fate of heavy metals and organic contaminants in compost manure. Dyn. Soil Dyn. Plant 2009, 3, 32–38. [Google Scholar]
- Al-Omran, A.M.; Falatah, A.M.; Shalaby, A.A.; Mursi, M.M.; Nadeim, M.S.; Choudhury, M.I. Impact of natural deposits of Saudi Arabia on selected physical properties of calcareous sandy soil. Dirasat Agric. Sci. 2002, 29, 285–294. [Google Scholar]
- Czaban, J.; Czy, E.; Siebielec, G.; NiedŸwiecki, J. Long-lasting effects of bentonite on properties of a sandy soil deprived of the humus layer. Int. Agrophys. 2014, 28, 279–289. [Google Scholar] [CrossRef]
- Benkhelifa, M.; Belkhodja, M.; Daoud, Y.; Tessier, D. Effects of Maghnian bentonite on physical properties of sandy soils under semi-arid Mediterranean climate. Pak. J. Biol. Sci. 2008, 11, 17–25. [Google Scholar] [CrossRef]
- Kayama, M.S.; Nimpila, S.; Hongthong, R.; Yoneda, W.; Wichiennopparat, W.; Himmapan, T.; Vacharangkura, I.N. Effects of Bentonite, Charcoal and Corncob for Soil Improvement and Growth Characteristics of Teak Seedling Planted on Acrisols in Northeast Thailand. Forests 2016, 7, 36. [Google Scholar] [CrossRef]
- Croker, J.; Poss, R.; Hartmann, C.; Bhuthorndharaj, S. Effects of recycled bentonite addition on soil properties, plant growth and nutrient uptake in a tropical sandy soil. Plant Soil 2004, 267, 155. [Google Scholar] [CrossRef]
- Al-Busaidi, A.; Yamamoto, T.; Inoue, M.; Eneji, A.E.; Mori, Y.; Irshad, M. Effects of Zeolite on Soil Nutrients and Growth of Barley Following Irrigation with Saline Water. J. Plant Nutr. 2008, 31, 1159–1173. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, X.; Duo, L. Physical and chemical characterization of Municipal solid waste compost in different particle size fractions. Pol. J. Environ. Stud. 2012, 21, 509–515. [Google Scholar]
- Jensen, E.S. Mineralization, immobilization of nitrogen in soil amended with low C/N ratio plant residues with different particle sizes. Soil Biol. Biochem. 1994, 26, 519–521. [Google Scholar] [CrossRef]
- Bending, G.D.; Turner, M.K. Interaction of biochemical quality and particle size of crop residues and its effect on the microbial biomass and nitrogen dynamics following incorporation into soil. Biol. Fertil. Soils 1999, 29, 319–327. [Google Scholar] [CrossRef]
- Bhupinderpal, S.; Rengel, Z.; Bowden, J.W. Carbon, nitrogen and sulphur cycling following incorporation of canola residue of different sizes into a nutrient-poor sandy soil. Soil Biol. Biochem. 2006, 38, 32–42. [Google Scholar]
- Lata Verma, S.; Marschner, P. Compost effects on microbial biomass and soil P pools as affected by particle size and soil properties. J. Soil Sci. Plant Nutr. 2013, 13, 313–328. [Google Scholar] [CrossRef]
