Analysis and Prediction of Risky Driving Behaviors Using Fuzzy Analytical Hierarchy Process and Machine Learning Techniques
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Methodology
3.2. Participants’ Statistics
3.3. Measures to Analyze Driver Behavior: Driver Behavior Questionnaire
Demographic Measures
3.4. Driver Behavior Perception Evaluation Criteria
3.5. Cronbach’s Alpha—Survey Questionnaire Reliability Test
3.6. Fuzzy Analytic Hierarchy Process (Fuzzy AHP)
3.7. Machine Learning for Driver Behavior Modeling
3.7.1. Data Preprocessing and Hyperparameter Tuning
3.7.2. Support Vector Machine (SVM)
3.7.3. Naïve Bayes
3.7.4. Decision Tree Classifier
3.7.5. Random Forest Classifier
- C represents the number of classes or categories in the dataset.
- Pi represents the probability of an instance belonging to class i.
- The equation calculates the squared probabilities of each class, sums them up, and subtracts the result from 1.
- A lower Gini value indicates less impurity or a more homogeneous distribution of instances among the classes, given in Equation (20).
- C represents the number of classes or categories in the dataset.
- Pi represents the probability of an instance belonging to class i.
- The equation calculates the product of the probability of each class and its logarithm (base 2), sums them up, and assigns a negative sign.
- A lower entropy value indicates less impurity or a more homogeneous distribution of instances among the classes, given in Equation (21).
3.7.6. Ensemble Model
4. Results and Discussion
4.1. Fuzzy AHP Results and Discussion
4.1.1. Comparison by Age Group and Ranking
4.1.2. Likert Scale Data Analysis
- High Perception Criteria (AV1, OV2, OV4, OV8, E1, E2, E3, E4, E7, L4, L6): On average, respondents have a “High Perception” regarding these aspects of driver behavior. This means that they believe these criteria are more likely to involve rule violations or mismanagement. In other words, respondents think that in these areas there is a higher likelihood of drivers not following the rules or exhibiting poor behavior.
- Low Perception Criteria (AV2, AV3, OV1, OV3, OV5, OV6, OV7, E5, E6, L1, L2, L3, L5, L7): For these criteria, respondents hold a “Low Perception”. This indicates that respondents perceive these aspects of driver behavior as more likely to follow the rules and exhibit good behavior. In simpler terms, respondents believe that in these areas drivers are more likely to follow the rules and behave well.
4.2. Machine Learning Model Results and Discussion
4.2.1. Receiver Operating Characteristic (ROC) Curve
- Never: Class 1, (AUC = 0.95): An AUC of 0.95 for Class 1 signifies the model’s effectiveness in accurately identifying instances of Class 1 and distinguishing them from other classes.
- Hardly ever: Class 2, (AUC = 0.91): With an AUC of 0.91 for Class 2, the model demonstrates a strong ability to differentiate Class 2 from other classes, implying a good performance in this regard.
- Occasionally: Class 3, (AUC = 0.99): The remarkably high AUC of 0.99 for Class 3 highlights the model’s exceptional proficiency in recognizing and distinguishing Class 3 from other classes.
- Quite often: Class 4, (AUC = 0.93): The AUC of 0.93 for Class 4 reflects the model’s competence in successfully distinguishing Class 4 from other classes, indicating a good level of performance.
- Frequently: Class 5, (AUC = 0.85): The AUC of 0.85 for Class 5 suggests that the model is reasonably effective in distinguishing Class 5 from other classes, indicating a decent performance.
- Nearly all the time: Class 6, (AUC = 1.0): An AUC of 1.0 for Class 6 signifies that the model excels at identifying Class 6 and distinguishing it from other classes, demonstrating a flawless performance.
- The occasionally class exhibits the most outstanding model performance.
- Never, hardly ever, and quite often classes also demonstrate strong performances.
- The frequently class’s performance is reasonable, though not as robust as other classes.
- The nearly all the time class stands out with a perfect AUC, showcasing exceptional model performance in identifying Class 6.
4.2.2. Precision–Recall Curve
- The occasionally class exhibits the highest precision–recall performance with an AP of 0.94, indicating that the model effectively balances precision and recall for this class.
- The never class and hardly ever class also display strong performance with AP values of 0.93 and 0.80, respectively. These classes demonstrate a robust trade-off between precision and recall.
- The quite often class achieves moderate performance with an AP of 0.66, indicating a reasonable balance between precision and recall but not as strong as Classes 1, 2, and 3.
- The frequently class has the lowest performance with an AP of 0.23, suggesting that the model encounters challenges in achieving both high precision and high recall for this class.
- The nearly all the time class stands out with a perfect AP of 1.00, indicating that the model attains the highest precision while maintaining full recall for this class.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, S.K.; Mohammed, M.G.; Abdulqadir, S.O.; El-Kader, R.G.A.; El-Shall, N.A.; Chandran, D.; Rehman, M.E.U.; Dhama, K. Road traffic accidental injuries and deaths: A neglected global health issue. Health Sci. Rep. 2023, 6, e1240. [Google Scholar] [CrossRef]
- Safdar, M.; Jamal, A.; Al-Ahmadi, H.M.; Rahman, M.T.; Almoshaogeh, M. Analysis of the Influential Factors towards Adoption of Car-Sharing: A Case Study of a Megacity in a Developing Country. Sustainability 2022, 14, 2778. [Google Scholar] [CrossRef]
- Subhan, F.; Ali, Y.; Zhao, S. Unraveling preference heterogeneity in willingness-to-pay for enhanced road safety: A hybrid approach of machine learning and quantile regression. Accid. Anal. Prev. 2023, 190, 107176. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Road Safety 2018; World Health Organization: Geneva, Switzerland, 2019.
