An Evaluation Model of Urban Green Space Based on Residents’ Physical Activity
Abstract
:1. Introduction
2. Research Area and Data Acquisition
2.1. Site Selection
2.2. Image Acquisition
2.3. Semantic Segmentation
2.4. Data on Residents’ Physical Activity
3. The PA-Oriented UGS Evaluation Model
- For the selection of UGS evaluation indexes, the scale of the green space itself and the impact of different types of landscape structures on residents’ movement were considered firstly. The statistical analysis of the landscape structure of the target green space was conducted by Python® 3.1.15 and semantic segmentation technology. Secondly, the accessibility of roads within 1.5km around the green space was taken into consideration, which can represent the spontaneity level of residents voluntarily visiting the green space. The PAs of surrounding residents were measured using the Keep App to analyze the positive impact of UGS. Finally, we focused on how the cultural value or natural conservation value of the green space itself influenced the PA motivation of residents.
- In terms of the establishment of the evaluation model, a GA-optimized Uncertainty Analytic Hierarchy Process (UAHP) method and Entropy Weight Method (EWM) were used to determine the subjective and objective weights of the evaluation indexes, respectively. The Improved Combined Weighting Method of Game Theory (ICWGT) realizes the optimal combination of the subjective and objective weights, which can minimize their deviations and ultimately receive the optimal combined weights. In this way, an index-weight-based, subjective, objective-cognition-considered, and residential PA-related evaluation model for UGS was established herein.
3.1. Determination and Quantitation Methods of Evaluation Indexes
- Aesthetic and attractions (e.g., places that are visually attractive);
- Encouraging physical activity (e.g., places provide opportunities for physical activity);
- Native conservation (e.g., places’ value for the protection of native plants and animals);
- Nature world experience (e.g., places to experience the natural world);
- Cultural value (e.g., opportunities to express and appreciate culture or cultural practices);
- Social value (e.g., opportunities to interact with other people).
3.1.1. Aesthetics and Attractions and Nature World Experience Value of UGS
3.1.2. Nature Conservation Value
3.1.3. Value of Encouraging Physical Activity
3.1.4. Accessibility of UGS
3.1.5. Culture Value of UGS
3.2. Construction of Evaluation Index System and Corresponding Weights Calculation
3.2.1. Uncertainty Analytic Hierarchy Process
- Construct the objective function and adopt the above formula as the fitness function of the GA.
- 2.
- Solve the optimal subjective weight.
3.2.2. Entropy Weight Method
- Build a dimensionless initial matrix:
- 2.
- Calculate the information entropy Sj of the j-th index:
- 3.
- Calculate the objective weight wj of the j-th index:
3.2.3. Weight Optimization: Improved Combination Weighting Method of Game Theory
4. Results and Discussion
4.1. Result of Subjective Weights
4.2. Results of Objective Weights