- Sheta, A.S.; Al-Omran, A.M.; Falatah, A.M.; As Sallam, A.; Al-Harbi, A.R. Characteristics of natural clay deposits in Saudi Arabia and their potential for water conservations. In International Conference on Water Resources and Arid Environments, 1st ed.; ICWRAE: Riyadh, Saudi Arabia, 2004; Volume 3, pp. 1–18. [Google Scholar]
- Koehler, F.E.; Moudre, C.D.; McNeal, B.L. Laboratory Manual for Soil Fertility; Washington State University: Pullman, WA, USA, 1984. [Google Scholar]
- Hesse, P.R. A Textbook of Soil Chemical Analysis; JohnMurray Publishers: London, UK, 1971. [Google Scholar]
- Amoakwah, E.; Frimpong, K.A.; Okae-Anti, D.; Arthur, E. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam. Geoderma 2017, 307, 189–197. [Google Scholar] [CrossRef]
- Ahmad, M.; Usman, A.R.; Al-Faraj, A.S.; Abduljabbar, A.; Ok, Y.S.; Al-Wabel, M.I. Date palm waste-derived biochar composites with silica and zeolite: Synthesis, characterization and implication for carbon stability and recalcitrant potential. Environ. Geochem. Health 2019, 41, 1687–1704. [Google Scholar] [CrossRef]
- Philip, J.R. The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci. 1957, 83, 345–358. [Google Scholar] [CrossRef]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of Soil Analysis; Part I, Physical and Minerological Methods; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 687–732. [Google Scholar]
- van Genuchten, M.T.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; EPA/600/2-91/065; U. S. Salinity Laboratory, USDA, ARS: Riverside, CA, USA, 1991. [Google Scholar]
- Soltanpour, P.N.; Schwab, A.P. A new soil test for simultaneous extraction of macro-and micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- Wolf, B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book Co., Inc.: New York, NY, USA, 1997; pp. 400–428. [Google Scholar]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Tankersley, K.B.; Dunning, N.P.; Scarborough, V.; Huff, W.D.; Lentz, D.L.; Carr, C. Catastrophic volcanism and its implication for agriculture in the Maya Lowlands. J. Archaeol. Sci. Rep. 2016, 5, 465–470. [Google Scholar] [CrossRef]
- Al-Wabel, M.I.; Ahmad, M.; Usman, A.R.; Sallam, A.S.; Hussain, Q.; Binyameen, R.B.; Shehu, M.R.; Ok, Y.S. Evaluating the efficiency of different natural clay sediments for the removal of chlortetracycline from aqueous solutions. J. Hazard. Mater. 2020, 384, 121500. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, B.; Naidu, R. Nutrient and water use efficiency in soil: The influence of geological mineral amendments. In Nutrient Use Efficiency: From Basics to Advances; Springer: New Delhi, India, 2015; pp. 29–44. [Google Scholar]
- Ahmad, M.; Ahmad, M.; El-Naggar, A.H.; Usman, R.; Abduljabbar, A.; Vithanage, M.; Elfaki, J.; Abdulelah, A.F.; Al-Wabel, M.I. Aging effects of organic and inorganic fertilizers on phosphorus fractionation in a calcareous sandy loam soil. Pedosphere 2018, 28, 873–883. [Google Scholar] [CrossRef]
