Optimization of Dissolved Silica Removal from Reverse Osmosis Concentrate by Gedaniella flavovirens for Enhanced Water Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. ROC Samples
2.2. Diatom
2.3. Light and Temperature Measurements
2.4. Photobiological Treatment—Indoor Experiments
2.5. Photobiological Treatment—Outdoor Experiments
2.6. Analytical Methods
3. Results
3.1. Impact of Light on Reactive Silica Uptake
3.2. Impact of Temperature on Reactive Silica Uptake
3.3. Sunlight Experiments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerrity, D.; Pecson, B.; Trussell, R.S.; Trussell, R.R. Potable reuse treatment trains throughout the world. J. Water Supply Res. Technol.-Aqua 2013, 62, 321–338. [Google Scholar] [CrossRef]
- Scruggs, C.E.; Lawler, D.F.; Tchobanoglous, G.; Thomson, B.M.; Schwarzman, M.R.; Howe, K.J.; Schuler, A.J. Potable water reuse in small inland communities: Oasis or mirage? J. Am. Water Works Assoc. 2020, 112, 10–17. [Google Scholar] [CrossRef]
- Harris-Lovett, S.R.; Binz, C.; Sedlak, D.L.; Kiparsky, M.; Truffer, B. Beyond User Acceptance: A Legitimacy Framework for Potable Water Reuse in California. Environ. Sci. Technol. 2015, 49, 7552–7561. [Google Scholar] [CrossRef] [PubMed]
- Jacangelo, J.G.; Trussell, R.R.; Watson, M. Role of membrane technology in drinking water treatment in the United States. Desalination 1997, 113, 119–127. [Google Scholar] [CrossRef]
- Snyder, S.A.; Adham, S.; Redding, A.M.; Cannon, F.S.; DeCarolis, J.; Oppenheimer, J.; Wert, E.C.; Yoon, Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007, 202, 156–181. [Google Scholar] [CrossRef]
- Bartels, C.R.; Wilf, M.; Andes, K.; Iong, J. Design considerations for wasteawter treatment by reverse osmosis. Water Sci. Technol. 2005, 51, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Nappier, S.P.; Soller, J.A.; Eftim, S.E. Potable Water Reuse: What Are the Microbiological Risks? Curr. Environ. Health Rep. 2018, 5, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Westerhoff, P.; Moon, H.; Minakata, D.; Crittenden, J. Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities. Water Res. 2009, 43, 3992–3998. [Google Scholar] [CrossRef]
- Tow, E.W.; Ersan, M.S.; Kum, S.; Lee, T.; Speth, T.F.; Owen, C.; Bellona, C.; Nadagouda, M.N.; Mikelonis, A.M.; Westerhoff, P.; et al. Managing and treating per- and polyfluoroalkyl substances (PFAS) in membrane concentrates. AWWA Water Sci. 2021, 3, e1233. [Google Scholar] [CrossRef]
- Ikehata, K.; Zhao, Y.; Kulkarni, H.V.; Li, Y. Treatment of RO concentrate from six potable reuse facilities in the southwestern USA with a new photobiological process. Water Suppl. 2019, 19, 1661–1667. [Google Scholar] [CrossRef]
- Lisitsin, D.; Hasson, D.; Semiat, R. Critical flux detection in a silica scaling RO system. Desalination 2005, 186, 311–318. [Google Scholar] [CrossRef]
- Matin, A.; Rahman, F.; Shafi, H.Z.; Zubair, S.M. Scaling of reverse osmosis membranes used in water desalination: Phenomena, impact, and control; future directions. Desalination 2019, 455, 135–157. [Google Scholar] [CrossRef]