4.3. Comparisons of the Results
4.4. Discussion
5. Conclusions and Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kondo, M.C.; Fluehr, J.M.; McKeon, T.; Branas, C.C. Urban Green Space and Its Impact on Human Health. Int. J. Environ. Res. Public Health 2018, 15, 445. [Google Scholar] [CrossRef] [PubMed]
- van Dillen, S.M.E.; de Vries, S.; Groenewegen, P.P.; Spreeuwenberg, P. Greenspace in urban neighbourhoods and residents’ health: Adding quality to quantity. J. Epidemiol. Community Health 2012, 66, e8. [Google Scholar] [CrossRef] [PubMed]
- Bixby, H.; Hodgson, S.; Fortunato, L.; Hansell, A.; Fecht, D. Associations between Green Space and Health in English Cities: An Ecological, Cross-Sectional Study. PLoS ONE 2015, 10, e0119495. [Google Scholar] [CrossRef] [PubMed]
- Farkas, J.Z.; Hoyk, E.; de Morais, M.B.; Csomós, G. A systematic review of urban green space research over the last 30 years: A bibliometric analysis. Heliyon 2023, 9, e13406. [Google Scholar] [CrossRef] [PubMed]
- Hedblom, M.; Gunnarsson, B.; Iravani, B.; Knez, I.; Schaefer, M.; Thorsson, P.; Lundström, J.N. Reduction of physiological stress by urban green space in a multisensory virtual experiment. Sci. Rep. 2019, 9, 10113. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, Y.; Yang, L.; Ge, J.; Chang, X.; Zhang, X. The impact of urban green space on the health of middle-aged and older adults. Front. Public Health 2023, 11, 1244477. [Google Scholar] [CrossRef]
- Firth, J.; Solmi, M.; Wootton, R.E.; Vancampfort, D.; Schuch, F.B.; Hoare, E.; Gilbody, S.; Torous, J.; Teasdale, S.B.; Jackson, S.E.; et al. A meta-review of “lifestyle psychiatry”: The role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders. World Psychiatry 2020, 19, 360–380. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Zheng, Y.-J.; Yun, J.-Y.; Wang, H.-M. The Effects of Urban Green Space on Depressive Symptoms of Mid-Aged and Elderly Urban Residents in China: Evidence from the China Health and Retirement Longitudinal Study. Int. J. Environ. Res. Public Health 2022, 19, 717. [Google Scholar] [CrossRef] [PubMed]
- Vella, S.A.; Aidman, E.; Teychenne, M.; Smith, J.J.; Swann, C.; Rosenbaum, S.; White, R.L.; Lubans, D.R. Optimising the effects of physical activity on mental health and wellbeing: A joint consensus statement from Sports Medicine Australia and the Australian Psychological Society. J. Sci. Med. Sport 2023, 26, 132–139. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Zheng, Y.; Cheng, B.; Dong, L.; Zheng, T.; Wu, R. The Moderating Effect of Social Participation on the Relationship between Urban Green Space and the Mental Health of Older Adults: A Case Study in China. Land 2024, 13, 317. [Google Scholar] [CrossRef]
- Reyes-Riveros, R.; Altamirano, A.; De la Barrera, F.; Rozas-Vasquez, D.; Vieli, L.; Meli, P. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green. 2021, 61, 127105. [Google Scholar] [CrossRef]
- Lee, C.; Kim, H.J.; Dowdy, D.M.; Hoelscher, D.M.; Ory, M.G. TCOPPE School Environmental Audit Tool: Assessing Safety and Walkability of School Environments. J. Phys. Act. Health 2013, 10, 949–960. [Google Scholar] [CrossRef] [PubMed]
