Spatiotemporal Analysis of Surface Urban Heat Island Dynamics in Central Yunnan City Cluster
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Defining Urban and Rural Regions
2.4. Retrieval LST
2.5. Calculation of SUHII and Fitting of Its Variation Trend
2.6. Calculation of the Variation Trend of SUHII
2.7. Driver Analysis
3. Results
3.1. Trends in SUHII Variation
3.2. Spatial Distribution of SUHII Change Rates
3.3. SUHII Change Rates in the Central Yunnan Urban Cluster
3.4. Results of Spatial Autoregressive Analysis
3.5. Exploratory Analysis
4. Discussion
4.1. SUHII Change Characteristics
4.2. Comparison of Estimation Methods of Different SUHII Trends
4.3. Factors Influencing SUHI Variations
4.4. Verification of Urban Pixels
4.5. Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The Urban Heat Island Effect, Its Causes, and Mitigation, with Reference to the Thermal Properties of Asphalt Concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y. Measures to Mitigate Urban Heat Islands. Sci. Technol. Trends Q. Rev. 2006, 18, 65–83. [Google Scholar]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring Connections among Nature, Biodiversity, Ecosystem Services, and Human Health and Well-Being: Opportunities to Enhance Health and Biodiversity Conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Murtaza, K.O.; Shafai, S.; Shahid, P.; Romshoo, S.A. Understanding the Linkages between Spatio-Temporal Urban Land System Changes and Land Surface Temperature in Srinagar City, India, Using Image Archives from Google Earth Engine. Environ. Sci. Pollut. Res. 2023, 30, 107281–107295. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, C.; Yu, C.; Jin, M.; Dong, S. Regression Analysis of the Relationship between Urban Heat Island Effect and Urban Canopy Characteristics in a Mountainous City, Chongqing. Indoor Built Environ. 2012, 21, 821–836. [Google Scholar] [CrossRef]
- Liu, W.; Ji, C.; Zhong, J.; Jiang, X.; Zheng, Z. Temporal Characteristics of the Beijing Urban Heat Island. Theor. Appl. Climatol. 2007, 87, 213–221. [Google Scholar] [CrossRef]
- Li, K.; Chen, Y.; Wang, M.; Gong, A. Spatial-Temporal Variations of Surface Urban Heat Island Intensity Induced by Different Definitions of Rural Extents in China. Sci. Total Environ. 2019, 669, 229–247. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Sun, S.; Li, Y.; Zhang, L.; Huang, L. A Multi-Perspective Study of Atmospheric Urban Heat Island Effect in China Based on National Meteorological Observations: Facts and Uncertainties. Sci. Total Environ. 2023, 854, 158638. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, J.; Han, L. Exploring the Spatial Heterogeneity of Urban Heat Island Effect and Its Relationship to Block Morphology with the Geographically Weighted Regression Model. Sustain. Cities Soc. 2022, 76, 103431. [Google Scholar] [CrossRef]
- Liu, K.; Li, X.; Wang, S.; Li, Y. Investigating the Impacts of Driving Factors on Urban Heat Islands in Southern China from 2003 to 2015. J. Clean. Prod. 2020, 254, 120141. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Zhang, M.; Liu, J. Urban Heat Island Effects of Various Urban Morphologies under Regional Climate Conditions. Sci. Total Environ. 2020, 743, 140589. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A Review on the Generation, Determination and Mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Luo, M.; Liao, W.; Xu, Y.; Wu, S.; Tong, X.; Tian, H.; Xu, F.; Han, Y. Urbanization Contribution to Human Perceived Temperature Changes in Major Urban Agglomerations of China. Urban Clim. 2021, 38, 100910. [Google Scholar] [CrossRef]