- Semiat, R.; Sutzkover, I.; Hasson, D. Technique for evaluating silica scaling and its inhibition in RO desalting. Desalination 2001, 140, 181–193. [Google Scholar] [CrossRef]
- Tong, T.Z.; Wallace, A.F.; Zhao, S.; Wang, Z. Mineral scaling in membrane desalination: Mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. J. Membr. Sci. 2019, 579, 52–69. [Google Scholar] [CrossRef]
- Weng, P.F. Silica scale inhibition and colloidal silica dispersion for reverse osmosis systems. Desalination 1995, 103, 59–67. [Google Scholar] [CrossRef]
- Arola, K.; Van der Bruggen, B.; Manttari, M.; Kallioinen, M. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2049–2116. [Google Scholar] [CrossRef]
- Scholes, R.C.; Vega, M.A.; Sharp, J.O.; Sedlak, D.L. Nitrate removal from reverse osmosis concentrate in pilot-scale open-water unit process wetlands. Environ. Sci.-Wat. Res. Technol. 2021, 7, 650–661. [Google Scholar] [CrossRef]
- Ikehata, K.; Zhao, Y.; Kulkarni, H.V.; Li, Y.; Snyder, S.A.; Ishida, K.P.; Anderson, M.A. Water recovery from advanced water purification facility reverse osmosis concentrate by photobiological treatment followed by secondary reverse osmosis. Environ. Sci. Technol. 2018, 52, 8588–8595. [Google Scholar] [CrossRef] [PubMed]
- Li, C.L.; Witkowski, A.; Ashworth, M.P.; Dabek, P.; Sato, S.; Zglobicka, I.; Witak, M.; Khim, J.S.; Kwon, C.-J. The morphology and molecular phylogenetics of some marine diatom taxa within the Fragilariaceae, including twenty undescribed species and their relationship to Nanofrustulum, Opephora and Pseudostaurosira. Phytotaxa 2018, 355, 001–104. [Google Scholar] [CrossRef]
- Ikehata, K.; Nakamura, N.; Kulkarni, H.V.; Zhao, Y.; Maleky, N.; Sato, S.; Gao, H. Isolation and evaluation of brackish diatoms for the photobiological treatment of reverse osmosis concentrate. J. Water Supply Res. Technol. Aqua 2022, 71, 1083–1094. [Google Scholar] [CrossRef]
- Shi, P.L.; Shen, H.; Wang, W.J.; Chen, W.J.; Xie, P. The relationship between light intensity and nutrient uptake kinetics in six freshwater diatoms. J. Environ. Sci-China 2015, 34, 28–36. [Google Scholar] [CrossRef]
- Shi, P.L.; Shen, H.; Wang, W.J.; Yang, Q.; Xie, P. Habitat-specific differences in adaptation to light in freshwater diatoms. J. Appl. Phycol. 2016, 28, 227–239. [Google Scholar] [CrossRef]
- Yi, Z.Q.; Su, Y.X.; Cherek, P.; Nelson, D.R.; Lin, J.P.; Rolfsson, O.; Wu, H.; Salehi-Ashtiani, K.; Brynjolfsson, S.; Fu, W.Q. Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum. Microb. Cell Fact. 2019, 18, 209. [Google Scholar] [CrossRef] [PubMed]
- Nwoba, E.G.; Parleyhet, D.A.; Laird, D.W.; Alameh, K.; Moheimani, N.R. Light management technologies for increasing algal photobioreactor efficiency. Algal Res. 2019, 39, 101433. [Google Scholar] [CrossRef]
- Panti, L.; Chavez, P.; Robledo, D.; Patino, R. A solar photobioreactor for the production of biohydrogen from microalgae. Proc. SPIE 2007, 66500Z. [Google Scholar] [CrossRef]
- Prakash, A.; Margaritis, A.; Saunders, R.C.; Vijayan, S. High concentrations ammonia removal by the cyanobacterium Plectonema boryanum in a photobioreactor system. Can. J. Chem. Eng. 1999, 77, 99–106. [Google Scholar] [CrossRef]
