Towards a Sustainable Urban Future: A Comprehensive Review of Urban Heat Island Research Technologies and Machine Learning Approaches
Abstract
:1. Introduction
2. Methodology
- (1)
- Primary data: the data collected from the field using sensors, data loggers, etc. (not satellite, remove remote sensing-related papers).
- (2)
- Data collected over multiple days.
- (3)
- Data being used for urban heat island identification purposes.
- (4)
- Collected at least two data types (e.g., temperature and humidity)
- (5)
- Outcome: include heatmaps and visualization of the data.
- (6)
- Restricted US and Canada; make sure the paper is related to one of the urban areas in Canada or the United States.
- (7)
- Conclusion: related to Smart Technologies.
- (1)
- Primary data: the data collected from the field using sensors, data loggers, etc. (not satellite, remove remote sensing-related papers).
- (2)
- Using at least one of the machine-learning or deep-learning algorithms
- (3)
- Restricted to US and Canada; make sure the paper is related to one of the urban areas in Canada or the United States.
- (4)
- Prediction: concentrated on the urban heat island prediction (temperature, humidity).
- (5)
- Outcome: include heatmaps and visualization of the data.
3. Overview Findings
3.1. Data Collection Technologies
3.1.1. Off-Shelf Sensors and Data Loggers
3.1.2. Novel Technologies and Approaches
3.2. UHI Prediction and Machine Learning Application
3.2.1. Non-Machine Learning Models
3.2.2. Statistical and Machine Learning Models
3.3. Synthesis of Findings across Studies
4. Discussion
4.1. The Urban Heat Island Papers Comparison
4.1.1. Methodological Evolution and Focus
Initial Studies (1998–2014)
Advancement through Technology (2014–Present)
Comparison of the Used Technologies
Geographic and Temporal Differences
Physical Urban Climate Models, Machine Learning Methods, and Limitations
Findings and Concentrations
Temperature Meta-Analysis
4.2. Machine Learning Papers Comparison
4.2.1. Methodology and Applications
4.2.2. Integration with Urban Planning and Policy
5. Conclusions and Future Studies
5.1. Future Studies
5.1.1. Technological Advancement
5.1.2. Machine Learning and AI Integration
5.1.3. Interdisciplinary Approaches
5.1.4. Expanding Geographical Scope
Author Contributions
Funding
Conflicts of Interest
References
- Cetin, M. Climate comfort depending on different altitudes and land use in the urban areas in Kahramanmaras City. Air Qual. Atmos. Health 2020, 13, 991–999. [Google Scholar] [CrossRef]
- Karimi, A.; Mohammad, P.; Garcia-Martinez, A.; Moreno-Rangel, D.; Gachkar, D.; Gachkar, S. New Developments and Future Challenges in Reducing and Controlling Heat Island Effect in Urban Areas, Environment, Development and Sustainability; Springer: Dordrecht, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Kousis, I.; Pisello, A.L. For the mitigation of urban heat island and urban noise island: Two simultaneous sides of urban discomfort. Environ. Res. Lett. 2020, 15, 103004. [Google Scholar] [CrossRef]
- Roxon, J.; Ulm, F.-J.; Pellenq, R.J.-M. Urban heat island impact on state residential energy cost and CO2 emissions in the United States. Urban Clim. 2020, 31, 100546. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.; Cao, L.; Pu, R.; Wang, Z.; Zhang, H.; Chen, H.; Gong, H. Assessing spatiotemporal characteristics of urban heat islands from the perspective of an urban expansion and green infrastructure. Sustain. Cities Soc. 2021, 74, 103208. [Google Scholar] [CrossRef]