- Rigolon, A. Parks and young people: An environmental justice study of park proximity, acreage, and quality in Denver, Colorado. Landsc. Urban Plan. 2017, 165, 73–83. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, C.; Gong, L.; Cai, B.; Li, C.; Huang, G.; Li, B. Assessment on structural quality of landscapes in green space of Beijing suburban parks by SBE method. Sci. Silvae Sin. 2011, 47, 53–60. [Google Scholar] [CrossRef]
- Song, Y.; Xu, S.; Liu, Z.; Zhang, Y.; Qiu, P.; Niu, A.; Xu, G. Time and space differences of water environmental quality of the mangrove wetland park in Nansha: Based on the improved twice-slope clustering method. Sci. Geogr. Sin. 2016, 36, 303–311. [Google Scholar] [CrossRef]
- Xu, H.; Li, Q. Analysis of the Evaluative Dimensions and Causal Relationship on Theme Park Visitors’ Experience Quality: Based on a C-trip Comments Review of Disney and Happy Valley. Tour. Sci. 2017, 31, 57–68. [Google Scholar] [CrossRef]
- Xiao, N.; Huang, Y.; Liu, J.S. Evaluation and spatial differentiation of tourism experience quality of theme park in China. Sci. Geogr. Sin. 2019, 39, 978–986. (In Chinese) [Google Scholar] [CrossRef]
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; de Vries, S.; Triguero-Mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Lepczyk, C.A.; Aronson, M.F.J.; Evans, K.L.; Goddard, M.A.; Lerman, S.B.; MacIvor, J.S. Biodiversity in the City: Fundamental Questions for Understanding the Ecology of Urban Green Spaces for Biodiversity Conservation. BioScience 2017, 67, 799–807. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Yan, Y.; Zhang, Q. Biodiversity in Urban Green Space: A Bibliometric Review on the Current Research Field and Its Prospects. Int. J. Environ. Res. Public Health 2022, 19, 12544. [Google Scholar] [CrossRef] [PubMed]
- Macintyre, V.G.; Cotterill, S.; Anderson, J.; Phillipson, C.; Benton, J.S.; French, D.P. “I Would Never Come Here Because I’ve Got My Own Garden”: Older Adults’ Perceptions of Small Urban Green Spaces. Int. J. Environ. Res. Public Health 2019, 16, 1994. [Google Scholar] [CrossRef] [PubMed]
- Lengen, C. The effects of colours, shapes and boundaries of landscapes on perception, emotion and mentalising processes promoting health and well-being. Health Place 2015, 35, 166–177. [Google Scholar] [CrossRef]
- Jennings, V.; Bamkole, O. The Relationship between Social Cohesion and Urban Green Space: An Avenue for Health Promotion. Int. J. Environ. Res. Public Health 2019, 16, 452. [Google Scholar] [CrossRef] [PubMed]
- Chuang, Y.-C.; Chuang, K.-Y.; Yang, T.-H. Social cohesion matters in health. Int. J. Equity Health 2013, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- McCormack, G.R.; Rock, M.; Toohey, A.M.; Hignell, D. Characteristics of urban parks associated with park use and physical activity: A review of qualitative research. Health Place 2010, 16, 712–726. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zheng, Y.; Ma, S. Links of urban green space on environmental satisfaction: A spatial and temporarily varying approach. Environ. Dev. Sustain. 2023, 25, 3469–3501. [Google Scholar] [CrossRef]