- Roldán, A.; Caravaca, F.; Hernández, M.T.; Garcıa, C.; Sánchez-Brito, C.; Velásquez, M.; Tiscareno, M. No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil Tillage Res. 2003, 72, 65–73. [Google Scholar] [CrossRef]
- Hassan, A.Z.; Mahmoud, A.W. The combined effect of bentonite and natural zeolite on sandy soil properties and productivity of some crops. Topclass J. Agric. Res. 2013, 1, 23. [Google Scholar]
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functioning. Agron. J. 2002, 94, 38–47. [Google Scholar] [CrossRef]
- Doran, J.W.; Elliott, E.T.; Paustian, K. Soil microbial activity, nitrogen cycling, and long-term changes in organic pools as related to fallow tillage management. Soil Tillage Res. 1998, 49, 3–18. [Google Scholar] [CrossRef]
- Zhou, L.; Monreal, C.M.; Xu, S.; McLaughlin, N.B.; Zhang, H.; Hao, G.; Liu, J. Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma 2019, 338, 269–280. [Google Scholar] [CrossRef]
- Islam, M.R.; Xue, X.Z.; Mao, S.S.; Zhao, X.B.; Eneji, A.E.; Hu, Y.G. Superabsorbent polymers (SAP) enhance efficient and eco-friendly production of corn (Zea mays L.) in drought affected areas of northern China. Afr. J. Biotechnol. 2011, 10, 4887–4894. [Google Scholar]
- Nasser, M.S.; Onaizi, S.A.; Hussein, I.A.; Saad, M.A.; Al-Marri, M.; Benamor, A. Intercalation of ionic liquids into bentonite: Swelling and rheological behaviors. Colloids Surf. A Physicochem. Eng. Asp. 2016, 507, 141–151. [Google Scholar] [CrossRef]
- Beusch, C.; Cierjacks, A.; Böhm, J.; Mertens, J.; Bischoff, W.A.; de Araújo Filho, J.C.; Kaupenjohann, M. Biochar vs. clay: Comparison of their effects on nutrient retention of a tropical Arenosol. Geoderma 2019, 337, 524–535. [Google Scholar] [CrossRef]
- Gholamhoseini, M.; Ghalavand, A.; Khodaei-Joghan, A.; Dolatabadian, A.; Zakikhani, H.; Farmanbar, E. Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching. Soil Tillage Res. 2013, 126, 193–202. [Google Scholar] [CrossRef]
- Hall, D.J.M.; Jones, H.R.; Crabtree, W.L.; Daniels, T.L. Claying and deep ripping can increase crop yields and profits on water repellent sands with marginal fertility in southern Western Australia. Soil Res. 2010, 48, 178–187. [Google Scholar] [CrossRef]
- Sheta, A.S.; Falatah, A.M.; Al-Sewailem, M.S.; Khaled, E.M.; Sallam, A.S. Sorption characteristics of zinc and iron by natural zeolite and bentonite. Microporous Mesoporous Mater. 2003, 61, 127–136. [Google Scholar] [CrossRef]
- He, Z.L.; Calvert, D.V.; Alva, A.K.; Li, Y.C.; Banks, D.J. Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. Plant Soil 2002, 247, 253–260. [Google Scholar] [CrossRef]
- Surekha, K.; Kumari, A.; Reddy, M.; Satyanarayana, K.; Cruz, P. Crop residue management to sustain soil fertility and irrigated rice yields. Nutr. Cycl. Agroecosystems 2003, 67, 145–154. [Google Scholar] [CrossRef]