- Wang, Z.; Safdar, M.; Zhong, S.P.; Liu, J.R.; Xiao, F. Public Preferences of Shared Autonomous Vehicles in Developing Countries: A Cross-National Study of Pakistan and China. J. Adv. Transp. 2021, 2021, 5141798. [Google Scholar] [CrossRef]
- Umair, M.; Rana, I.A.; Lodhi, R.H. The impact of urban design and the built environment on road traffic crashes: A case study of Rawalpindi, Pakistan. Case Stud. Transp. Policy 2022, 10, 417–426. [Google Scholar] [CrossRef]
- World Life Expectancy. Pakistan Road Traffic Accidents. Available online: https://www.worldlifeexpectancy.com/pakistan-road-traffic-accidents (accessed on 26 May 2024).
- Rabbani, M.B.A.; Musarat, M.A.; Alaloul, W.S.; Maqsoom, A.; Bukhari, H.; Waqas, R. Road traffic accident data analysis and its visualization. Civ. Eng. Archit. 2021, 9, 1603–1614. [Google Scholar] [CrossRef]
- Batool, Z.; Carsten, O.; Jopson, A. Road safety issues in Pakistan: A case study of Lahore. Transp. Plan. Technol. 2012, 35, 31–48. [Google Scholar] [CrossRef]
- Kayani, A.; Fleiter, J.J.; King, M.J. Underreporting of road crashes in Pakistan and the role of fate. Traffic Inj. Prev. 2014, 15, 34–39. [Google Scholar] [CrossRef]
- Hyder, A.A.; Morrow, R.H. Applying burden of disease methods in developing countries: A case study from Pakistan. Am. J. Public Health 2000, 90, 1235. [Google Scholar]
- Lateef, M.U. Estimation of fatalities due to road traffic crashes in Karachi, Pakistan, using capture-recapture method. Asia Pac. J. Public Health 2010, 22, 332–341. [Google Scholar] [CrossRef]
- Lord, D.; Mannering, F. The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transp. Res. Part A Policy Pract. 2010, 44, 291–305. [Google Scholar] [CrossRef]
- Mujalli, R.O.; de Oña, J. Injury severity models for motor vehicle accidents: A review. In Proceedings of the Institution of Civil Engineers-Transport; Thomas Telford Ltd.: London, UK, 2013; pp. 255–270. [Google Scholar]
- Savolainen, P.T.; Mannering, F.L.; Lord, D.; Quddus, M.A. The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives. Accid. Anal. Prev. 2011, 43, 1666–1676. [Google Scholar] [CrossRef]
- Jamal, A.; Zahid, M.; Tauhidur Rahman, M.; Al-Ahmadi, H.M.; Almoshaogeh, M.; Farooq, D.; Ahmad, M. Injury severity prediction of traffic crashes with ensemble machine learning techniques: A comparative study. Int. J. Inj. Control Saf. Promot. 2021, 28, 408–427. [Google Scholar] [CrossRef]
- Khattak, A.J.; Ahmad, N.; Wali, B.; Dumbaugh, E. A taxonomy of driving errors and violations: Evidence from the naturalistic driving study. Accid. Anal. Prev. 2021, 151, 105873. [Google Scholar] [CrossRef]
- Zhao, J.; Song, D.; Zhu, B.; Sun, Z.; Han, J.; Sun, Y. A human-like trajectory planning method on a curve based on the driver preview mechanism. IEEE Trans. Intell. Transp. Syst. 2023, 24, 11682–11698. [Google Scholar] [CrossRef]
- Yue, W.; Li, C.; Wang, S.; Xue, N.; Wu, J. Cooperative incident management in mixed traffic of CAVs and human-driven vehicles. IEEE Trans. Intell. Transp. Syst. 2023, 24, 12462–12476. [Google Scholar] [CrossRef]
- Xu, J.; Park, S.H.; Zhang, X.; Hu, J. The improvement of road driving safety guided by visual inattentional blindness. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4972–4981. [Google Scholar] [CrossRef]
- Yang, J.; Yang, K.; Xiao, Z.; Jiang, H.; Xu, S.; Dustdar, S. Improving commute experience for private car users via blockchain-enabled multitask learning. IEEE Internet Things J. 2023, 10, 21656–21669. [Google Scholar] [CrossRef]
- Singh, H.; Kathuria, A. Analyzing driver behavior under naturalistic driving conditions: A review. Accid. Anal. Prev. 2021, 150, 105908. [Google Scholar] [CrossRef]
- Rashmi, B.S.; Marisamynathan, S. Factors affecting truck driver behavior on a road safety context: A critical systematic review of the evidence. J. Traffic Transp. Eng. 2023, 10, 835–865. [Google Scholar]