- Tian, D.; Wang, J.; Xia, C.; Zhang, J.; Zhou, J.; Tian, Z.; Zhao, J.; Li, B.; Zhou, C. The relationship between green space accessibility by multiple travel modes and housing prices: A case study of Beijing. Cities 2024, 145, 104694. [Google Scholar] [CrossRef]
- World Health Organization. Urban Green Spaces and Health; WHO Regional Office for Europe: Copenhagen, Denmark, 2016; Available online: https://iris.who.int/handle/10665/345751 (accessed on 15 March 2023).
- Schindler, M.; Le Texier, M.; Caruso, G. How far do people travel to use urban green space? A comparison of three European cities. Appl. Geogr. 2022, 141, 102673. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Xia, Y.; Yabuki, N.; Fukuda, T. Development of a system for assessing the quality of urban street-level greenery using street view images and deep learning. Urban For. Urban Green. 2021, 59, 126995. [Google Scholar] [CrossRef]
- Chen, J.; Shao, S.; Zhu, Y.; Wang, Y.; Rao, F.; Dai, X.; Lai, D. Enhanced Automatic Identification of Urban Community Green Space Based on Semantic Segmentation. Land 2022, 11, 905. [Google Scholar] [CrossRef]
- Wang, J.; Liu, W.; Gou, A. Numerical characteristics and spatial distribution of panoramic Street Green View index based on SegNet semantic segmentation in Savannah. Urban For. Urban Green. 2022, 69, 127488. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Hu, J. An integrated method of human error likelihood assessment for shale-gas fracturing operations based on SPA and UAHP. Process. Saf. Environ. Prot. 2019, 123, 105–115. [Google Scholar] [CrossRef]
- Madzík, P.; Falát, L. State-of-the-art on analytic hierarchy process in the last 40 years: Literature review based on Latent Dirichlet Allocation topic modelling. PLoS ONE 2022, 17, e0268777. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, Y.J.; Li, R. An Improved Genetic Algorithm for Location Allocation Problem with Grey Theory in Public Health Emergencies. Int. J. Environ. Res. Public Health 2022, 19, 9752. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; He, J.; Wei, M.; Du, X. Challenges Threatening Agricultural Sustainability in Central Asia: Status and Prospect. Int. J. Environ. Res. Public Health 2022, 19, 6200. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Chen, X.; Chen, X.; Wang, Z.; Wu, X.; Zhao, S. A fuzzy comprehensive evaluation model for flood risk based on the combination weight of game theory. Nat. Hazards 2015, 77, 1243–1259. [Google Scholar] [CrossRef]
- Chen, M.-S.; Han, J.; Yu, P. Data mining: An overview from a database perspective. IEEE Trans. Knowl. Data Eng. 1996, 8, 866–883. [Google Scholar] [CrossRef]
- Keeler, B.L.; Wood, S.A.; Polasky, S.; Kling, C.; Filstrup, C.T.; Downing, J.A. Recreational demand for clean water: Evidence from geotagged photographs by visitors to lakes. Front. Ecol. Environ. 2015, 13, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Tenkanen, H.; Di Minin, E.; Heikinheimo, V.; Hausmann, A.; Herbst, M.; Kajala, L.; Toivonen, T. Instagram, Flickr, or Twitter: Assessing the usability of social media data for visitor monitoring in protected areas. Sci. Rep. 2017, 7, 17615. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5122–5130. [Google Scholar]