- Bernardi, A.C.; de Monte, M.B.M.; Paiva, P.R.P.; Werneck, C.D.; Haim, P.G.; de Barros, F.S. Dry matter production and nutrient accumulation after successive crops of lettuce, tomato, rice, and andropogongrass in a substrate with zeolite. Braz. Soil Sci. Soc. 2010, 34, 435–442. [Google Scholar] [CrossRef]
- Sonmez, I.; Kaplan, M.; Demr, H.; Yilmaz, E. Effects of zeolite on seedling quality and nutrient contents of tomato plant (Solanum lycopersicon cv. Malike F1) grown in different mixtures of growing media. J. Food Agric. Environ. 2010, 8, 1162–1165. [Google Scholar]
- Uher, A. Vegetable productions use the nature zeolit in the vegetable productions. Acta Hortic. Et Regiotect. 2004, 7, 77–79. [Google Scholar]
- Wei, T.; Zhang, P.; Wang, K.; Ding, R.; Yang, B.; Nie, J.; Jia, Z.; Han, Q. Effects of wheat straw incorporation on the availability of soil nutrients and enzyme activities in semiarid areas. PLoS ONE 2015, 10, e0120994. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.R.; Shen, Z.G. Effects of pig manure and wheat straw on growth of mung bean seedlings grown in aluminium toxicity soil. Bioresour. Technol. 2001, 76, 235–240. [Google Scholar] [CrossRef] [PubMed]
Sample | Sand | Silt | Clay | pH | EC | Bulk Density | Surface Area * | Organic Matter |
---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (−) | (dS m−1) | (g cm−3) | (m2 g−1) | (%) | |
Clay deposit | 3.33 ± 1.18 | 25 ± 4.08 | 71.67 ± 3.12 | 7.55 ± 0.02 | 4.03 ± 0.04 | 1.38 ± 0.10 | 62.72 ± 0.42 | 1.02 ± 0.09 |
Soil | 86 ± 4.05 | 11.5 ± 1.19 | 2.5 ± 0.21 | 8.19 ± 0.05 | 2.05 ± 0.06 | 1.46 ± 0.08 | 5.31 ± 0.28 | 0.90 ± 0.07 |
Treatment * | Zn | Mn | Fe | Cu |
---|---|---|---|---|
CK | 5.11 ± 0.45 a | 2.54 ± 0.21 a | 15.67 ± 1.12 a | 6.07 ± 0.21 a |
C1 | 4.84 ± 0.30 ab | 2.41 ± 0.31 a | 15.33 ± 1.00 a | 5.79 ± 0.21 a |
C2 | 4.69 ± 0.31 ab | 2.12 ± 0.12 a | 14.33 ± 1.02 a | 5.78 ± 0.31 a |
C3 | 4.43 ± 0.18 ab | 1.87 ± 0.30 b | 12.58 ± 1.03 a | 5.50 ± 0.21 a |
W1 | 4.11 ± 0.20 ab | 2.09 ± 0.21 ab | 12.64 ± 1.21 a | 5.53 ± 0.24 a |
W2 | 4.05 ± 0.03 b | 2.00 ± 0.13 b | 12.00 ± 0.82 a | 5.34 ± 0.17 a |
W3 | 3.60 ± 0.12 bc | 2.01 ± 0.38 b | 11.42 ± 0.51 a | 5.33 ± 0.11 a |
C1W1 | 3.86 ± 0.50 bc | 2.25 ± 0.32 ab | 13.11 ± 1.17 a | 5.19 ± 0.09 a |
C1W2 | 3.54 ± 0.09 bc | 2.12 ± 0.31 ab | 12.07 ± 1.14 a | 4.86 ± 0.13 a |
C1W3 | 3.40 ± 0.18 bc | 1.83 ± 0.27 b | 11.15 ± 0.85 a | 4.66 ± 0.21 a |
C2W1 | 3.83 ± 0.12 bc | 2.05 ± 0.27 ab | 13.18 ± 0.50 a | 4.29 ± 0.26 a |
C2W2 | 3.47 ± 0.11 bc | 1.90 ± 0.21 b | 11.33 ± 0.47 a | 3.89 ± 0.20 ab |
C2W3 | 3.60 ± 0.13 bc | 1.82 ± 0.01 b | 10.00 ± 0.30 ab | 3.74 ± 0.15 ab |
C3W1 | 3.13 ± 0.09 bc | 1.91 ± 0.13 b | 11.67 ± 0.47 ab | 3.99 ± 0.14 ab |
C3W2 | 3.10 ± 0.37 bc | 1.64 ± 0.01 b | 10.67 ± 0.46 ab | 3.93 ± 0.11 ab |
C3W3 | 2.90 ± 0.30 c | 1.55 ± 0.05 b | 9.89 ± 0.30 b | 3.20 ± 0.19 ab |
Treatment * | Cd | Co | Cr | Mo | Ni | Pb |
---|---|---|---|---|---|---|