- Matar, H.B.; Al-Mutairi, N.Z. Examining the factors affecting driver behavior in Metropolitan Kuwait. Int. J. Crashworthiness 2021, 26, 705–710. [Google Scholar] [CrossRef]
- Alam, W.; Haiyan, W.; Safdar, M.; Hamza, M. Identifying Key Factors for Traffic Safety: A Case Study of Driver Behavior in Peshawar, Pakistan. N. Am. Acad. Res. 2024, 7, 107–122. [Google Scholar] [CrossRef]
- de Oña, J.; de Oña, R.; Eboli, L.; Forciniti, C.; Mazzulla, G. How to identify the key factors that affect driver perception of accident risk. A comparison between Italian and Spanish driver behavior. Accid. Anal. Prev. 2014, 73, 225–235. [Google Scholar] [CrossRef]
- Abdullah, P.; Sipos, T. Drivers’ Behavior and Traffic Accident Analysis Using Decision Tree Method. Sustainability 2022, 14, 11339. [Google Scholar] [CrossRef]
- Reason, J.; Manstead, A.; Stradling, S.; Baxter, J.; Campbell, K. Errors and violations on the roads: A real distinction? Ergonomics 1990, 33, 1315–1332. [Google Scholar] [CrossRef]
- de Winter, J.C.; Dodou, D. The Driver Behaviour Questionnaire as a predictor of accidents: A meta-analysis. J. Saf. Res. 2010, 41, 463–470. [Google Scholar] [CrossRef]
- af Wåhlberg, A.; Dorn, L.; Kline, T. The Manchester Driver Behaviour Questionnaire as a predictor of road traffic accidents. Theor. Issues Ergon. Sci. 2011, 12, 66–86. [Google Scholar] [CrossRef]
- Parker, D.; Reason, J.T.; Manstead, A.S.; Stradling, S.G. Driving errors, driving violations and accident involvement. Ergonomics 1995, 38, 1036–1048. [Google Scholar] [CrossRef]
- Reason, J. Human Error; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Xu, J.; Guo, K.; Zhang, X.; Sun, P.Z.H. Left gaze bias between LHT and RHT: A recommendation strategy to mitigate human errors in left-and right-hand driving. IEEE Trans. Intell. Veh. 2023, 8, 4406–4417. [Google Scholar] [CrossRef]
- Elander, J.; West, R.; French, D. Behavioral correlates of individual differences in road-traffic crash risk: An examination of methods and findings. Psychol. Bull. 1993, 113, 279. [Google Scholar] [CrossRef]
- Xiao, Z.; Shu, J.; Jiang, H.; Min, G.; Chen, H.; Han, Z. Overcoming Occlusions: Perception Task-Oriented Information Sharing in Connected and Autonomous Vehicles. IEEE Netw. 2023, 37, 224–229. [Google Scholar] [CrossRef]
- Farooq, D.; Moslem, S.; Faisal Tufail, R.; Ghorbanzadeh, O.; Duleba, S.; Maqsoom, A.; Blaschke, T. Analyzing the Importance of Driver Behavior Criteria Related to Road Safety for Different Driving Cultures. Int. J. Environ. Res. Public Health 2020, 17, 1893. [Google Scholar] [CrossRef]
- Lawton, R.; Parker, D.; Manstead, A.S.; Stradling, S.G. The role of affect in predicting social behaviors: The case of road traffic violations. J. Appl. Soc. Psychol. 1997, 27, 1258–1276. [Google Scholar] [CrossRef]
- Brown, I.D. Drivers’ margins of safety considered as a focus for research on error. Ergonomics 1990, 33, 1307–1314. [Google Scholar] [CrossRef]
- Rumar, K. The role of perceptual and cognitive filters in observed behavior. In Human Behavior Traffic Safety; Springer: Berlin/Heidelberg, Germany, 1985; pp. 151–170. [Google Scholar]
- Parker, D.; McDonald, L.; Rabbitt, P.; Sutcliffe, P. Elderly drivers and their accidents: The Aging Driver Questionnaire. Accid. Anal. Prev. 2000, 32, 751–759. [Google Scholar] [CrossRef]
- Blockey, P.; Hartley, L.R. Aberrant driving behaviour: Errors and violations. Ergonomics 1995, 38, 1759–1771. [Google Scholar] [CrossRef]
- Bianchi, A.; Summala, H. Moral judgment and drivers’ behavior among Brazilian students. Psychol. Rep. 2002, 91, 759–766. [Google Scholar] [CrossRef]
- Xie, C.-Q.; Parker, D. A social psychological approach to driving violations in two Chinese cities. Transp. Res. Part F Traffic Psychol. Behav. 2002, 5, 293–308. [Google Scholar] [CrossRef]
- Kontogiannis, T.; Kossiavelou, Z.; Marmaras, N. Self-reports of aberrant behaviour on the roads: Errors and violations in a sample of Greek drivers. Accid. Anal. Prev. 2002, 34, 381–399. [Google Scholar] [CrossRef]