- Xu, H.; Li, C.; Wang, H.; Zhou, R.; Liu, M.; Hu, Y. Long-Term Spatiotemporal Patterns and Evolution of Regional Heat Islands in the Beijing–Tianjin–Hebei Urban Agglomeration. Remote Sens. 2022, 14, 2478. [Google Scholar] [CrossRef]
- Chen, M.; Zhou, Y.; Hu, M.; Zhou, Y. Influence of Urban Scale and Urban Expansion on the Urban Heat Island Effect in Metropolitan Areas: Case Study of Beijing–Tianjin–Hebei Urban Agglomeration. Remote Sens. 2020, 12, 3491. [Google Scholar] [CrossRef]
- Yang, A.; Zhao, J.; Lin, Y.; Chen, G. Coupling and Coordination Relationship of Economic–Social–Natural Composite Ecosystem in Central Yunnan Urban Agglomeration. Sustainability 2024, 16, 2758. [Google Scholar] [CrossRef]
- Wang, R.; Bai, Y.; Alatalo, J.M.; Guo, G.; Yang, Z.; Yang, Z.; Yang, W. Impacts of Urbanization at City Cluster Scale on Ecosystem Services along an Urban–Rural Gradient: A Case Study of Central Yunnan City Cluster, China. Environ. Sci. Pollut. Res. 2022, 29, 88852–88865. [Google Scholar] [CrossRef]
- Ping, H.E.; Shuhan, Z. Study on Climate Suitability for the Elderly Living in the Central Yunnan City Cluster. J. Chuxiong Norm. Univ. 2021, 36, 86–96. [Google Scholar]
- Chen, J.; Qiu, Y.; Yang, R.; Li, L.; Hou, J.; Lu, K.; Xu, L. The Characteristics of Spatial-Temporal Distribution and Cluster of Tuberculosis in Yunnan Province, China, 2005–2018. BMC Public Health 2019, 19, 1715. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.; Yang, J.; Zhang, Z.; Li, D.; Liu, X. 30 m Global Impervious Surface Area Dynamics and Urban Expansion Pattern Observed by Landsat Satellites: From 1972 to 2019. Sci. China Earth Sci. 2021, 64, 1922–1933. [Google Scholar] [CrossRef]
- Zhou, D.; Bonafoni, S.; Zhang, L.; Wang, R. Remote Sensing of the Urban Heat Island Effect in a Highly Populated Urban Agglomeration Area in East China. Sci. Total Environ. 2018, 628–629, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulou, M.; Cartalis, C. Daytime Urban Heat Islands from Landsat ETM+ and Corine Land Cover Data: An Application to Major Cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Zhao, Y.; Strebel, D.; Derome, D.; Esau, I.; Li, Q.; Carmeliet, J. Using Clustering to Understand Intra-City Warming in Heatwaves: Insights into Paris, Montreal, and Zurich. Environ. Res. Lett. 2024, 19, 064002. [Google Scholar] [CrossRef]
- Niu, L.; Tang, R.; Jiang, Y.; Zhou, X. Spatiotemporal Patterns and Drivers of the Surface Urban Heat Island in 36 Major Cities in China: A Comparison of Two Different Methods for Delineating Rural Areas. Sustainability 2020, 12, 478. [Google Scholar] [CrossRef]
- Vujovic, S.; Haddad, B.; Karaky, H.; Sebaibi, N.; Boutouil, M. Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements. CivilEng 2021, 2, 459–484. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Q.; Xu, Z.; Lyu, D.; Du, Y.; Qiao, R.; Wu, J. How to Effectively Mitigate Urban Heat Island Effect? A Perspective of Waterbody Patch Size Threshold. Landsc. Urban Plan. 2020, 202, 103873. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on Urban Heat-Island Effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The Role of City Size and Urban Form in the Surface Urban Heat Island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, Y.; Sung, H.C.; Ryu, J.; Jeon, S.W. Trend Analysis of Urban Heat Island Intensity According to Urban Area Change in Asian Mega Cities. Sustainability 2020, 12, 112. [Google Scholar] [CrossRef]