CK | 0.37 ± 0.19 a | 0.38 ± 0.02 a | 0.09 ± 0.01 a | 0.20 ± 0.02 a | 0.16 ± 0.02 a | 0.24 ± 0.02 a |
C1 | 0.35 ± 0.04 a | 0.35 ± 0.00 a | 0.08 ± 0.01 a | 0.19 ± 0.04 a | 0.14 ± 0.00 a | 0.24 ± 0.02 a |
C2 | 0.34 ± 0.03 a | 0.37 ± 0.01 a | 0.08 ± 0.01 a | 0.17 ± 0.07 a | 0.15 ± 0.01 a | 0.22 ± 0.01 a |
C3 | 0.34 ± 0.03 a | 0.33 ± 0.04 a | 0.07 ± 0.04 a | 0.17 ± 0.07 a | 0.14 ± 0.01 a | 0.21 ± 0.01 a |
W1 | 0.34 ± 0.06 a | 0.33 ± 0.04 a | 0.08 ± 0.03 a | 0.18 ± 0.08 a | 0.13 ± 0.01 a | 0.20 ± 0.02 a |
W2 | 0.31 ± 0.03 a | 0.33 ± 0.04 a | 0.08 ± 0.06 a | 0.17 ± 0.02 a | 0.14 ± 0.01 a | 0.18 ± 0.01 a |
W3 | 0.31 ± 0.04 a | 0.31 ± 0.04 a | 0.08 ± 0.01 a | 0.15 ± 0.01 a | 0.14 ± 0.01 a | 0.17 ± 0.01 a |
C1W1 | 0.34 ± 0.03 a | 0.32 ± 0.03 a | 0.08 ± 0.03 a | 0.13 ± 0.05 a | 0.15 ± 0.01 a | 0.18 ± 0.01 a |
C1W2 | 0.32 ± 0.03 a | 0.30 ± 0.01 a | 0.08 ± 0.01 a | 0.12 ± 0.03 a | 0.13 ± 0.01 a | 0.15 ± 0.01 a |
C1W3 | 0.31 ± 0.04 a | 0.31 ± 0.04 a | 0.07 ± 0.02 a | 0.14 ± 0.02 a | 0.13 ± 0.01 a | 0.16 ± 0.02 a |
C2W1 | 0.32 ± 0.03 a | 0.34 ± 0.02 a | 0.08 ± 0.02 a | 0.15 ± 0.01 a | 0.13 ± 0.02 a | 0.13 ± 0.01 a |
C2W2 | 0.31 ± 0.03 a | 0.33 ± 0.06 a | 0.08 ± 0.02 a | 0.15 ± 0.06 a | 0.13 ± 0.01 a | 0.14 ± 0.01 a |
C2W3 | 0.31 ± 0.06 a | 0.31 ± 0.06 a | 0.08 ± 0.01 a | 0.14 ± 0.02 a | 0.12 ± 0.01 a | 0.17 ± 0.01 a |
C3W1 | 0.33 ± 0.03 a | 0.27 ± 0.05 a | 0.08 ± 0.01 a | 0.17 ± 0.03 a | 0.12 ± 0.01 a | 0.21 ± 0.02 a |
C3W2 | 0.31 ± 0.02 a | 0.24 ± 0.04 a | 0.08 ± 0.01 a | 0.15 ± 0.05 a | 0.11 ± 0.01 a | 0.20 ± 0.02 a |
C3W3 | 0.28 ± 0.07 a | 0.22 ± 0.02 a | 0.07 ± 0.02 a | 0.09 ± 0.06 b | 0.10 ± 0.01 a | 0.13 ± 0.01 b |
Treatments * | Zn | Mn | Fe | Cu |
---|---|---|---|---|
CK | 36.79 ± 3.45 a | 45.21 ± 5.51 a | 585.15 ± 32.93 a | 7.21 ± 0.84 a |
C1 | 32.45 ± 4.25 a | 43.77 ± 8.12 a | 760.83 ± 18.34 a | 6.24 ± 0.78 a |
C2 | 29.94 ± 2.27 a | 41.81 ± 4.43 a | 823.41 ± 28.82 a | 5.68 ± 1.97 a |
C3 | 29.64 ± 1.70 a | 40.00 ± 6.15 a | 816.57 ± 21.41 a | 4.69 ± 0.69 a |
W1 | 30.85 ± 2.84 a | 32.82 ± 2.27 b | 804.78 ± 16.64 a | 3.41 ± 0.61 a |
W2 | 29.47 ± 2.67 b | 36.98 ± 6.35 a | 729.57 ± 32.01 a | 4.26 ± 0.91 a |
W3 | 31.91 ± 3.21 a | 33.46 ± 1.11 b | 667.13 ± 19.94 a | 4.26 ± 1.49 a |
C1W1 | 31.59 ± 3.21 a | 34.42 ± 6.19 b | 610.20 ± 30.55 a | 4.37 ± 1.42 a |
C1W2 | 33.74 ± 3.75 a | 30.25 ± 1.61 b | 514.17 ± 18.86 a | 4.03 ± 0.16 a |
C1W3 | 31.82 ± 3.19 a | 26.09 ± 2.41 b | 500.37 ± 17.95 a | 3.81 ± 0.54 a |
C2W1 | 31.03 ± 2.87 a | 37.11 ± 7.54 a | 616.56 ± 19.87 a | 3.83 ± 0.78 a |
C2W2 | 29.75 ± 0.48 b | 38.27 ± 4.87 a | 658.44 ± 26.01 a | 4.96 ± 0.23 a |
C2W3 | 29.92 ± 1.71 b | 28.42 ± 8.92 b | 549.99 ± 14.66 a | 3.60 ± 0.63 a |
C3W1 | 29.28 ± 2.67 b | 29.48 ± 2.65 b | 470.81 ± 13.61 a | 6.36 ± 0.49 a |
C3W2 | 28.02 ± 2.87 b | 24.70 ± 5.85 b | 461.90 ± 16.46 a | 5.74 ± 0.83 a |
C3W3 | 26.62 ± 2.89 b | 22.79 ± 4.41 bc | 394.19 ± 8.06 a | 3.99 ± 0.93 a |