- Mesken, J.; Lajunen, T.; Summala, H. Interpersonal violations, speeding violations and their relation to accident involvement in Finland. Ergonomics 2002, 45, 469–483. [Google Scholar] [CrossRef]
- Sullman, M.J.; Meadows, M.L.; Pajo, K.B. Aberrant driving behaviours amongst New Zealand truck drivers. Transp. Res. Part F Traffic Psychol. Behav. 2002, 5, 217–232. [Google Scholar] [CrossRef]
- Aberg, L.; Rimmo, P.-A. Dimensions of aberrant driver behaviour. Ergonomics 1998, 41, 39–56. [Google Scholar] [CrossRef]
- Lajunen, T.; Parker, D.; Summala, H. The Manchester driver behaviour questionnaire: A cross-cultural study. Accid. Anal. Prev. 2004, 36, 231–238. [Google Scholar] [CrossRef]
- Dimmer, A.; Parker, D. The accidents, attitude and behaviour of company car drivers. In Proceedings of the Behavioural Research in Road Safety IX, University of Manchester, Manchester, UK, 5–7 April 1999. PA3524/99. [Google Scholar]
- Sümer, N. Personality and behavioral predictors of traffic accidents: Testing a contextual mediated model. Accid. Anal. Prev. 2003, 35, 949–964. [Google Scholar] [CrossRef]
- Pirnazar, M.; Karimi, A.Z.; Feizizadeh, B.; Ostad-Ali-Askari, K.; Eslamian, S.; Hasheminasab, H.; Ghorbanzadeh, O.; Hamedani, M.H. Assessing flood hazard using GIS based multi-criteria decision making approach; study area: East-Azerbaijan province (Kaleybar Chay Basin). J. Flood Eng. 2017, 8, 203–223. [Google Scholar]
- Chen, W.; Pourghasemi, H.R.; Panahi, M.; Kornejady, A.; Wang, J.; Xie, X.; Cao, S. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology 2017, 297, 69–85. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Kienberger, S. Spatially explicit sensitivity and uncertainty analysis for multicriteria-based vulnerability assessment. J. Environ. Plan. Manag. 2017, 60, 2013–2035. [Google Scholar] [CrossRef]
- Cabrera-Barona, P.; Ghorbanzadeh, O. Comparing classic and interval analytical hierarchy process methodologies for measuring area-level deprivation to analyze health inequalities. Int. J. Environ. Res. Public Health 2018, 15, 140. [Google Scholar] [CrossRef]
- Pourghasemi, H.r.; Beheshtirad, M.; Pradhan, B. A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomat. Nat. Hazards Risk 2016, 7, 861–885. [Google Scholar] [CrossRef]
- Khosravi, K.; Nohani, E.; Maroufinia, E.; Pourghasemi, H.R. A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat. Hazards 2016, 83, 947–987. [Google Scholar] [CrossRef]
- Zhao, H.; Zhong, M.; Li, L.; Safdar, M.; Zhang, Z. A Comprehensive Evaluation Method for Planning and Design of Self-Sufficient Wind Power Energy Systems at Ports. Sustainability 2023, 15, 16189. [Google Scholar] [CrossRef]
- Duleba, S.; Moslem, S. Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport service development. Expert Syst. Appl. 2019, 116, 21–30. [Google Scholar] [CrossRef]
- Naghadehi, M.Z.; Mikaeil, R.; Ataei, M. The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine, Iran. Expert Syst. Appl. 2009, 36, 8218–8226. [Google Scholar] [CrossRef]
- Farooq, D.; Moslem, S.; Duleba, S. Evaluation of driver behavior criteria for evolution of sustainable traffic safety. Sustainability 2019, 11, 3142. [Google Scholar] [CrossRef]
- Yin, Y.; Guo, Y.; Su, Q.; Wang, Z. Task allocation of multiple unmanned aerial vehicles based on deep transfer reinforcement learning. Drones 2022, 6, 215. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, J.; Liang, J.; Yan, Y.; Pi, D.; Zhang, H.; Yin, G. Authority allocation strategy for shared steering control considering human-machine mutual trust level. IEEE Trans. Intell. Veh. 2023, 9, 2002–2015. [Google Scholar] [CrossRef]