- Wu, H.; Wang, L.; Zhang, Z.; Gao, J. Analysis and optimization of 15-minute community life circle based on supply and demand matching: A case study of Shanghai. PLoS ONE 2021, 16, e0256904. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Liu, Y.; Liang, S.; Si, J.; Di, S.; Cai, M.; Hu, S.; Hao, C.; Zhao, Z. Social Value of Urban Green Space Based on Visitors’ Perceptions: The Case of the Summer Palace, Beijing, China. Forests 2023, 14, 2192. [Google Scholar] [CrossRef]
- Knobel, P.; Dadvand, P.; Alonso, L.; Costa, L.; Espanol, M.; Maneja, R. Development of the urban green space quality assessment tool (RECITAL). Urban For. Urban Green. 2021, 57, 126895. [Google Scholar] [CrossRef]
- Stoia, N.L.; Niţă, M.R.; Popa, A.M.; Iojă, I.C. The green walk—An analysis for evaluating the accessibility of urban green spaces. Urban For. Urban Green. 2022, 75, 11. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, R.; Chen, B.; Wu, J. Inclusive green environment for all? An investigation of spatial access equity of urban green space and associated socioeconomic drivers in China. Landsc. Urban Plan. 2024, 241, 104926. [Google Scholar] [CrossRef]
- Yaraghi, N.; Tabesh, P.; Guan, P.; Zhuang, J. Comparison of AHP and Monte Carlo AHP Under Different Levels of Uncertainty. IEEE Trans. Eng. Manag. 2015, 62, 122–132. [Google Scholar] [CrossRef]
- Awad, J.; Jung, C. Extracting the Planning Elements for Sustainable Urban Regeneration in Dubai with AHP (Analytic Hierarchy Process). Sustain. Cities Soc. 2022, 76, 103496. [Google Scholar] [CrossRef]
- Saaty, T.L. The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach. Oper. Res. 2013, 61, 1101–1118. [Google Scholar] [CrossRef]
- Michalewicz, Z.; Schoenauer, M. Evolutionary Algorithms for Constrained Parameter Optimization Problems. Evol. Comput. 1996, 4, 1–32. [Google Scholar] [CrossRef]
- Ren, J.; Xiong, Y. An optimised method of weighting combination in multi-index comprehensive evaluation. Int. J. Appl. Decis. Sci. 2010, 3, 34–52. [Google Scholar] [CrossRef]
- Li, A.H. Research on Safety Assessment Method of Quayside Container Crane. Ph.D. Thesis, Wuhan University of Technology, Wuhan, China, 2017. [Google Scholar]
- Zhou, W.; Cao, W.; Wu, T.; Zhang, T. The win-win interaction between integrated blue and green space on urban cooling. Sci. Total. Environ. 2023, 863, 160712. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yang, J.; Ma, L.; Huang, C. Factors affecting the use of urban green spaces for physical activities: Views of young urban residents in Beijing. Urban For. Urban Green. 2015, 14, 851–857. [Google Scholar] [CrossRef]
- Bao, Y.; Gao, M.; Luo, D.; Zhou, X. Urban Parks—A Catalyst for Activities! The Effect of the Perceived Characteristics of the Urban Park Environment on Children’s Physical Activity Levels. Forests 2023, 14, 423. [Google Scholar] [CrossRef]