Treatments * | Cd | Co | Cr | Mo | Ni | Pb |
---|---|---|---|---|---|---|
CK | 6.44 ± 1.01 a | 15.84 ± 1.49 a | 16.66 ± 0.46 a | 0.06 ± 0.01 a | 12.49 ± 1.32 a | 8.71 ± 0.34 a |
C1 | 5.58 ± 0.47 a | 14.38 ± 3.01 a | 13.60 ± 1.97 a | 0.05 ± 0.01 a | 8.11 ± 0.13 a | 7.67 ± 0.62 a |
C2 | 5.39 ± 1.07 a | 14.15 ± 1.73 a | 12.02 ± 0.56 a | 0.05 ± 0.01 a | 8.87 ± 0.91 a | 8.03 ± 0.37 a |
C3 | 5.32 ± 0.87 a | 12.12 ± 1.60 a | 12.34 ± 1.89 a | 0.05 ± 0.01 a | 4.77 ± 0.31 b | 7.00 ± 0.82 a |
W1 | 4.58 ± 0.07 a | 13.38 ± 0.59 a | 13.76 ± 1.50 a | 0.05 ± 0.01 a | 10.28 ± 1.91 a | 8.00 ± 0.63 a |
W2 | 4.46 ± 0.80 a | 13.74 ± 1.47 a | 11.33 ± 0.47 a | 0.02 ± 0.01 a | 9.01 ± 0.62 a | 7.67 ± 0.89 a |
W3 | 4.17 ± 0.85 a | 11.22 ± 1.79 a | 11.17 ± 1.66 a | 0.05 ± 0.01 a | 9.41 ± 0.90 a | 7.33 ± 0.25 a |
C1W1 | 4.44 ± 1.52 a | 10.20 ± 0.52 a | 11.57 ± 0.45 a | 0.05 ± 0.01 a | 8.31 ± 0.39 a | 7.20 ± 0.33 a |
C1W2 | 4.37 ± 1.16 a | 9.80 ± 1.88 a | 10.26 ± 1.75 a | 0.03 ± 0.01 a | 4.59 ± 0.99 b | 5.87 ± 0.53 a |
C1W3 | 4.06 ± 1.71 a | 11.60 ± 1.71 a | 11.27 ± 0.91 a | 0.05 ± 0.01 a | 7.78 ± 0.57 a | 5.60 ± 0.49 a |
C2W1 | 4.01 ± 0.59 a | 10.91 ± 0.86 a | 10.00 ± 0.84 a | 0.05 ± 0.01 a | 10.94 ± 1.11 a | 4.97 ± 0.17 a |
C2W2 | 3.99 ± 0.81 a | 13.23 ± 0.36 a | 8.67 ± 0.47 a | 0.05 ± 0.01 a | 12.52 ± 0.54 a | 5.28 ± 0.15 a |
C2W3 | 3.27 ± 0.57 b | 13.09 ± 1.74 a | 8.00 ± 0.82 a | 0.02 ± 0.01 a | 10.85 ± 0.45 a | 4.97 ± 0.23 a |
C3W1 | 3.50 ± 0.78 a | 11.15 ± 1.78 a | 8.00 ± 1.13 a | 0.04 ± 0.01 a | 13.73 ± 0.55 a | 4.87 ± 0.26 a |
C3W2 | 2.98 ± 1.16 a | 9.67 ± 1.25 a | 9.00 ± 0.82 a | 0.05 ± 0.01 a | 13.98 ± 0.65 a | 4.79 ± 0.49 a |
C3W3 | 2.53 ± 0.44 b | 8.33 ± 1.49 a | 8.48 ± 0.25 a | 0.03 ± 0.01 a | 9.50 ± 0.83 a | 4.13 ± 0.33 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.G.; Majrashi, M.A.; Ibrahim, H.M. Improving the Physical Properties and Water Retention of Sandy Soils by the Synergistic Utilization of Natural Clay Deposits and Wheat Straw. Sustainability 2024, 16, 46. https://doi.org/10.3390/su16010046
Alghamdi AG, Majrashi MA, Ibrahim HM. Improving the Physical Properties and Water Retention of Sandy Soils by the Synergistic Utilization of Natural Clay Deposits and Wheat Straw. Sustainability. 2024; 16(1):46. https://doi.org/10.3390/su16010046
Chicago/Turabian StyleAlghamdi, Abdulaziz G., Mosaed A. Majrashi, and Hesham M. Ibrahim. 2024. "Improving the Physical Properties and Water Retention of Sandy Soils by the Synergistic Utilization of Natural Clay Deposits and Wheat Straw" Sustainability 16, no. 1: 46. https://doi.org/10.3390/su16010046
APA StyleAlghamdi, A. G., Majrashi, M. A., & Ibrahim, H. M. (2024). Improving the Physical Properties and Water Retention of Sandy Soils by the Synergistic Utilization of Natural Clay Deposits and Wheat Straw. Sustainability, 16(1), 46. https://doi.org/10.3390/su16010046