- Mohammad, P.; Goswami, A. Quantifying diurnal and seasonal variation of surface urban heat island intensity and its associated determinants across different climatic zones over Indian cities. GISci. Remote. Sens. 2021, 58, 955–981. [Google Scholar] [CrossRef]
- Matzarakis, A.; Martinelli, L.; Ketterer, C. Relevance of Thermal Indices for the Assessment of the Urban Heat Island. In Counteracting Urban Heat Island Effects in a Global Climate Change Scenario; Springer International Publishing: Cham, Switzerland, 2016; pp. 93–107. [Google Scholar] [CrossRef]
- Shen, P.; Wang, M.; Liu, J.; Ji, Y. Hourly air temperature projection in future urban area by coupling climate change and urban heat island effect. Energy Build. 2023, 279, 112676. [Google Scholar] [CrossRef]
- Levy, A. Changement climatique, îlot de chaleur urbain et impacts sanitaires: Paris et son urbanisme. Environ. Risques Sante 2016, 15, 351–356. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y.; Sung, H.C.; Kim, S.H.; Jeon, S.W. Surface urban heat island in South Korea’s new towns with different urban planning. Environ. Monit. Assess. 2022, 194, 360. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, B.; Zhan, Q.; Gao, S.; Li, R.; Fan, Z. The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China. Sustain. Cities Soc. 2021, 71, 102987. [Google Scholar] [CrossRef]
- Dubovik, O.; Schuster, G.L.; Xu, F.; Hu, Y.; Bösch, H.; Landgraf, J.; Li, Z. Grand Challenges in Satellite Remote Sensing. Front. Remote Sens. 2021, 2, 619818. [Google Scholar] [CrossRef]
- NASA WorldView. EOSDIS Worldview; NASA: Washington, DC, USA, 2023. Available online: https://worldview.earthdata.nasa.gov/?v=-218.09270865546608,-12.780694486765938,6.4909205215590475,99.84010002729892&l=Reference_Labels_15m(hidden),Reference_Features_15m(hidden),Coastlines_15m,AIRS_L2_Total_Cloud_Fraction_Night(hidden),AIRS_L2_Total_Clou (accessed on 2 January 2024).
- NASA. Ask AIRS|Support; NASA: Washington, DC, USA, 2023. Available online: https://airs.jpl.nasa.gov/data/support/ask-airs?order=is_featured+desc%2C+question+asc&per_page=50&page=0&search=&condition_1=1%3Ais_featured&fs=&fc=&ft=&dp=&category= (accessed on 2 January 2024).
- Ghorbany, S.; Hu, M.; Yao, S.; Wang, C.; Nguyen, Q.C.; Yue, X.; Alirezaei, M.; Tasdizen, T.; Sisk, M. Examining the role of passive design indicators in energy burden reduction: Insights from a machine learning and deep learning approach. Build. Environ. 2024, 250, 111126. [Google Scholar] [CrossRef]
- Hu, M.; Ghorbany, S. Building Stock Models for Embodied Carbon Emissions—A Review of a Nascent Field. Sustainability 2024, 16, 2089. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. Ann. Intern. Med. 2009, 151, W-65–W-94. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Ghalambaz, S.; Sheremet, M.; Baro, M.; Ghalambaz, M. Deciphering Urban Heat Island Mitigation: A Comprehensive Analysis of Application Categories and Research Trends. Sustain. Cities Soc. 2024, 101, 105081. [Google Scholar] [CrossRef]
- Ramakreshnan, L.; Aghamohammadi, N. The Application of Nature-Based Solutions for Urban Heat Island Mitigation in Asia: Progress, Challenges, and Recommendations. Curr. Environ. Health Rep. 2024, 11, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Idso, C.D.; Idso, S.B.; Balling, R.C. The urban CO2 dome of phoenix, Arizona. Phys. Geogr. 1998, 19, 95–108. [Google Scholar] [CrossRef]
