Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Setup
2.2. Experimental Methodology
2.3. Calculations of Energy and Mass Balance
2.4. LCA Analysis
3. Results
4. Discussion
5. Conclusions
- -
- Utilization of biodiesel manufacturing waste, which has currently no significant application;
- -
- Production of high-calorific-value gaseous fuel;
- -
- Production of sustainable fuel with a net zero emission of CO2;
- -
- Potential application of solid waste ash for fertilizer production.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, A.; Audi, M.; Roussel, Y. Natural resources depletion, renewable energy consumption and environmental degradation: A comparative analysis of developed and developing world. Int. J. Energy Econ. Policy 2021, 11, 251–260. [Google Scholar] [CrossRef]
- Motevali, A.; Hooshmandzadeh, N.; Fayyazi, E.; Valipour, M.; Yue, J. Environmental Impacts of Biodiesel Production Cycle from Farm to Manufactory: An Application of Sustainable Systems Engineering. Atmosphere 2023, 14, 399. [Google Scholar] [CrossRef]
- Zakari, A.; Adedoyin, F.F.; Bekun, F.V. The effect of energy consumption on the environment in the OECD countries: Economic policy uncertainty perspectives. Environ. Sci. Pollut. Res. 2021, 28, 52295–52305. [Google Scholar] [CrossRef] [PubMed]
- Khanal, A. Does energy consumption impact the environment? Evidence from australia using the jj bayer-hanck cointegration technique and the autoregressive distributed lag test. Int. J. Energy Econ. Policy 2021, 11, 185–194. [Google Scholar] [CrossRef]
- Talapko, J.; Talapko, D.; Matić, A.; Škrlec, I. Microorganisms as New Sources of Energy. Energies 2022, 15, 6365. [Google Scholar] [CrossRef]
- Moriarty, P.; Honnery, D. New Energy Technologies: Microalgae, Photolysis and Airborne Wind Turbines. Science 2019, 1, 43. [Google Scholar] [CrossRef]
- Hafezi, R.; Alipour, M. Energy Security and Sustainable Development. In Affordable and Clean Energy: Encyclopedia of the UN Sustainable Development Goals; Springer: Cham, Switzerland, 2020; pp. 1–12. [Google Scholar]
- Pham, T.S. Pumped Storage Power Plant, Solutions to Ensure Water Sustainability and Environmental Protection. In Advances in Research on Water Resources and Environmental Systems; Springer International Publishing: Cham, Switzerland, 2023; pp. 111–119. [Google Scholar]
- Cherp, A.; Vinichenko, V.; Tosun, J.; Gordon, J.A.; Jewell, J. National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nat. Energy 2021, 6, 742–754. [Google Scholar] [CrossRef]
- Karunathilake, H.; Witharana, S. Fossil fuels and global energy economics. Ref. Modul. Earth Syst. Environ. Sci. 2023. [Google Scholar] [CrossRef]
- Lujala, P.; Le Billon, P.; Gaulin, N. Phasing Out Fossil Fuels: Determinants of Production Cuts and Implications for an International Agreement. Glob. Environ. Politics 2022, 22, 95–128. [Google Scholar] [CrossRef]
- Bruce, P.; Catlow, R.; Edwards, P. Energy materials to combat climate change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 3225. [Google Scholar] [CrossRef]
- Jia, X.; Wang, C.; Lee, C.Y.; Yu, C.; Wallace, G.G. Energy materials for transient power sources. MRS Bull. 2020, 45, 121–128. [Google Scholar] [CrossRef]
- Sharma, R.; Tiwari, S. Waste to energy prospect towards sustainability: A review. Int. J. Tech. Res. Sci. 2020, 3, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kaur, M.; Punj, S.; Singh, K. Biomass as a sustainable resource for value-added modern materials: A review. Biofuels Bioprod. Biorefining 2020, 14, 673–695. [Google Scholar] [CrossRef]
- dell’Erba, I.E.; Hoppe, C.E.; Williams, R.J.J. Synthesis and Properties of Organic–Inorganic Hybrid Materials Based on Glycerol. Ind. Eng. Chem. Res. 2012, 51, 7793–7799. [Google Scholar] [CrossRef]
- Thiruketheeswaranathan, S. Application of Life Cycle Assessment Tool on Biodiesel Production: Assessing the Environmental Impact of Biodiesel. Middle East J. Appl. Sci. Technol. 2022, 5, 1–6. [Google Scholar] [CrossRef]
- Wong, W.Y.; Lim, S.; Pang, Y.L.; Shuit, S.H.; Lam, M.K.; Tan, I.S. A comprehensive review of the production methods and effect of parameters for glycerol-free biodiesel production. Renew. Sustain. Energy Rev. 2023, 182, 113397. [Google Scholar] [CrossRef]
- Nguyen, V.G.; Pham, M.T.; Le, N.V.L.; Le, H.C.; Truong, T.H.; Cao, D.N. A comprehensive review on the use of biodiesel for diesel engines. Int. J. Renew. Energy Dev. 2023, 12, 720–740. [Google Scholar] [CrossRef]
- Wani, M.R.; Sachan, V. Comparison of Performance of Internal Combustion Engine Fuelled with Diesel and Biodiesel (used Vegetable Oil) Blends. Int. J. Mech. Eng. 2023, 10, 7–12. [Google Scholar] [CrossRef]
- Available online: https://www.theglobaleconomy.com/rankings/diesel_fuel_consumption/ (accessed on 4 March 2024).