- Pinho, O.S.; Orgaz, M.D.M. The Urban Heat Island in a Small City in Coastal Portugal. Int. J. Biometeorol. 2000, 44, 198–203. [Google Scholar] [CrossRef]
- Ivajnšič, D.; Kaligarič, M.; Žiberna, I. Geographically Weighted Regression of the Urban Heat Island of a Small City. Appl. Geogr. 2014, 53, 341–353. [Google Scholar] [CrossRef]
- Tian, P.; Li, J.; Cao, L.; Pu, R.; Wang, Z.; Zhang, H.; Chen, H.; Gong, H. Assessing Spatiotemporal Characteristics of Urban Heat Islands from the Perspective of an Urban Expansion and Green Infrastructure. Sustain. Cities Soc. 2021, 74, 103208. [Google Scholar] [CrossRef]
- Liu, S.; Shi, K.; Wu, Y.; Cui, Y. Suburban Greening and Suburbanization Changing Surface Urban Heat Island Intensity in China. Build. Environ. 2023, 228, 109906. [Google Scholar] [CrossRef]
- Peng, X.; Zhou, Y.; Fu, X.; Xu, J. Study on the Spatial-Temporal Pattern and Evolution of Surface Urban Heat Island in 180 Shrinking Cities in China. Sustain. Cities Soc. 2022, 84, 104018. [Google Scholar] [CrossRef]
- Liu, H.; He, B.; Gao, S.; Zhan, Q.; Yang, C. Influence of Non-Urban Reference Delineation on Trend Estimate of Surface Urban Heat Island Intensity: A Comparison of Seven Methods. Remote Sens. Environ. 2023, 296, 113735. [Google Scholar] [CrossRef]
- Geng, X.; Zhang, D.; Li, C.; Yuan, Y.; Yu, Z.; Wang, X. Impacts of Climatic Zones on Urban Heat Island: Spatiotemporal Variations, Trends, and Drivers in China from 2001–2020. Sustain. Cities Soc. 2023, 89, 104303. [Google Scholar] [CrossRef]
- Liu, H.; Huang, B.; Zhan, Q.; Gao, S.; Li, R.; Fan, Z. The Influence of Urban Form on Surface Urban Heat Island and Its Planning Implications: Evidence from 1288 Urban Clusters in China. Sustain. Cities Soc. 2021, 71, 102987. [Google Scholar] [CrossRef]
- Liu, X.; Ming, Y.; Liu, Y.; Yue, W.; Han, G. Influences of Landform and Urban Form Factors on Urban Heat Island: Comparative Case Study between Chengdu and Chongqing. Sci. Total Environ. 2022, 820, 153395. [Google Scholar] [CrossRef] [PubMed]
- Min, M.; Zhao, H.; Miao, C. Spatio-Temporal Evolution Analysis of the Urban Heat Island: A Case Study of Zhengzhou City, China. Sustainability 2018, 10, 1992. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Liu, Y.; Yang, Y.; Fu, X.; Shen, R.; Xu, W.; Yao, L. Trends and Attributions of the Long-Term Thermal Comfort across the Urban–Rural Gradient in Major Chinese Cities. Appl. Geogr. 2024, 164, 103221. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, H.; Wang, R.; Murayama, Y.; Wang, L.; Hu, T. Effects of Landscape Patterns on the Morphological Evolution of Surface Urban Heat Island in Hangzhou during 2000–2020. Sustain. Cities Soc. 2022, 79, 103717. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, H.; Zhang, S.; Jin, Z.; Zhang, Y.; Wang, Y.; Shi, Y.; Jiang, J.; Chen, X.; Liu, M. Long–term Trends in Surface Thermal Environment and Its Potential Drivers along the Urban Development Gradients in Rapidly Urbanizing Regions of China. Sustain. Cities Soc. 2024, 105, 105324. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, X.; Tang, Q. The Footprint of Urban Heat Island Effect in 302 Chinese Cities: Temporal Trends and Associated Factors. Sci. Total Environ. 2019, 655, 652–662. [Google Scholar] [CrossRef]