- Zhou, P.; Zheng, P.; Qi, J.; Li, C.; Lee, H.-Y.; Duan, A.; Lu, L.; Li, Z.; Hu, L.; Navarro-Alarcon, D. Reactive human–robot collaborative manipulation of deformable linear objects using a new topological latent control model. Robot. Comput.-Integr. Manuf. 2024, 88, 102727. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, D.; Jian, W.; Hu, W.; Peng, G.; Chen, Y.; Wang, Z. Fractional Order Complementary Non-singular Terminal Sliding Mode Control of PMSM Based on Neural Network. Int. J. Automot. Technol. 2024, 25, 213–224. [Google Scholar] [CrossRef]
- Ju, J.; Feleke, A.G.; Luo, L.; Fan, X. Recognition of drivers’ hard and soft braking intentions based on hybrid brain-computer interfaces. Cyborg Bionic Syst. 2022, 2022, 9847652. [Google Scholar] [CrossRef]
- Li, X.; Lord, D.; Zhang, Y.; Xie, Y. Predicting motor vehicle crashes using support vector machine models. Accid. Anal. Prev. 2008, 40, 1611–1618. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Q.; Cheng, H.H.; Peng, W.; Xu, W. A review of vision-based traffic semantic understanding in ITSs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19954–19979. [Google Scholar] [CrossRef]
- Mou, J.; Gao, K.; Duan, P.; Li, J.; Garg, A.; Sharma, R. A machine learning approach for energy-efficient intelligent transportation scheduling problem in a real-world dynamic circumstances. IEEE Trans. Intell. Transp. Syst. 2022, 24, 15527–15539. [Google Scholar] [CrossRef]
- Ma, B.; Liu, Z.; Dang, Q.; Zhao, W.; Wang, J.; Cheng, Y.; Yuan, Z. Deep reinforcement learning of UAV tracking control under wind disturbances environments. IEEE Trans. Instrum. Meas. 2023, 72, 2510913. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Yu, L. Trajectory prediction for heterogeneous traffic-agents using knowledge correction data-driven model. Inf. Sci. 2022, 608, 375–391. [Google Scholar] [CrossRef]
- Gang, R.; Zhuping, Z. Traffic safety forecasting method by particle swarm optimization and support vector machine. Expert Syst. Appl. 2011, 38, 10420–10424. [Google Scholar] [CrossRef]
- Bordarie, J. Predicting intentions to comply with speed limits using a ‘decision tree’applied to an extended version of the theory of planned behaviour. Transp. Res. Part F Traffic Psychol. Behav. 2019, 63, 174–185. [Google Scholar] [CrossRef]
- Sun, Z.; Song, Q.; Zhu, X.; Sun, H.; Xu, B.; Zhou, Y. A novel ensemble method for classifying imbalanced data. Pattern Recognit. 2015, 48, 1623–1637. [Google Scholar] [CrossRef]
- Farooq, M.U.; Ghani, M.U.; Zafar, A. Survey on driving behavior and motivational factors causing aggressive driving: A case study of Peshawar, Pakistan. In Proceedings of the 2nd International Conference on Emerging Trends in Engineering, Management & Sciences (ICETEMS-2016), Peshawar, Pakistan, 28–30 December 2016; pp. 79–86. [Google Scholar]
- Evans, L. Traffic Safety; Science Serving Society: Bloomfield Hills, MI, USA, 2004. [Google Scholar]
- Cheng, C.-H. Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function. Eur. J. Oper. Res. 1997, 96, 343–350. [Google Scholar] [CrossRef]
- Kubler, S.; Robert, J.; Derigent, W.; Voisin, A.; Le Traon, Y. A state-of the-art survey & testbed of fuzzy AHP (FAHP) applications. Expert Syst. Appl. 2016, 65, 398–422. [Google Scholar]
- Chang, D.-Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Ghandour, R.; Potams, A.J.; Boulkaibet, I.; Neji, B.; Al Barakeh, Z. Driver behavior classification system analysis using machine learning methods. Appl. Sci. 2021, 11, 10562. [Google Scholar] [CrossRef]
- Ferreira, J.; Carvalho, E.; Ferreira, B.V.; de Souza, C.; Suhara, Y.; Pentland, A.; Pessin, G. Driver behavior profiling: An investigation with different smartphone sensors and machine learning. PLoS ONE 2017, 12, e0174959. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Zhang, Y.; Yu, H.; Du, X.; Guizani, M. Intersection Fog-Based Distributed Routing for V2V Communication in Urban Vehicular Ad Hoc Networks. IEEE Trans. Intell. Transp. Syst. 2020, 21, 2409–2426. [Google Scholar] [CrossRef]