- Demirbas, A. Biofuels securing the planet’s future energy needs. Energy Convers. Manag. 2009, 50, 2239–2249. [Google Scholar] [CrossRef]
- Fatih Demirbas, M. Biorefineries for biofuel upgrading: A critical review. Appl. Energy 2009, 86, S151–S161. [Google Scholar] [CrossRef]
- Bohon, M.D.; Metzger, B.A.; Linak, W.P.; King, C.J.; Roberts, W.L. Glycerol combustion and emissions. Proc. Combust. Inst. 2011, 33, 2717–2724. [Google Scholar] [CrossRef]
- Vicente, G.; Martinez, M.; Aracil, J. Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Bioresour. Technol. 2007, 98, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Malayil, S.; Surendran, A.N.; Kate, K.; Satyavolu, J. Utilization of residual fatty acids in matter organic non-glycerol from a soy biodiesel plant in filaments used for 3D printing. J. Bioresour. Bioprod. 2023, 8, 215–223. [Google Scholar] [CrossRef]
- Bagnato, G.; Iulianelli, A.; Sanna, A.; Basile, A. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. Membranes 2017, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Kachel-Jakubowska, M.; Matwijczuk, A.; Gagoś, M. Analysis of the physicochemical properties of post-manufacturing waste derived from production of methyl esters from rapeseed oil. Int. Agrophys. 2017, 31, 175–182. [Google Scholar] [CrossRef]
- Niedziółka, I.; Szpryngiel, M.; Kachel-Jakubowska, M.; Kraszkiewicz, A.; Zawiślak, K.; Sobczak, P. Assessment of the energetic and mechanical properties of pellets produced from agricultural biomass. Renew. Energy 2015, 76, 312–317. [Google Scholar] [CrossRef]
- Hiremath, A.; Kannabiran, M.; Rangaswamy, V. 1,3-Propanediol production from crude glycerol from jatropha biodiesel process. New Biotechnol. 2011, 28, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Sun, Y.; Tan, C.; Li, H.; Zheng, X.J.; Jin, K.Q. Efficient production of dihydroxyacetone from biodiesel-derived crude glycerol by newly isolated Gluconobacter frateurii. Bioresour. Technol. 2013, 142, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Bouaid, A.; Vázquez, R.; Martinez, M.; Aracil, J. Effect of free fatty acids contents on biodiesel quality. Pilot plant studies. Fuel 2016, 174, 54–62. [Google Scholar] [CrossRef]
- Hu, S.; Luo, X.; Wan, C.; Li, Y. Characterization of Crude Glycerol from Biodiesel Plants. J. Agric. Food Chem. 2012, 60, 5915–5921. [Google Scholar] [CrossRef]
- Chol, C.G.; Dhabhai, R.; Dalai, A.K.; Reaney, M. Purification of crude glycerol derived from biodiesel production process: Experimental studies and techno-economic analyses. Fuel Process. Technol. 2018, 178, 78–87. [Google Scholar] [CrossRef]
- Mayowa, J. Biodiesel Production Innovation Based on Jatropha Curcas and Soybean Oil. Int. J. Pap. Adv. Sci. Rev. 2023, 4, 10–15. [Google Scholar] [CrossRef]
- Baioni e Silva, G.; Manicardi, T.; Longati, A.A.; Lora, E.E.S.; Milessi, T.S. Parametric comparison of biodiesel transesterification processes using non-edible feedstocks: Castor bean and jatropha oils. Biofuels Bioprod. Biorefining 2023, 17, 297–311. [Google Scholar] [CrossRef]
- Ong, H.C.; Tiong, Y.W.; Goh, B.H.H.; Gan, Y.Y.; Mofijur, M.; Fattah, I.M.R. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Convers. Manag. 2021, 228, 113647. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Sakinah, A.M.M.; Zularisam, A.W.; Pandey, A. Glycerol waste to value added products and its potential applications. Syst. Microbiol. Biomanufacturing 2021, 1, 378–396. [Google Scholar] [CrossRef] [PubMed]
- Rouhany, M.; Montgomery, H. Global Biodiesel Production: The State of the Art and Impact on Climate Change. Biodiesel Prod. Combust. 2019, 8, 1–14. [Google Scholar]