- Sathinathan, P.; Parab, H.M.; Yusoff, R.; Ibrahim, S.; Vello, V.; Ngoh, G.C. Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: A review. Renew. Sustain. Energy Rev. 2023, 173, 113096. [Google Scholar] [CrossRef]
- Fujioka, T.; Kodamatani, H.; Tran, H.D.M.; Fujioka, A.; Hino, K.; Yoshikawa, T.; Inoue, D.; Ikehata, K. Degradation of N-nitrosamines and 1,4-dioxane using vacuum ultraviolet irradiation (UV254+185 nm or UV172 nm). Chemosphere 2021, 278, 130326. [Google Scholar] [CrossRef]
- Furst, K.E.; Pecson, B.M.; Webber, B.D.; Mitch, W.A. Tradeoffs between pathogen inactivation and disinfection byproduct formation during sequential chlorine and chloramine disinfection for wastewater reuse. Water Res. 2018, 143, 579–588. [Google Scholar] [CrossRef]
- Tackaert, R.A.; Pisarenko, A.N.; Chen, E.C.; Kolakovsky, A.; Pecson, B.M.; Drewes, J.E.; Trussell, R.R.; Trussell, R.S. Demonstrating process robustness of potable reuse trains during challenge testing with elevated levels of acetone, formaldehyde, NDMA, and 1,4-dioxane. J. Water Supply Res. Technol. Aqua 2019, 68, 313–324. [Google Scholar] [CrossRef]
- Kodamatani, H.; Roback, S.L.; Plumlee, M.H.; Ishida, K.P.; Masunaga, H.; Maruyama, N.; Fujioka, T. An inline ion-exchange system in a chemiluminescence-based analyzer for direct analysis of N-nitrosamines in treated wastewater. J. Chromatogr. A 2018, 1553, 51–56. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of temperature and light on the growth of algae species: A review. Renew. Sustain. Energy Rev. 2015, 50, 431–444. [Google Scholar] [CrossRef]
- Martin-Jézéquel, V.; Hildebrand, M.; Brzezinski, M.A. Silicon metabolism in diatoms: Implications for growth. J. Phycol. 2000, 36, 821–840. [Google Scholar] [CrossRef]
- Sorensen, L.; Zahlsen, K.; Hyldbakk, A.; da Silva, E.F.; Booth, A.M. Photodegradation in natural waters of nitrosamines and nitramines derived from CO2 capture Plant operation. Int. J. Greenh. Gas Con. 2015, 32, 106–114. [Google Scholar] [CrossRef]
- Hsieh, M.C.; Lai, W.W.P.; Lin, A.Y.C. Sunlight photolysis mitigates the formation of N-nitrosodimethylamine (NDMA) during the chloramination of methadone. Chem. Eng. J. 2020, 384, 123307. [Google Scholar] [CrossRef]
- Harvenda, V.; Hamzah, Y.; Arfianti, A.; Linda, T.M.; Umar, L. Influence of Artificial Light Color on Cellular Respiration of Green Algae Photosynthesis Activity. In Proceedings of the 8th National Physics Seminar, Jakarta, Indonesia, 29–30 June 2019; Volume 2169. [Google Scholar] [CrossRef]
- Yang, Y. Effects of Temperature, Light Intensity and Quality, Carbon Dioxide, and Culture Medium Nutrients on Growth and Lipid Production of Ettlia oleoabundans. Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, December 2013. [Google Scholar]
- Ras, M.; Steyer, J.P.; Bernard, O. Temperature effect on microalgae: A crucial factor for outdoor production. Rev. Environ. Sci. Bio. 2013, 12, 153–164. [Google Scholar] [CrossRef]