- Houshmand, M.; Hosseini-Khayat, S.; Wilde, M.M. Minimal-memory, noncatastrophic, polynomial-depth quantum convolutional encoders. IEEE Trans. Inf. Theory 2012, 59, 1198–1210. [Google Scholar] [CrossRef]
- Rai, H.M.; Yoo, J. Analysis of Colorectal and Gastric Cancer Classification: A Mathematical Insight Utilizing Traditional Machine Learning Classifiers. Mathematics 2023, 11, 4937. [Google Scholar] [CrossRef]
- Heckerman, D. Bayesian networks for data mining. Data Min. Knowl. Discov. 1997, 1, 79–119. [Google Scholar] [CrossRef]
- Chen, H.; Hu, S.; Hua, R.; Zhao, X. Improved naive Bayes classification algorithm for traffic risk management. EURASIP J. Adv. Signal Process. 2021, 2021, 30. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Han, J.; Xiang, H.; Li, H.; Zhang, Y.; Li, S. A recognition method of aggressive driving behavior based on ensemble learning. Sensors 2022, 22, 644. [Google Scholar] [CrossRef]
- Khoshkangini, R.; Mashhadi, P.; Tegnered, D.; Lundström, J.; Rögnvaldsson, T. Predicting vehicle behavior using multi-task ensemble learning. Expert Syst. Appl. 2023, 212, 118716. [Google Scholar] [CrossRef]
- Geng, X.; Liang, H.; Yu, B.; Zhao, P.; He, L.; Huang, R. A scenario-adaptive driving behavior prediction approach to urban autonomous driving. Appl. Sci. 2017, 7, 426. [Google Scholar] [CrossRef]
- Deng, Q.; Söffker, D. A review of HMM-based approaches of driving behaviors recognition and prediction. IEEE Trans. Intell. Veh. 2021, 7, 21–31. [Google Scholar] [CrossRef]
- Abou Elassad, Z.E.; Mousannif, H.; Al Moatassime, H.; Karkouch, A. The application of machine learning techniques for driving behavior analysis: A conceptual framework and a systematic literature review. Eng. Appl. Artif. Intell. 2020, 87, 103312. [Google Scholar] [CrossRef]
Variables | Peshawar |
---|---|
Age (years) | |
18–20 | 5.9% |
20–30 | 44.8% |
30–40 | 27.5% |
40–50 | 18% |
50–60 | 3.9% |
Driving experience | |
<5 Years | 33.3% |
5–10 | 22.5% |
10–15 | 20.3% |
15–20 | 11.8% |
Above 20 | 12.1% |
Gender | |
Male | 74.1% |
Female | 25.9% |
Number of kilometers driven weekly | |
Mean | 208.6 |
SD | 287.5 |
Driver occupations (job = 1, student = 0) | |
Mean | 0.42 |
SD | 0.46 |
Valid license | |
Yes | 73% |
No | 27% |
Variables | Description | Values | Internal Consistency |
---|---|---|---|
K | Number of items | 306 | Good |
∑S2 y | A sum of the items’ variance | 60 | |
S2 x | A variance of the total score | 308.04 | |
A | Cronbach’s alpha | 0.81 |
Cronbach’s α | Internal Consistency |
---|---|
0.90 and above | Excellent |
0.80–0.89 | Good |
0.70–0.79 | Acceptable |
0.60–0.69 | Questionable |
0.50–0.59 | Poor |
Below 0.50 | Unacceptable |
Linguistics Variables | Assigned TFN |
---|---|
Equal | (1,1,1) |
Very low | (1,2,3) |
Medium | (2,3,4) |
High | (3,4,5) |
Very high | (4,5,6) |
Excellent | (6,7,8) |
Errors | Violations | Lapses | Weight | Rank | |
---|---|---|---|---|---|
Errors | (1, 1, 1) | (0.25, 0.33, 0.5) | (2, 3, 4) | 0.364 | 2 |
Violations | (2, 3, 4) | (1, 1, 1) | (1, 2, 3) | 0.497 | 1 |
Lapses | (0.25, 0.33, 0.5) | (0.25, 0.33, 0.5) | (1, 1, 1) | 0.139 | 3 |
AV1 | AV2 | AV3 | Weight | Rank | |
---|---|---|---|---|---|
AV1 | (1, 1, 1) | (0.33, 0.5, 1) | (2, 3, 4) | 0.367 | 1 |
AV2 | (1, 2, 3) | (1, 1, 1) | (0.25, 0.33, 0.5) | 0.278 | 3 |
AV3 | (0.25, 0.33, 0.5) | (2, 3, 4) | (1, 1, 1) | 0.355 | 2 |
OV1 | OV2 | OV3 | OV4 | OV5 | OV6 | OV7 | OV8 | Weight | Rank | |
---|---|---|---|---|---|---|---|---|---|---|
OV1 | (1, 1, 1) | (0.166, 0.2, 0.25) | (0.25, 0.33, 0.5) | (0.166, 0.2, 0.25) | (3, 4, 5) | (2, 3, 4) | (0.33, 0.5, 1) | (4, 5, 6) | 0.141711 | 4 |
OV2 | (4, 5, 6) | (1, 1, 1) | (0.33, 0.5, 1) | (3, 4, 5) | (2, 3, 4) | (0.25, 0.33, 0.5) | (3, 4, 5) | (0.25, 0.33, 0.5) | 0.182227 | 2 |
OV3 | (2, 3, 4) | (1, 2, 3) | (1, 1, 1) | (0.25, 0.33, 0.5) | (1, 2, 3) | (0.33, 0.5, 1) | (0.2, 0.25, 0.33) | (0.25, 0.33, 0.5) | 0.084948 | 6 |
OV4 | (4, 5, 6) | (0.2, 0.25, 0.33) | (3, 4, 5) | (1, 1, 1) | (0.33, 0.5, 1) | (2, 3, 4) | (2, 3, 4) | (2, 3, 4) | 0.195733 | 1 |