- Smargiassi, A.; Fournier, M.; Griot, C.; Baudouin, Y.; Kosatsky, T. Prediction of the indoor temperatures of an urban area with an in-time regression mapping approach. J. Expo. Sci. Environ. Epidemiol. 2018, 18, 282–288. [Google Scholar] [CrossRef]
- Mallen, E.; Bakin, J.; Stone, B.; Sivakumar, R.; Lanza, K. Thermal impacts of built and vegetated environments on local microclimates in an Urban University campus. Urban Clim. 2020, 32, 100640. [Google Scholar] [CrossRef]
- Pioppi, B.; Pisello, A.L.; Ramamurthy, P. Wearable sensing techniques to understand pedestrian-level outdoor microclimate affecting heat related risk in urban parks. Sol. Energy 2022, 242, 397–412. [Google Scholar] [CrossRef]
- Sen, S.; Roesler, J.; Ruddell, B.; Middel, A. Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona. Sustainability 2019, 11, 4452. [Google Scholar] [CrossRef]
- Vant-Hull, B.; Karimi, M.; Sossa, A.; Wisanto, J.; Nazari, R.; Khanbilvardi, R. Fine structure in manhattan’s daytime urban heat island: A new dataset. J. Urban Environ. Eng. 2014, 8, 59–74. [Google Scholar] [CrossRef]
- Schatz, J.; Kucharik, C.J. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environ. Res. Lett. 2015, 10, 094024. [Google Scholar] [CrossRef]
- Ramamurthy, P.; González, J.; Ortiz, L.; Arend, M.; Moshary, F. Impact of heatwave on a megacity: An observational analysis of New York City during July 2016. Environ. Res. Lett. 2017, 12, 054011. [Google Scholar] [CrossRef]
- Hong, K.Y.; Tsin, P.K.; van den Bosch, M.; Brauer, M.; Henderson, S.B. Urban greenness extracted from pedestrian video and its relationship with surrounding air temperatures. Urban For. Urban Green. 2019, 38, 280–285. [Google Scholar] [CrossRef]
- Eanes, A.M.; Lookingbill, T.R.; Hoffman, J.S.; Saverino, K.C.; Fong, S.S. Assessing Inequitable Urban Heat Islands and Air Pollution Disparities with Low-Cost Sensors in Richmond, Virginia. Sustainability 2020, 12, 10089. [Google Scholar] [CrossRef]
- Razzaghmanesh, M.; Borst, M.; Liu, J.; Ahmed, F.; O’connor, T.; Selvakumar, A. Air Temperature Reductions at the Base of Tree Canopies. J. Sustain. Water Built Environ. 2021, 7, 04021010. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Navarro, C.; Pataki, D.E.; Pardyjak, E.R.; Bowling, D.R. Effects of vegetation on the spatial and temporal variation of microclimate in the urbanized Salt Lake Valley. Agric. For. Meteorol. 2021, 296, 108211. [Google Scholar] [CrossRef]
- Shi, R.; Hobbs, B.F.; Zaitchik, B.F.; Waugh, D.W.; Scott, A.A.; Zhang, Y. Monitoring intra-urban temperature with dense sensor networks: Fixed or mobile? An empirical study in Baltimore, MD. Urban Clim. 2021, 39, 100979. [Google Scholar] [CrossRef]
- Loria, A.F.R.; Thota, A.; Thomas, A.M.; Friedle, N.; Lautenberg, J.M.; Song, E.C. Subsurface heat island across the Chicago Loop district: Analysis of localized drivers. Urban Clim. 2022, 44, 101211. [Google Scholar] [CrossRef]
- Park, S.; Tuller, S.E.; Jo, M. Application of Universal Thermal Climate Index (UTCI) for microclimatic analysis in urban thermal environments. Landsc. Urban Plan. 2014, 125, 146–155. [Google Scholar] [CrossRef]