- Donkin, S.S.; Koser, S.L.; White, H.M.; Doane, P.H.; Cecava, M.J. Feeding value of glycerol as a replacement for corn grain in rations fed to lactating dairy cows. J. Dairy Sci. 2009, 92, 5111–5119. [Google Scholar] [CrossRef]
- Lawong, W.; Shuriyapha, C. Capital Cost Comparison of Heat Energy obtained from Glycerine Fuel and Cooking gas used for Bio-diesel Production Process. Procedia Eng. 2012, 32, 449–454. [Google Scholar] [CrossRef]
- Balla, V.K.; Tadimeti, J.G.D.; Sudan, K.; Satyavolu, J.; Kate, K.H. First report on fabrication and characterization of soybean hull fiber: Polymer composite filaments for fused filament fabrication. Prog. Addit. Manuf. 2021, 6, 39–52. [Google Scholar] [CrossRef]
- Sajid, M.; Raheem, A.; Ullah, N.; Asim, M.; Ur Rehman, M.S.; Ali, N. Gasification of municipal solid waste: Progress, challenges, and prospects. Renew. Sustain. Energy Rev. 2022, 168, 112815. [Google Scholar] [CrossRef]
- Suriya, K.K.A.; Farzan, K.; Yogesh, C.U.; Bala, B.S.S. Conversion process of natural gas into liquid fuels. J. Future Eng. Technol. 2022, 18, 45. [Google Scholar] [CrossRef]
- Sandesh, K.; Ujwal, P. Trends and perspectives of liquid biofuel—Process and industrial viability. Energy Convers. Manag. X 2021, 10, 100075. [Google Scholar] [CrossRef]
- Gracz, W.; Marcinkowski, D.; Golimowski, W.; Szwajca, F.; Strzelczyk, M.; Wasilewski, J. Multifaceted Comparison Efficiency and Emission Characteristics of Multi-Fuel Power Generator Fueled by Different Fuels and Biofuels. Energies 2021, 14, 3388. [Google Scholar] [CrossRef]
- Akimoto, Y.; Minei, Y.; Okajima, K. Evaluation of Impurity Concentration Process and Mitigation Operation in Fuel Cell System for Using Biogas. Reactions 2021, 2, 115–128. [Google Scholar] [CrossRef]
- Cheng, Y.; Thow, Z.; Wang, C.H. Biomass gasification with CO2 in a fluidized bed. Powder Technol. 2016, 296, 87–101. [Google Scholar] [CrossRef]
- Benedetti, V.; Patuzzi, F.; Baratieri, M. Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Appl. Energy 2018, 227, 92–99. [Google Scholar] [CrossRef]
- Schneider, J.; Grube, C.; Herrmann, A.; Rönsch, S. Atmospheric entrained-flow gasification of biomass and lignite for decentralized applications. Fuel Process. Technol. 2016, 152, 72–82. [Google Scholar] [CrossRef]
- Karl, J.; Pröll, T. Steam gasification of biomass in dual fluidized bed gasifiers: A review. Renew. Sustain. Energy Rev. 2018, 98, 64–78. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, W.; Ji, W. Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Appl. Energy 2011, 88, 1656–1663. [Google Scholar] [CrossRef]
- Frolov, S.M. Organic Waste Gasification: A Selective Review. Fuels 2021, 2, 556–650. [Google Scholar] [CrossRef]
- Bojanovský, J.; Máša, V.; Hudák, I.; Skryja, P.; Hopjan, J. Rotary Kiln, a Unit on the Border of the Process and Energy Industry—Current State and Perspectives. Sustainability 2022, 14, 13903. [Google Scholar] [CrossRef]
- Mushtaq, A.; Bin Mukhtar, H.; Mohd Shariff, A. FTIR Study of Enhanced Polymeric Blend Membrane with Amines. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 1811–1820. [Google Scholar] [CrossRef]
- Zhang, W.; Kim, S.; Wahl, L.; Khare, R.; Hale, L.; Hu, J. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 2023, 379, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Petchesi, I. Life Cycle Analysis of GHG and Air Pollutant Emissions from Renewable and Conventional Electricity, Heating, and Transport Fuel Options in the EU until 2030; ETC/ACC Technical Paper 2009/18; European Topic Centre on Air and Climate Change: Bilthoven, The Netherlands, 2009. [Google Scholar]
- PN-EN ISO 21663:2021-06; Solid Secondary Fuels—Instrumental Methods for the Determination of Carbon (C), Hydrogen (H), Nitrogen (N) and Sulphur (S). Polish Committee for Standardization: Warsaw, Poland, 2021.