- Li, W.K.W.; Dickie, P.M. Temperature Characteristics of Photosynthetic and Heterotrophic Activities—Seasonal-Variations in Temperate Microbial Plankton. Appl. Environ. Microbiol. 1987, 53, 2282–2295. [Google Scholar] [CrossRef]
- Mitrovic, S.M.; Hitchcock, J.N.; Davie, A.W.; Ryan, D.A. Growth responses of Cyclotella meneghiniana (Bacillariophyceae) to various temperatures. J. Prankton Res. 2010, 32, 1217–1221. [Google Scholar] [CrossRef]
Parameter | Average ± Standard Deviation |
---|---|
Sodium (mg/L) | 1200 ± 100 |
Calcium (mg/L) | 779 ± 25 |
Magnesium (mg/L) | 140 ± 10 |
Iron (mg/L) | 0.3 ± 0.1 |
Ammonia-N (mg/L) | 6.0 ± 0.8 |
Chloride (mg/L) | 1670 ± 20 |
Sulfate (mg/L) | 1000 ± 50 |
Bicarbonate (mg/L) | 590 ± 90 |
Nitrate-N (mg/L) | 60 ± 4 |
Reactive silica (mg/L) | 131 ± 3 |
Orthophosphate (mg/L) | 10.4 ± 1.6 |
Total dissolved solids (mg/L) | 5380 ± 110 |
Conductivity (mS/cm) | 8.03 ± 0.16 |
Alkalinity (mg/L as CaCO3) | 968 ± 148 |
Chemical oxygen demand (mg/L) | 129 ± 7 |
pH | 8.5 ± 0.4 |
Apparent color at 455 nm (PtCo unit) | 145 ± 3 |
Run | Mean | Standard Deviation | Highest | Lowest |
---|---|---|---|---|
1 | 20.0 | 7.7 | 40.5 | 6.0 |
2 | 25.9 | 9.1 | 49.0 | 12.5 |
3 | 20.7 | 6.4 | 46.5 | 6.5 |
Parameter | Method Name | Method |
---|---|---|
Sodium | Ion Selective Electrode | ISENA381 |
Calcium hardness | Titration Method with EDTA | Hach 8204 |
Total hardness | Titration Method with EDTA | Hach 8213 |
Iron | USEPA FerroVer® Method | Hach 8008 |
Ammonia-N (HR) | Salicylate Method | Hach 10031 |
Chloride | Silver Nitrate Method | Hach 8207 |
Sulfate | USEPA SulfaVer 4 Method | Hach 8051 |
Alkalinity | Phenolphthalein and Total Alkalinity | Hach 8203 |
Nitrate-N (LR) | Dimethylphenol Method | Hach 10206 |
Reactive silica | Silicomolybdate Method | Hach 8185 |
Orthophosphate | USEPA PhosVer 3® Method | Hach 8048 |
Chemical oxygen demand | USEPA Reactor Digestion Method | Hach 8000 |
Chlorine, Total | USEPA DPD Method | Hach 8167 |
Color at 455 nm | Platinum-Cobalt Standard Method | Hach 8025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Sato, S.; Kodamatani, H.; Fujioka, T.; Ishida, K.P.; Ikehata, K. Optimization of Dissolved Silica Removal from Reverse Osmosis Concentrate by Gedaniella flavovirens for Enhanced Water Recovery. Sustainability 2024, 16, 4052. https://doi.org/10.3390/su16104052
Gao H, Sato S, Kodamatani H, Fujioka T, Ishida KP, Ikehata K. Optimization of Dissolved Silica Removal from Reverse Osmosis Concentrate by Gedaniella flavovirens for Enhanced Water Recovery. Sustainability. 2024; 16(10):4052. https://doi.org/10.3390/su16104052
Chicago/Turabian StyleGao, Han, Shinya Sato, Hitoshi Kodamatani, Takahiro Fujioka, Kenneth P. Ishida, and Keisuke Ikehata. 2024. "Optimization of Dissolved Silica Removal from Reverse Osmosis Concentrate by Gedaniella flavovirens for Enhanced Water Recovery" Sustainability 16, no. 10: 4052. https://doi.org/10.3390/su16104052
APA StyleGao, H., Sato, S., Kodamatani, H., Fujioka, T., Ishida, K. P., & Ikehata, K. (2024). Optimization of Dissolved Silica Removal from Reverse Osmosis Concentrate by Gedaniella flavovirens for Enhanced Water Recovery. Sustainability, 16(10), 4052. https://doi.org/10.3390/su16104052