- Chui, A.C.; Gittelson, A.; Sebastian, E.; Stamler, N.; Gaffin, S.R. Urban heat islands and cooler infrastructure—Measuring near-surface temperatures with hand-held infrared cameras. Urban Clim. 2018, 24, 51–62. [Google Scholar] [CrossRef]
- Middel, A.; Krayenhoff, E.S. Micrometeorological determinants of pedestrian thermal exposure during record-breaking heat in Tempe, Arizona: Introducing the MaRTy observational platform. Sci. Total Environ. 2019, 687, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Sharston, R. Normalized urban heat island (UHI) indicators: Classifying the temporal variation of UHI for building energy simulation (BES) applications. Build. Simul. 2023, 16, 1645–1658. [Google Scholar] [CrossRef]
- Silva, T.C.; Zhao, L. Machine Learning in Complex Networks; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Ghorbany, S.; Noorzai, E.; Yousefi, S. BIM-based solution to enhance the performance of public-private partnership construction projects using copula bayesian network. Expert Syst. Appl. 2023, 216, 119501. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yuan, Y.; Han, Z.; Liu, G. Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach. Indoor Air 2022, 32, e12984. [Google Scholar] [CrossRef] [PubMed]
- Ghorbany, S.; Yousefi, S.; Noorzai, E. Evaluating and optimizing performance of public–private partnership projects using copula Bayesian network. Eng. Constr. Arch. Manag. 2022, 31, 290–323. [Google Scholar] [CrossRef]
- Azodi, C.B.; Tang, J.; Shiu, S.-H. Opening the Black Box: Interpretable Machine Learning for Geneticists. Trends Genet. 2020, 36, 442–455. [Google Scholar] [CrossRef]
- Malakouti, S.M. Utilizing time series data from 1961 to 2019 recorded around the world and machine learning to create a Global Temperature Change Prediction Model. Case Stud. Chem. Environ. Eng. 2023, 7, 100312. [Google Scholar] [CrossRef]
- Yu, W.; Nakisa, B.; Ali, E.; Loke, S.W.; Stevanovic, S.; Guo, Y. Sensor-based indoor air temperature prediction using deep ensemble machine learning: An Australian urban environment case study. Urban Clim. 2023, 51, 101599. [Google Scholar] [CrossRef]
- Carter, M.; Shepherd, J.M.; Burian, S.; Jeyachandran, I. Integration of lidar data into a coupled mesoscale–land surface model: A theoretical assessment of sensitivity of urban–coastal mesoscale circulations to urban canopy parameters. J. Atmos. Ocean. Technol. 2012, 29, 328–346. [Google Scholar] [CrossRef]
- Vermunt, B.; Cuddington, K.; Sobek-Swant, S.; Crosthwaite, J. Cold temperature and emerald ash borer: Modelling the minimum under-bark temperature of ash trees in Canada. Ecol. Model. 2012, 235–236, 19–25. [Google Scholar] [CrossRef]
- Gutiérrez, E.; González, J.E.; Bornstein, R.; Arend, M.; Martilli, A. A New Modeling Approach to Forecast Building Energy Demands During Extreme Heat Events in Complex Cities. J. Sol. Energy Eng. 2013, 135, 040906. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Z.-H. Physical parameterization and sensitivity of urban hydrological models: Application to green roof systems. Build. Environ. 2014, 75, 250–263. [Google Scholar] [CrossRef]
- Bryce, J.; Ihnat, Z. Improved models of solar radiation and convective heat transfer for pavement temperature prediction. Int. J. Pavement Eng. 2022, 23, 2123–2134. [Google Scholar] [CrossRef]
- Mirzaei, P.A.; Haghighat, F.; Nakhaie, A.A.; Yagouti, A.; Giguère, M.; Keusseyan, R.; Coman, A. Indoor thermal condition in urban heat Island—Development of a predictive tool. Build. Environ. 2012, 57, 7–17. [Google Scholar] [CrossRef]