OV5 | (0.2, 0.25, 0.33) | (0.25, 0.33, 0.5) | (0.33, 0.5, 1) | (1, 2, 3) | (1, 1, 1) | (0.25, 0.33, 0.5) | (1, 2, 3) | (0.33, 0.5, 1) | 0.043648 | 8 |
OV6 | (0.25, 0.33, 0.5) | (2, 3, 4) | (1, 2, 3) | (0.25, 0.33, 0.5) | (2, 3, 4) | (1, 1, 1) | (2, 3, 4) | (0.33, 0.5, 1) | 0.134469 | 5 |
OV7 | (1, 2, 3) | (0.2, 0.25, 0.33) | (3, 4, 5) | (0.25, 0.33, 0.5) | (0.33, 0.5, 1) | (0.25, 0.33, 0.5) | (1, 1, 1) | (0.25, 0.33, 0.5) | 0.067528 | 7 |
OV8 | (0.166, 0.2, 0.25) | (2, 3, 4) | (2, 3, 4) | (0.25, 0.33, 0.5) | (1, 2, 3) | (1, 2, 3) | (2, 3, 4) | (1, 1, 1) | 0.149736 | 3 |
E1 | E2 | E3 | E4 | E5 | E6 | E7 | Weight | Rank | |
---|---|---|---|---|---|---|---|---|---|
E1 | (1, 1, 1) | (0.25, 0.33, 0.5) | (0.33, 0.5, 1) | (2, 3, 4) | (1, 2, 3) | (0.25, 0.33, 0.5) | (1, 2, 3) | 0.144 | 4 |
E2 | (2, 3, 4) | (1, 1, 1) | (2, 3, 4) | (1, 2, 3) | (2, 3, 4) | (4, 5, 6) | (0.33, 0.2, 1) | 0.265 | 1 |
E3 | (1, 2, 3) | (0.25, 0.33, 0.5) | (1, 1, 1) | (0.33, 0.5, 1) | (2, 3, 4) | (2, 3, 4) | (0.33, 0.25, 1) | 0.175 | 3 |
E4 | (0.25, 0.33, 0.5) | (0.33, 0.5, 1) | (1, 2, 3) | (1, 1, 1) | (1, 1, 1) | (1, 2, 3) | (0.25, 0.33, 0.5) | 0.093 | 5 |
E5 | (0.33, 0.5, 1) | (0.25, 0.33, 0.5) | (0.25, 0.33, 0.5) | (1, 1, 1) | (1, 1, 1) | (1, 2, 3) | (0.33, 0.5, 1) | 0.049 | 7 |
E6 | (2, 3, 4) | (1.66, 0.2, 0.33) | (0.25, 0.33, 0.5) | (0.33, 0.25, 1) | (0.33, 0.25, 1) | (1, 1, 1) | (0.25, 0.33, 0.5) | 0.054 | 6 |
E7 | (0.33, 0.5, 1) | (1, 2, 3) | (1, 2, 3) | (2, 3, 4) | (1, 2, 3) | (2, 3, 4) | (1, 1, 1) | 0.22 | 2 |
L1 | L2 | L3 | L4 | L5 | L6 | L7 | Weight | Rank | |
---|---|---|---|---|---|---|---|---|---|
L1 | (1, 1, 1) | (0.33, 0.5, 1) | (0.33, 0.25, 1) | (0.25, 0.33, 0.5) | (2, 3, 4) | (0.33, 0.5, 1) | (3, 4, 5) | 0.135 | 6 |
L2 | (1, 2, 3) | (1, 1, 1) | (0.33, 0.5, 1) | (0.25, 0.33, 0.5) | (0.33, 0.5, 1) | (0.33, 0.5, 1) | (2, 3, 4) | 0.116 | 7 |
L3 | (1, 2, 3) | (1, 2, 3) | (1, 1, 1) | (1, 2, 3) | (1, 2, 3) | (0.33, 0.5, 1) | (0.2, 0.25, 0.33) | 0.141 | 4 |
L4 | (0.25, 0.33, 0.25) | (2, 3, 4) | (0.33, 0.5, 1) | (1, 1, 1) | (0.33, 0.5, 1) | (0.33, 0.5, 1) | (3, 4, 5) | 0.167 | 1 |
L5 | (1, 2, 3) | (1, 2, 3) | (0.33, 0.5, 1) | (1, 2, 3) | (1, 1, 1) | (0.33, 0.5, 1) | (3, 4, 5) | 0.146 | 3 |
L6 | (1, 2, 3) | (1, 2, 3) | (1, 2, 3) | (1, 2, 3) | (1, 2, 3) | (1, 1, 1) | (0.2, 0.25, 0.33) | 0.156 | 2 |
L7 | (0.2, 0.25, 0.33) | (0.25, 0.33, 0.5) | (3, 4, 5) | (0.2, 0.25, 0.33) | (0.2, 0.25, 0.33) | (3, 4, 5) | (1, 1, 1) | 0.139 | 5 |
Driver Behavior Questionnaire | Ranking | ||||||
---|---|---|---|---|---|---|---|
Criteria | Sub-Criteria | Age 18–20 | Age 20–30 | Age 30–40 | Age 40–50 | Age 50–60 | |
DBQ | Violations | AV1 | 1 | 1 | 1 | 1 | 1 |
AV2 | 2 | 2 | 3 | 3 | 3 | ||
AV3 | 3 | 3 | 2 | 2 | 2 | ||
OV1 | 4 | 4 | 4 | 5 | 2 | ||
OV2 | 2 | 2 | 2 | 2 | 4 | ||
OV3 | 8 | 7 | 6 | 7 | 5 | ||
OV4 | 1 | 1 | 1 | 1 | 1 | ||
OV5 | 6 | 8 | 7 | 6 | 7 | ||
OV6 | 3 | 5 | 5 | 4 | 6 | ||
OV7 | 7 | 6 | 8 | 8 | 8 | ||
OV8 | 5 | 3 | 3 | 3 | 3 | ||
Error | E1 | 4 | 4 | 4 | 6 | 6 | |
E2 | 5 | 1 | 1 | 1 | 1 | ||
E3 | 3 | 3 | 2 | 4 | 2 | ||
E4 | 2 | 5 | 5 | 3 | 3 | ||
E5 | 7 | 7 | 6 | 7 | 7 | ||
E6 | 6 | 6 | 7 | 5 | 5 | ||
E7 | 1 | 2 | 3 | 2 | 4 | ||
Lapses | L1 | 3 | 6 | 6 | 6 | 5 | |
L2 | 5 | 7 | 7 | 7 | 4 | ||
L3 | 1 | 4 | 3 | 4 | 1 | ||
L4 | 6 | 1 | 2 | 2 | 2 | ||
L5 | 2 | 3 | 4 | 1 | 6 | ||
L6 | 7 | 2 | 1 | 3 | 3 | ||
L7 | 4 | 5 | 5 | 5 | 7 |
Likert Scale Data Analysis and Interpretations of Results | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBQ | Criteria | N =1 | H.E =2 | O =3 | Q.O =4 | F =5 | N.A =6 | Total (%) | Total (#) | Mean | SD | Variance | Decision | |
Violations | AV1 | 17.6 | 25.5 | 27.5 | 13.7 | 9.8 | 5.9 | 100 | 306 | 2.902 | 1.42 | 2.017 | High Perception | |
AV2 | 37.3 | 15.7 | 29.4 | 7.8 | 3.9 | 5.9 | 100 | 306 | 2.431 | 1.448 | 2.095 | Low Perception | ||