Landscape Structure Features | Yuelu Mountain | Orange Island | Yanghu Lake | Songya Lake | Xiangbiwo Park | Heimi Mountain |
---|---|---|---|---|---|---|
Tree | 0.4418 | 0.1370 | 0.1429 | 0.1022 | 0.2646 | 0.1948 |
Grass | 0.0116 | 0.0596 | 0.0503 | 0.0573 | 0.0214 | 0.0156 |
Dirt Track | 0.0006 | <0.0001 | <0.0001 | 0.0001 | 0.0006 | 0.0004 |
Land | 0.0010 | 0.0038 | 0.0013 | 0.0004 | 0.0034 | 0.0120 |
Stone | 0.0074 | 0.0052 | 0.0036 | 0.0045 | 0.0065 | 0.0062 |
Plant | 0.0466 | 0.0265 | 0.0507 | 0.0190 | 0.0252 | 0.0257 |
Flower | 0.0044 | 0.0018 | 0.0023 | 0.0028 | 0.0009 | 0.0006 |
Mountain | 0.0208 | 0.0306 | 0.0038 | 0.0126 | 0.0680 | 0.1015 |
Hill | 0.0036 | 0.0031 | 0.0001 | 0.0011 | 0.0089 | 0.0148 |
River | 0.0220 | 0.0128 | 0.0360 | 0.0169 | 0.0324 | 0.0085 |
Water | 0.0397 | 0.0594 | 0.1245 | 0.0632 | 0.1018 | 0.0326 |
Lake | 0.0030 | 0.0020 | 0.0105 | 0.0048 | 0.0099 | 0.0023 |
Yuelu Mountain | Orange Island | Yanghu Lake | Songya Lake | Xiangbiwo Park | Heimi Mountain | Total | |
---|---|---|---|---|---|---|---|
Total sports attendance [person-time] | 888,012 | 311,080 | 230,176 | 256,058 | 11,607 | 110 | 1,697,043 |
Number of trajectories | 33 | 20 | 23 | 14 | 8 | 1 | 99 |
Frequency of running [person-time] | 781,929 | 261,581 | 205,913 | 178,976 | 9576 | 13 | 1,437,988 |
Frequency of walking [person-time] | 102,769 | 36,042 | 20,689 | 23,773 | 2018 | 12 | 166,683 |
Frequency of bike-riding [person-time] | 3315 | 13,457 | 3574 | 53,309 | 13 | 85 | 73,753 |
Indexes | YM | OI | YL | SL | XP | HM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | C | P | C | P | C | P | C | P | C | P | C | ||
Aesthetics and attractions | Plant | 0.0466 | 24 | 0.0265 | 9 | 0.0507 | 26 | 0.0190 | 10 | 0.0252 | 13 | 0.0257 | 13 |
Flower | 0.0044 | 4 | 0.0018 | 0 | 0.0023 | 0 | 0.0028 | 3 | 0.0009 | 0 | 0.0006 | 0 | |
Mountain | 0.0208 | 30 | 0.0306 | 43 | 0.0038 | 2 | 0.0126 | 15 | 0.0680 | 142 | 0.1015 | 73 | |
Hill | 0.0036 | 3 | 0.0031 | 0 | 0.0001 | 0 | 0.0011 | 0 | 0.0089 | 13 | 0.0148 | 6 | |
River | 0.0220 | 35 | 0.0128 | 18 | 0.0360 | 49 | 0.0169 | 24 | 0.0324 | 6 | 0.0085 | 38 | |
Water | 0.0397 | 56 | 0.0594 | 99 | 0.1245 | 163 | 0.0632 | 117 | 0.1018 | 43 | 0.0326 | 111 | |
Lake | 0.0030 | 2 | 0.0020 | 4 | 0.0105 | 1 | 0.0048 | 1 | 0.0099 | 1 | 0.0023 | 11 | |
Nature world experience | Tree | 0.4418 | 375 | 0.1370 | 115 | 0.1429 | 76 | 0.1022 | 77 | 0.2646 | 151 | 0.1948 | 158 |
Grass | 0.0116 | 3 | 0.0596 | 51 | 0.0503 | 21 | 0.0573 | 43 | 0.0214 | 4 | 0.0156 | 7 | |
Dirt Track | 0.0006 | 1 | <0.0001 | 0 | <0.0001 | 0 | 0.0001 | 0 | 0.0006 | 0 | 0.0004 | 0 | |
Land | 0.0010 | 1 | 0.0038 | 1 | 0.0013 | 1 | 0.0004 | 1 | 0.0034 | 1 | 0.0120 | 3 | |
Stone | 0.0074 | 8 | 0.0052 | 4 | 0.0036 | 2 | 0.0045 | 5 | 0.0065 | 7 | 0.0062 | 6 |
Indexes of Nature Conservation | Yuelu Mountain | Orange Island | Yanghu Lake | Songya Lake | Xiangbiwo Park | Heimi Mountain |
---|---|---|---|---|---|---|
GR | 92% | 86% | 90% | 91.80% | 85.40% | 73.90% |
GVI | 50.45% | 22.49% | 24.62% | 18.13% | 31.21% | 23.67% |
Number of plant species | 977 | >1000 | 639 | 489 | 430 | 673 |