- Detenbeck, N.E.; Morrison, A.C.; Abele, R.W.; Kopp, D.A. Spatial statistical network models for stream and river temperature in New England, USA. Water Resour. Res. 2016, 52, 6018–6040. [Google Scholar] [CrossRef]
- Malings, C.; Pozzi, M.; Klima, K.; Bergés, M.; Bou-Zeid, E.; Ramamurthy, P. Surface heat assessment for developed environments: Probabilistic urban temperature modeling. Comput. Environ. Urban Syst. 2017, 66, 53–64. [Google Scholar] [CrossRef]
- Hardin, A.W.; Liu, Y.; Cao, G.; Vanos, J.K. Urban heat island intensity and spatial variability by synoptic weather type in the northeast U.S. Urban Clim. 2018, 24, 747–762. [Google Scholar] [CrossRef]
- Han, J.M.; Ang, Y.Q.; Malkawi, A.; Samuelson, H.W. Using recurrent neural networks for localized weather prediction with combined use of public airport data and on-site measurements. Build. Environ. 2021, 192, 107601. [Google Scholar] [CrossRef]
- Assaf, G.; Hu, X.; Assaad, R.H. Predicting Urban Heat Island severity on the census-tract level using Bayesian networks. Sustain. Cities Soc. 2023, 97, 104756. [Google Scholar] [CrossRef]
- Assaf, G.; Hu, X.; Assaad, R.H. Mining and modeling the direct and indirect causalities among factors affecting the Urban Heat Island severity using structural machine learned Bayesian networks. Urban Clim. 2023, 49, 101570. [Google Scholar] [CrossRef]
- Tariku, F.; Mombeni, A.G. ANN-Based Method for Urban Canopy Temperature Prediction and Building Energy Simulation with Urban Heat Island Effect in Consideration. Energies 2023, 16, 5335. [Google Scholar] [CrossRef]
- United Nations. The Paris Agreement; United Nations: New York, NY, USA, 2016. [Google Scholar]
- LinkNYC. 2016. Available online: https://www.link.nyc/faq.html#linknyc (accessed on 7 May 2024).
- Shah, J.; Kothari, J.; Doshi, N. A Survey of Smart City infrastructure via Case study on New York. Procedia Comput. Sci. 2019, 160, 702–705. [Google Scholar] [CrossRef]
- IFC. Green Climate Fund; IFC: Washington, DC, USA, 2024; Available online: https://www.ifc.org/en/what-we-do/sector-expertise/blended-finance/climate/green-climate-fund (accessed on 7 May 2024).
Category | Number of Papers | Years Range |
---|---|---|
Premanufactured Sensors and Data Loggers | 12 | 1998–2022 |
Novel Technologies and Approaches | 6 | 2014–2023 |
ID | Paper | Year | Data Collection Year | Devices Used | Data Collection Period | Data Collection Interval |
---|---|---|---|---|---|---|
1 | [22] | 1998 | 1998 | Medical Syringes, Basic Thermometers | - | - |
2 | [23] | 2008 | 2005 | HOBO instruments, Landsat 5/TM | July | 10 min |
3 | [27] | 2014 | 2012 | HOBO instruments, Vernier instruments | June–August 2012, July–October 2013 | Fixed: 3 min, Mobile: 10 s |
4 | [28] | 2015 | 2012 | HOBO instruments | July–September 2012, January–March 2013 | 15 min |
5 | [29] | 2017 | 2016 | Multi-channel Radiometers (Radiometric MP-3000A), Ground-based weather stations (ASOS, APRSWXNET) | July | |
6 | [30] | 2019 | 2014 | Met One 064-2 Thermometer, GoPro Camera | May–September | 10 s |
7 | [31] | 2020 | 2019 | Purple Air PA-II sensors | February–November | 2 min |
8 | [24] | 2020 | 2017 | HOBO instruments | July–September | - |
9 | [32] | 2021 | 2017 | HOBO instruments | August–November | 10 min |
10 | [33] | 2021 | 2016 | HOBO instruments | June–August | 15 min |