- Siddiqui, A.; Kushwaha, G.; Nikam, B.; Srivastav, S.K.; Shelar, A.; Kumar, P. Analysing the Day/Night Seasonal and Annual Changes and Trends in Land Surface Temperature and Surface Urban Heat Island Intensity (SUHII) for Indian Cities. Sustain. Cities Soc. 2021, 75, 103374. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M.; Liu, X.; Meng, Y.; Zhu, L.; Rong, Y. Spatio-Temporal Evolution of Surface Urban Heat Islands in the Chang-Zhu-Tan Urban Agglomeration. Phys. Chem. Earth Parts A/B/C 2020, 117, 102865. [Google Scholar] [CrossRef]
- Kim, M.; Lee, K.; Cho, G.-H. Temporal and Spatial Variability of Urban Heat Island by Geographical Location: A Case Study of Ulsan, Korea. Build. Environ. 2017, 126, 471–482. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Li, J.; Gao, C. Socioeconomic Drivers of Urban Heat Island Effect: Empirical Evidence from Major Chinese Cities. Sustain. Cities Soc. 2020, 63, 102425. [Google Scholar] [CrossRef]
- Melaas, E.K.; Wang, J.A.; Miller, D.L.; Friedl, M.A. Interactions between Urban Vegetation and Surface Urban Heat Islands: A Case Study in the Boston Metropolitan Region. Environ. Res. Lett. 2016, 11, 054020. [Google Scholar] [CrossRef]
- Nastran, M.; Kobal, M.; Eler, K. Urban Heat Islands in Relation to Green Land Use in European Cities. Urban For. Urban Green. 2019, 37, 33–41. [Google Scholar] [CrossRef]
- Qiu, G.; Li, H.; Zhang, Q.; Chen, W.; Liang, X.; Li, X. Effects of Evapotranspiration on Mitigation of Urban Temperature by Vegetation and Urban Agriculture. J. Integr. Agric. 2013, 12, 1307–1315. [Google Scholar] [CrossRef]
- Chun, B.; Guldmann, J.-M. Impact of Greening on the Urban Heat Island: Seasonal Variations and Mitigation Strategies. Comput. Environ. Urban Syst. 2018, 71, 165–176. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Salamanca, F.; Georgescu, M.; Mahalov, A.; Milne, J.M.; Ruddell, B.L. A Multi-Method and Multi-Scale Approach for Estimating City-Wide Anthropogenic Heat Fluxes. Atmos. Environ. 2014, 99, 64–76. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three Decades of Urban Heat Islands and Mitigation Technologies Research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Zhao, Y.; Sen, S.; Susca, T.; Iaria, J.; Kubilay, A.; Gunawardena, K.; Zhou, X.; Takane, Y.; Park, Y.; Wang, X.; et al. Beating Urban Heat: Multimeasure-Centric Solution Sets and a Complementary Framework for Decision-Making. Renew. Sustain. Energy Rev. 2023, 186, 113668. [Google Scholar] [CrossRef]
Dataset | Type | Time |
---|---|---|
LANDSAT/LT05/C01/T1_SR | Landsat 5 | 1984–2013 |
LANDSAT/LC08/C01/T1_SR | Landsat 8 | 2013–2021 |
GISA 2.0 | Impervious surface | 1972–2019 |
ASTER GDEM V3 | DEM | 2019 |
Factor | Variable Calculation | Factor Calculation | Source | Denotative Meaning | |
---|---|---|---|---|---|
variable | ΔNDBI | Sen slope estimation | NDBIurban-NDBIrural | Landsat dataset | Urbanization trend |
ΔNDVI | Sen slope estimation | NDVIurban-NDVIrural | Landsat dataset | The difference between vegetation cover change in urban areas and rural areas | |
Built-up area | Sen slope estimation | - | GISA 2.0 (1972~2019) | Urbanization process and land use change | |
population | Sen slope estimation | counting by county | statistical yearbook | Demographic trends and demographic changes | |