Indexes of Residents’ PA | Yuelu Mountain | Orange Island | Yanghu Lake | Songya Lake | Xiangbiwo Park | Heimi Mountain |
---|---|---|---|---|---|---|
Residents’ participation in PA [person-time] | 888,012 | 311,080 | 230,176 | 256,058 | 11,607 | 110 |
Outdoor activities [km] | 769,853.12 | 686,567.55 | 283,398.00 | 1,636,319.28 | 13,008.35 | 293.70 |
Sports diversity (Div) | 0.785 | 0.722 | 0.809 | 0.541 | 0.711 | 0.616 |
Difficulty of PA | 0.061 | 0.020 | 0.014 | 0.018 | 0.072 | 0.041 |
Indexes of Accessibility | Yuelu Mountain | Orange Island | Yanghu Lake | Songya Lake | Xiangbiwo Park | Heimi Mountain |
---|---|---|---|---|---|---|
Accessibility Mean [min] | 47.83 | 39.04 | 32.63 | 41.47 | 45.80 | 51.69 |
Accessibility MIN [min] | 38.64 | 20.09 | 23.67 | 15.12 | 29.74 | 1.09 |
Accessibility MAX [min] | 77.02 | 70.2 | 63.76 | 77.55 | 118.8 | 71.3 |
Indexes of Culture Value | Yuelu Mountain | Orange Island | Yanghu Lake | Songya Lake | Xiangbiwo Park | Heimi Mountain |
---|---|---|---|---|---|---|
Cultural relics protection units [num] | 52 | 10 | 1 | 0 | 0 | 0 |
Educational value [num] | 347 | 211 | 27 | 5 | 1 | 29 |
Primarily Index Layer B | Secondary Index Layer C | Description of each Index | ||
---|---|---|---|---|
B1 | Aesthetics and attractions | C1 | Plant/flower | Plant and flower cover |
C2 | Mountain/hill | Mountain and hill in view | ||
C3 | River/lake | River and lake in view | ||
C4 | Water | Water in view | ||
B2 | Nature world experience | C5 | Tree cover | Tree cover in view |
C6 | Grass cover | Grass cover in view | ||
C7 | Land cover | Dirt track, stone, and land in view | ||
B3 | Nature conservation | C8 | GR | Area covered by green space |
C9 | GVI | Green Visual Index | ||
C10 | Amount of rare species | Amount of rare species | ||
B4 | Encouraging physical activity | C11 | Residents’ participation in PA | The number of times residents participated in PAs |
C12 | Outdoor activities | Total mileage of physical activities | ||
C13 | Sports diversity | Simpson’s diversity index | ||
C14 | Difficulty of PA | Ratio of road climb height to length | ||
B5 | Cultural sector | C15 | Cultural relics protection units | Number of cultural relics protection units |
C16 | Educational value | The number of publications with the keyword | ||
B6 | Social sector | C17 | Accessibility (Mean) | The average of the accessibility of the area |
C18 | Accessibility (Max) | The maximum of the accessibility of the area | ||
C19 | Accessibility (Min) | The minimum of the accessibility of the area |
B | GA-Optimized Weight of Primary Index | Rank | C | Relative Weight | Normalized Weight of Secondary Index | Rank |
---|---|---|---|---|---|---|
B1 | 0.199 | 3 | C1 | 0.154 | 0.031 | 15 |
C2 | 0.344 | 0.069 | 6 | |||
C3 | 0.218 | 0.043 | 10 | |||
C4 | 0.282 | 0.056 | 8 | |||
B2 | 0.106 | 5 | C5 | 0.289 | 0.031 | 16 |
C6 | 0.562 | 0.060 | 7 | |||
C7 | 0.148 | 0.016 | 19 | |||
B3 | 0.102 | 6 | C8 | 0.417 | 0.042 | 11 |
C9 | 0.417 | 0.042 | 12 | |||
C10 | 0.167 | 0.017 | 18 | |||
B4 | 0.266 | 1 | C11 | 0.359 | 0.095 | 1 |
C12 | 0.205 | 0.055 | 9 | |||
C13 | 0.278 | 0.074 | 5 | |||
C14 | 0.159 | 0.042 | 13 | |||