- Sitka, A.; Szulc, P.; Smykowski, D.; Jodkowski, W. Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier. Renew. Energy 2021, 175, 422–429. [Google Scholar] [CrossRef]
- Casasso, A.; Capodaglio, P.; Simonetto, F.; Sethi, R. Environmental and Economic Benefits from the Phase-out of Residential Oil Heating: A Study from the Aosta Valley Region (Italy). Sustainability 2019, 11, 3633. [Google Scholar] [CrossRef]
Ash (Raw Sample), % | Ash (Dried Sample), % | VM, % | Moisture, % |
---|---|---|---|
12.6 | 31.5 | 86.1 | 59.0 |
C | H | N | S |
---|---|---|---|
49.0 | 8.3 | 0.40 | 0 |
Parameter | Unit | Value |
---|---|---|
- | 0.59 | |
kg/h | 6.50 | |
kg/h | 2.65 | |
kg/h | 3.85 | |
kg/h | 0.83 | |
MJ/kg | 13.30 | |
kW | 24.02 |
Parameter | Unit | Value |
---|---|---|
kg/h | 5.67 | |
kg/h | 1.82 | |
kg/m3 | 1.46 | |
W2G | MJ/kg | 35.07 |
kW | 17.69 | |
kW | 6.33 |
Process 1: Generation of 1 MWt of heat using MONG pyrolysis gas | |
Main substrate | RAW MONG: 366.6 kg/h MONG pyrolysis gas: 102.7 kg/h |
Main product | Heat supply: 1 MWt |
Solid byproducts/waste | Mass flux of ash (as fertilizer): 46.8 kg/h |
Emission to the atmosphere | CO: 0.1–0.4 kg/h |
CO2: 0.0 kg/h (biomass emission, carbon neutral) | |
NOX: 0.1 kg/h | |
SO2: 0.0 kg/h | |
Process 2: Generation of 1 MWt of heat using natural gas | |
Main substrate | Natural gas: 73.5 kg/h |
Main product | Heat supply: 1 MWt |
Solid waste | 0 kg/h |
Emission to the atmosphere | CO: 0.1–0.4 kg/h |
CO2: 233 kg/h | |
NOX: 0.2–0.8 kg/h | |
SO2: 1.8 kg/h | |
Process 3: Generation of 1 MWt of heat using lignite | |
Main substrate | Lignite: 491.1 kg/h |
Main product | Heat supply: 1 MWt |
Solid waste | 115.9 kg/h |
Emission to the atmosphere | CO: 0.6 kg/h |
CO2: 307–416 kg/h | |
NOX: 0.3–0.8 kg/h | |
SO2: 0.4–0.7 kg/h | |
Process 4: Generation of 1 MWt of heat using hard coal | |
Main substrate | Coal: 167.4 kg/h |
Main product | Heat supply: 1 MWt |
Solid waste | 42.4 kg/h |
Emission to the atmosphere | CO: 0.2–0.6 kg/h |
CO2: 260–331 kg/h | |
NOX: 0.5–0.8 kg/h | |
SO2: 0.4–0.7 kg/h |
Comparison of Processes | ||||
---|---|---|---|---|
Environmental Impact | Process 1 | Process 2 | Process 3 | Process 4 |
Natural resources depletion | 0.0 kg/h | 73.5 kg/h | 491.1 kg/h | 167.4 kg/h |
Waste deposition | 0.0 kg/h * | 0.0 kg/h | 115.9 kg/h | 42.4 kg/h |
Global warming | 0.0 kg/h CO2 eq. | 233 kg/h CO2 eq. | 307–416 CO2 eq. | 260–331 CO2 eq. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitka, A.; Szulc, P.; Smykowski, D.; Anwajler, B.; Tietze, T.; Jodkowski, W. Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier. Sustainability 2024, 16, 4251. https://doi.org/10.3390/su16104251
Sitka A, Szulc P, Smykowski D, Anwajler B, Tietze T, Jodkowski W. Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier. Sustainability. 2024; 16(10):4251. https://doi.org/10.3390/su16104251
Chicago/Turabian StyleSitka, Andrzej, Piotr Szulc, Daniel Smykowski, Beata Anwajler, Tomasz Tietze, and Wiesław Jodkowski. 2024. "Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier" Sustainability 16, no. 10: 4251. https://doi.org/10.3390/su16104251
APA StyleSitka, A., Szulc, P., Smykowski, D., Anwajler, B., Tietze, T., & Jodkowski, W. (2024). Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier. Sustainability, 16(10), 4251. https://doi.org/10.3390/su16104251