GDP | Sen slope estimation | counting by county | statistical yearbook | Changes in the level of economic growth and economic activity | |
Primary_industry | Sen slope estimation | counting by county | statistical yearbook | Changes in agriculture and related industries | |
Secondary_industry | Sen slope estimation | counting by county | statistical yearbook | The development and change of manufacturing and related industries | |
Tertiary_industry | Sen slope estimation | counting by county | statistical yearbook | The development and change of the service industry and related industries | |
quantification | ΔDEM | - | DEMurban-DEMrural | ASTER GDEM V3 | The elevation difference between urban and suburban areas |
Δslope | - | slopeurban-sloperural | ASTER GDEM V3 | Urban and suburban gradient differences | |
Longitude | - | - | - | Longitude | |
Latitude | - | - | - | Latitude |
Model | Direct Fitting | Transformation Fitting |
---|---|---|
Equation | Y = A + B × X | Y = A + B × X |
A | 144.25228 ± 13.05655 | 4.12511 ± 0.14864 |
B | −0.07128 ± 0.00649 | −0.05781 ± 2.65766 × 10−4 |
Reduced Chi-Sqr | 1587.31481 | 5.33879 |
R-squared | 0.11089 | 0.94999 |
Adjusted R-squared | 0.10997 | 0.94997 |
Model | Direct Fitting | Transformation Fitting |
---|---|---|
Moran’s I Index | Variance | |
SUHII | 0.146 | 0.0039 |
Built-up area | 0.032 | 0.0037 |
ΔNDBI | 0.089 | 0.004 |
ΔNDVI | 0.214 | 0.004 |
Factors Type | Variable | Coefficient | Std.Error | Z-Value | Probability |
---|---|---|---|---|---|
Geographical | Longitude | 4.25 × 10−8 | 1.74 × 10−8 | 2.43726 | 0.0148 |
Latitude | −2.28 × 10−8 | 1.40 × 10−8 | −1.63171 | 0.10274 | |
Topographical | ΔDEM | −7.90 × 10−5 | 6.96 × 10−5 | −1.13563 | 0.25611 |
ΔSLOPE | −0.00038 | 0.0012 | −0.31809 | 0.75042 | |
Land use change | Built-up area | −0.08692 | 0.15682 | −0.55428 | 0.57939 |
ΔNDBI | −0.0745 | 0.1107 | −0.673 | 0.50095 | |
ΔNDVI | −0.22362 | 0.08164 | −2.73921 | 0.00616 | |
Socioeconomic | population | 0.06709 | 0.0916 | 0.73239 | 0.46393 |
GDP | −0.53477 | 0.36294 | −1.47346 | 0.14063 | |
Industrial Outcome | Primary_industry | −0.45736 | 0.45437 | −1.00658 | 0.31414 |
Secondary_industry | −0.04027 | 0.22382 | −0.17993 | 0.8572 | |
Tertiary_industry | 0.43398 | 0.21262 | 2.04112 | 0.04124 | |
CONSTANT | −0.40656 | 0.20548 | −1.97859 | 0.04786 | |
λ | −0.41772 | 0.24928 | −1.67572 | 0.09379 | |
R-squared | OLS | 0.55238 | |||
SLM | 0.56401 | ||||
SEM | 0.58683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Q.; Liu, C.; Ren, Z.; Fu, Y.; Fan, H.; Wang, Y.; Yu, Z. Spatiotemporal Analysis of Surface Urban Heat Island Dynamics in Central Yunnan City Cluster. Sustainability 2024, 16, 4819. https://doi.org/10.3390/su16114819
Fang Q, Liu C, Ren Z, Fu Y, Fan H, Wang Y, Yu Z. Spatiotemporal Analysis of Surface Urban Heat Island Dynamics in Central Yunnan City Cluster. Sustainability. 2024; 16(11):4819. https://doi.org/10.3390/su16114819
Chicago/Turabian StyleFang, Qingping, Chang Liu, Zhibin Ren, Yao Fu, Huapeng Fan, Yongshu Wang, and Zhexiu Yu. 2024. "Spatiotemporal Analysis of Surface Urban Heat Island Dynamics in Central Yunnan City Cluster" Sustainability 16, no. 11: 4819. https://doi.org/10.3390/su16114819
APA StyleFang, Q., Liu, C., Ren, Z., Fu, Y., Fan, H., Wang, Y., & Yu, Z. (2024). Spatiotemporal Analysis of Surface Urban Heat Island Dynamics in Central Yunnan City Cluster. Sustainability, 16(11), 4819. https://doi.org/10.3390/su16114819