AV3 | 29.4 | 23.5 | 25.5 | 15.7 | 5.9 | 0 | 100 | 306 | 2.451 | 1.228 | 1.507 | Low Perception | ||
OV1 | 39.2 | 21.6 | 13.7 | 7.8 | 7.8 | 9.8 | 100 | 306 | 2.529 | 1.687 | 2.847 | Low Perception | ||
OV2 | 25.5 | 19.6 | 17.6 | 13.7 | 13.7 | 9.8 | 100 | 306 | 3 | 1.671 | 2.793 | High Perception | ||
OV3 | 45.1 | 19.6 | 13.7 | 15.7 | 5.9 | 0 | 100 | 306 | 2.176 | 1.311 | 1.72 | Low Perception | ||
OV4 | 9.8 | 11.8 | 25.5 | 11.8 | 21.6 | 19.5 | 100 | 306 | 3.824 | 1.608 | 2.585 | High Perception | ||
OV5 | 51 | 17.6 | 17.6 | 7.8 | 2 | 3.9 | 100 | 306 | 2.039 | 1.345 | 1.808 | Low Perception | ||
OV6 | 39.2 | 19.6 | 17.6 | 11.8 | 7.8 | 3.9 | 100 | 306 | 2.412 | 1.487 | 2.21 | Low Perception | ||
OV7 | 45.1 | 19.6 | 17.6 | 13.7 | 3.9 | 0 | 100 | 306 | 2.118 | 1.233 | 1.521 | Low Perception | ||
OV8 | 19.6 | 31.4 | 23.5 | 15.7 | 3.9 | 5.9 | 100 | 306 | 2.706 | 1.364 | 1.861 | High Perception | ||
Errors | E1 | 31.4 | 13.7 | 23.5 | 19.6 | 5.9 | 5.9 | 100 | 306 | 2.725 | 1.512 | 2.285 | High Perception | |
E2 | 17.6 | 23.5 | 13.7 | 15.7 | 15.7 | 13.7 | 100 | 306 | 3.294 | 1.698 | 2.884 | High Perception | ||
E3 | 25.5 | 19.6 | 11.8 | 19.6 | 15.7 | 7.8 | 100 | 306 | 3.039 | 1.659 | 2.753 | High Perception | ||
E4 | 25.5 | 31.4 | 13.7 | 13.7 | 13.7 | 2 | 100 | 306 | 2.647 | 1.442 | 2.078 | High Perception | ||
E5 | 45.1 | 23.5 | 9.8 | 3.9 | 9.8 | 7.8 | 100 | 306 | 2.333 | 1.656 | 2.741 | Low Perception | ||
E6 | 25.5 | 29.4 | 23.5 | 9.8 | 7.8 | 3.9 | 100 | 306 | 2.569 | 1.378 | 1.899 | Low Perception | ||
E7 | 17.6 | 25.8 | 16.7 | 14.4 | 15.7 | 9.8 | 100 | 306 | 3.141 | 1.614 | 2.606 | High Perception | ||
Lapses | L1 | 37.3 | 21.6 | 25.5 | 5.9 | 7.8 | 2 | 100 | 306 | 2.314 | 1.338 | 1.79 | Low Perception | |
L2 | 37.3 | 31.4 | 19.3 | 4.2 | 7.8 | 0 | 100 | 306 | 2.219 | 1.396 | 1.949 | Low Perception | ||
L3 | 29.4 | 25.5 | 21.2 | 12.1 | 2 | 9.8 | 100 | 306 | 2.611 | 1.539 | 2.37 | Low Perception | ||
L4 | 19.6 | 39.2 | 17.6 | 11.8 | 2 | 9.8 | 100 | 306 | 2.667 | 1.467 | 2.151 | High Perception | ||
L5 | 29.4 | 25.5 | 17.6 | 17.6 | 2 | 7.8 | 100 | 306 | 2.608 | 1.499 | 2.246 | Low Perception | ||
L6 | 29.4 | 27.5 | 13.7 | 13.7 | 9.8 | 5.9 | 100 | 306 | 2.647 | 1.547 | 2.393 | High Perception | ||
L7 | 25.5 | 39.2 | 17.6 | 9.8 | 2 | 5.9 | 100 | 306 | 2.412 | 1.333 | 1.777 | Low Perception |
Type | Models | Validation Loss | Accuracy | Precision | F1 Score | Recall |
---|---|---|---|---|---|---|
Machine Learning | Naïve Bayes | 1.92 | 66.30 | 0.60 | 0.38 | 0.46 |
Decision Tree Classifier | 1.92 | 68.40 | 0.67 | 0.67 | 0.67 | |
Support Vector Machine | 1.28 | 76.08 | 1.00 | 0.76 | 0.75 | |
Random Forest | 1.09 | 80.30 | 0.84 | 0.72 | 0.77 | |
Ensemble Model | 0.70 | 80.40 | 0.84 | 0.95 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, W.; Wang, H.; Pervez, A.; Safdar, M.; Jamal, A.; Almoshaogeh, M.; Al-Ahmadi, H.M. Analysis and Prediction of Risky Driving Behaviors Using Fuzzy Analytical Hierarchy Process and Machine Learning Techniques. Sustainability 2024, 16, 4642. https://doi.org/10.3390/su16114642
Alam W, Wang H, Pervez A, Safdar M, Jamal A, Almoshaogeh M, Al-Ahmadi HM. Analysis and Prediction of Risky Driving Behaviors Using Fuzzy Analytical Hierarchy Process and Machine Learning Techniques. Sustainability. 2024; 16(11):4642. https://doi.org/10.3390/su16114642
Chicago/Turabian StyleAlam, Waseem, Haiyan Wang, Amjad Pervez, Muhammad Safdar, Arshad Jamal, Meshal Almoshaogeh, and Hassan M. Al-Ahmadi. 2024. "Analysis and Prediction of Risky Driving Behaviors Using Fuzzy Analytical Hierarchy Process and Machine Learning Techniques" Sustainability 16, no. 11: 4642. https://doi.org/10.3390/su16114642
APA StyleAlam, W., Wang, H., Pervez, A., Safdar, M., Jamal, A., Almoshaogeh, M., & Al-Ahmadi, H. M. (2024). Analysis and Prediction of Risky Driving Behaviors Using Fuzzy Analytical Hierarchy Process and Machine Learning Techniques. Sustainability, 16(11), 4642. https://doi.org/10.3390/su16114642