B5 | 0.122 | 4 | C15 | 0.778 | 0.095 | 2 |
C16 | 0.222 | 0.027 | 17 | |||
B6 | 0.206 | 2 | C17 | 0.448 | 0.092 | 3 |
C18 | 0.384 | 0.079 | 4 | |||
C19 | 0.168 | 0.035 | 14 |
B | Objective Weight of Primary Index | Rank | C | Relative Weight | Normalized Weight of Secondary Index | Rank |
---|---|---|---|---|---|---|
B1 | 0.216 | 1 | C1 | 0.236 | 0.051 | 9 |
C2 | 0.201 | 0.043 | 15 | |||
C3 | 0.292 | 0.063 | 4 | |||
C4 | 0.271 | 0.059 | 7 | |||
B2 | 0.154 | 4 | C5 | 0.325 | 0.050 | 10 |
C6 | 0.404 | 0.062 | 5 | |||
C7 | 0.271 | 0.042 | 18 | |||
B3 | 0.136 | 5 | C8 | 0.323 | 0.044 | 14 |
C9 | 0.320 | 0.043 | 16 | |||
C10 | 0.357 | 0.048 | 12 | |||
B4 | 0.212 | 2 | C11 | 0.172 | 0.037 | 19 |
C12 | 0.223 | 0.047 | 13 | |||
C13 | 0.280 | 0.060 | 6 | |||
C14 | 0.324 | 0.069 | 2 | |||
B5 | 0.119 | 6 | C15 | 0.582 | 0.069 | 1 |
C16 | 0.418 | 0.050 | 11 | |||
B6 | 0.162 | 3 | C17 | 0.418 | 0.068 | 3 |
C18 | 0.259 | 0.042 | 17 | |||
C19 | 0.323 | 0.052 | 8 |
B | GA-Optimized Subjective Weight | Rank | Objective Weight | Rank | Comprehensive Weight | Rank |
---|---|---|---|---|---|---|
B1 | 0.187 | 3 | 0.216 | 1 | 0.202 | 2 |
B2 | 0.141 | 5 | 0.154 | 4 | 0.148 | 4 |
B3 | 0.100 | 6 | 0.136 | 5 | 0.118 | 6 |
B4 | 0.250 | 1 | 0.212 | 2 | 0.231 | 1 |
B5 | 0.117 | 4 | 0.119 | 6 | 0.118 | 5 |
B6 | 0.203 | 2 | 0.162 | 3 | 0.183 | 3 |
C | Subjective Weight | Rank | Objective Weight | Rank | Comprehensive Weight | Rank |
---|---|---|---|---|---|---|
C1 | 0.069 | 15 | 0.051 | 9 | 0.060 | 7 |
C2 | 0.031 | 6 | 0.043 | 15 | 0.037 | 16 |
C3 | 0.044 | 10 | 0.063 | 4 | 0.053 | 9 |
C4 | 0.056 | 8 | 0.059 | 7 | 0.057 | 8 |
C5 | 0.031 | 16 | 0.050 | 10 | 0.040 | 14 |
C6 | 0.060 | 7 | 0.062 | 5 | 0.061 | 5 |
C7 | 0.016 | 19 | 0.042 | 18 | 0.029 | 19 |
C8 | 0.023 | 11 | 0.044 | 14 | 0.033 | 18 |
C9 | 0.057 | 12 | 0.043 | 16 | 0.050 | 12 |
C10 | 0.023 | 18 | 0.048 | 12 | 0.035 | 17 |
C11 | 0.066 | 1 | 0.037 | 19 | 0.051 | 11 |
C12 | 0.082 | 9 | 0.047 | 13 | 0.065 | 4 |
C13 | 0.082 | 5 | 0.060 | 6 | 0.071 | 3 |
C14 | 0.035 | 13 | 0.069 | 2 | 0.052 | 10 |
C15 | 0.095 | 2 | 0.069 | 1 | 0.082 | 1 |
C16 | 0.027 | 17 | 0.050 | 11 | 0.038 | 15 |
C17 | 0.092 | 3 | 0.068 | 3 | 0.080 | 2 |
C18 | 0.079 | 4 | 0.042 | 17 | 0.061 | 5 |
C19 | 0.035 | 14 | 0.052 | 8 | 0.043 | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, T.; Feng, C.; Yue, B.; Zhang, Z. An Evaluation Model of Urban Green Space Based on Residents’ Physical Activity. Sustainability 2024, 16, 4220. https://doi.org/10.3390/su16104220
Dong T, Feng C, Yue B, Zhang Z. An Evaluation Model of Urban Green Space Based on Residents’ Physical Activity. Sustainability. 2024; 16(10):4220. https://doi.org/10.3390/su16104220
Chicago/Turabian StyleDong, Tian, Churan Feng, Bangguo Yue, and Zhengdong Zhang. 2024. "An Evaluation Model of Urban Green Space Based on Residents’ Physical Activity" Sustainability 16, no. 10: 4220. https://doi.org/10.3390/su16104220
APA StyleDong, T., Feng, C., Yue, B., & Zhang, Z. (2024). An Evaluation Model of Urban Green Space Based on Residents’ Physical Activity. Sustainability, 16(10), 4220. https://doi.org/10.3390/su16104220