11 | [34] | 2021 | 2016 | iButton Model DS1923 | Mobile sensor data: 29 August 2018; Fixed Sensors: May–September | Mobile Sensors: Every Second; Fixed Sensors: Hourly |
12 | [35] | 2022 | 2021 | HOBO instruments | February and June | 1 h |
Category | Number of Papers | Years Range |
---|---|---|
Non-Machine Learning Models | 5 | 2012–2022 |
Statistical and Machine Learning Models | 7 | 2017–2023 |
Category | Paper | Year | Data Collection Year | Location | Data Collection Period | Max Temp | Min Temp |
---|---|---|---|---|---|---|---|
1 | [22] | 1998 | 1998 | Phoenix, AZ, USA | - | 17.2 | 3.3 |
1 | [23] | 2008 | 2005 | Montreal, QC, Canada | July | 32.3 | 10.2 |
1 | [27] | 2014 | 2012 | Manhattan, New York City, NY, USA | June–August 2012, July–October 2013 | 17 | 10 |
1 | [28] | 2015 | 2012 | Madison, WI, USA | July–September 2012, January–March 2013 | 38.9 | −17.8 |
1 | [29] | 2017 | 2016 | New York City, NY, USA | July | 32.22 | 17 |
1 | [30] | 2019 | 2014 | Vancouver, BC, Canada | May–September | 31.9 | 19.8 |
1 | [31] | 2020 | 2019 | Richmond, VA, USA | February–November | 46 | 25.5 |
1 | [24] | 2020 | 2017 | Georgia Institute of Technology, Atlanta, GA, USA | July–September | 34.4 | 21.24 |
1 | [32] | 2021 | 2017 | City of Camden, NJ, USA | August–November | 34.78 | - |
1 | [33] | 2021 | 2016 | Salt Lake Valley, UT, USA | June–August | 32.2 | 15 |
1 | [34] | 2021 | 2016 | Baltimore, MD, USA | Mobile sensor data: 29 August 2018; Fixed Sensors: May–September | 34.5 | |
1 | [35] | 2022 | 2021 | Chicago Loop district, Chicago, IL, USA | February and June | 36.3 | - |
2 | [36] | 2014 | 2009 | Nanaimo, BC, Canada | 11 June 2009 | 28.7 | 22.9 |
2 | [38] | 2019 | 2016 | Phoenix, AZ, USA | 19 June 2016 | 48.5 | 28.9 |
2 | [26] | 2019 | 2015 | Phoenix, AZ, USA | 13 August 2015 | 42.22 | - |
2 | [25] | 2022 | 2019 | New York City, NY, USA | July 2019 | 36.7 | 16 |
Maximum Temperature Statistics | Minimum Temperature Statistics | |
---|---|---|
Statistic | Value | Value |
Count | 16 | 12 |
Mean | 33.99 °C | 14.34 °C |
Standard Deviation | 8.46 °C | 12.39 °C |
Minimum | 17.00 °C | −17.80 °C |
25th Percentile | 32.13 °C | 10.15 °C |
Median (50th Percentile) | 34.45 °C | 16.50 °C |
75th Percentile | 37.25 °C | 21.66 °C |
Maximum | 48.50 °C | 28.90 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbany, S.; Hu, M.; Yao, S.; Wang, C. Towards a Sustainable Urban Future: A Comprehensive Review of Urban Heat Island Research Technologies and Machine Learning Approaches. Sustainability 2024, 16, 4609. https://doi.org/10.3390/su16114609
Ghorbany S, Hu M, Yao S, Wang C. Towards a Sustainable Urban Future: A Comprehensive Review of Urban Heat Island Research Technologies and Machine Learning Approaches. Sustainability. 2024; 16(11):4609. https://doi.org/10.3390/su16114609
Chicago/Turabian StyleGhorbany, Siavash, Ming Hu, Siyuan Yao, and Chaoli Wang. 2024. "Towards a Sustainable Urban Future: A Comprehensive Review of Urban Heat Island Research Technologies and Machine Learning Approaches" Sustainability 16, no. 11: 4609. https://doi.org/10.3390/su16114609
APA StyleGhorbany, S., Hu, M., Yao, S., & Wang, C. (2024). Towards a Sustainable Urban Future: A Comprehensive Review of Urban Heat Island Research Technologies and Machine Learning Approaches. Sustainability, 16(11), 4609. https://doi.org/10.3390/su16114609