A Systematic Review of Outdoor Thermal Comfort Studies for the Urban (Re)Design of City Squares
Abstract
:1. Introduction
2. Materials and Methods
Information Sources, Search Strategy, and Selection Process
3. Results
3.1. Specific Characteristics of OTC-Related Studies
3.2. Identified Clusters of OTC-Related Study Types
- I
- Cluster: Human behavior—user activity
- II
- Cluster: Psychological and cultural factor—adaptive behavior
- III
- Cluster: Thermal comfort and heat mitigation measures—comparison
- IIIa
- Cluster: Green—blue—grey infrastructure
- IIIb Cluster: Urban square morphology and geometry
- IIIc Cluster: Surface materialization
- IIId Cluster: Small urban elements and wind
- IIIe Cluster Design Scenario evaluation
- IV Cluster—Outdoor thermal comfort perception comparison
- IVa Cluster: Measured vs calculated and subjective vs objective estimation of thermal comfort in urban squares
- IVb Cluster: Neutral temperature perception thresholds in urban squares
- IVc Cluster: Special group analysis on thermal perception comparison in urban squares
- V Cluster: Development of new methodology and instrument techniques applied for OTC assessment in urban squares
3.3. Statistical Comparison of Clusters Main Research Characteristics
3.3.1. Primary Geometric Characteristics of Selected and Analyzed Urban Squares
3.3.2. Analyzed Characteristics of the Built Environment in Urban Squares
3.3.3. Data Collection Methods Used in Selected Studies
3.3.4. Used Thermal Indices in Studies
3.3.5. Collected Micrometeorological Measurements in Studies
3.3.6. Human-Based Parameters and the Subjective Perception of the Environment in Studies
4. Discussion and Conclusions
- (I)
- Human behavior–user activity studies are based on the environmental–behavioral non-obstructive observation methodological approach. All of the studies use methods for studying people’s behavior in their natural settings, such as field studies or non-obstructive observations in natural settings. These studies usually do not have scenario redesign comparisons; they are typically carried out through time series: different weather seasons, different daytime, or before and after the square reconstruction.
- (II)
- Psychological and cultural factor. Adaptive behavior studies have for research data gathering methods: questionary–pedestrian based interview and parallel collection of microclimate data in the field (environmental monitoring). Essential for these urban studies is that a thermal comfort assessment relies not only on microclimate weather parameters but also primarily on assessing user-specific social and cultural factors. Different subjective thermal sensations are interpreted concerning users’ social, cultural, and economic conditions.
- (III)
- Thermal comfort and heat mitigation measures. Comparison studies focus on a user OTC comparison and mitigation measure comparison, with the most attention paid to the physical factors of the urban environment. The study design approach is mixed with the use of (a) qualitative (questionary survey, analytical time series observation) and (b) quantitative data collection methods (in situ weather measurements, computer spatial analysis, modeling, and simulation scenario data output). A different comparison aspect makes subcategorization of this research: green–blue–grey infrastructure, urban square morphology and geometry (H/W, SVF), surface materialization, small urban elements, and wind and design scenario evaluation.
- (IV)
- Outdoor thermal comfort perception comparison studies. These studies are used as an important input factor for the urban design of open public spaces and usually have mixed qualitative and quantitative approach, with two parts: (a) an on-field objective weather parameter measurement with subjective questionary survey and (b) comparison-calculated rational thermal comfort index (PMV, PET, SET*, UTCI) with measured subjective estimation. This part of the research focuses on the relationship between biophysical environments, subjective states of thermal comfort, thermal index comparisons, different neutral temperature perception ranges, acceptable thermal perception ranges, thermal perception thresholds, and various groups’ perception comparations (old, young, tourists, domestic).
- (V)
- Development of new methodology and instrument techniques for OTC assessment in urban squares. These studies are quantitative, cross-sectional, and have a quasi-experimental research design; their primary objective is to explore the development of a methodological framework of an outdoor comfort assessment with a case study in the urban square.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Author | Year of Res. Study Publication | Study Type (1–5) | Country of Study | Name of the City | Name of the Square | Köppen Geiger Classification Rubel 2017 |
---|---|---|---|---|---|---|
Yannas [145] | 2001 | 3.5 | United Kingdom, Greece | 1. London 2. Athens | 1. Russel square 2. Victoria square | 1. Cfb 2. Csa |
Nikolopoulou, Baker, Steemers [9] | 2001 | 2,4.1, 4.2 | United Kingdom | Cambridge | Market Square | Cfb |
Zacharias, Stathopoulos, Wu [53] | 2001 | 1 | Canada | Montreal | 1. Place de la Cathédrale 2. Phillips Square 3. Square Frère André 4. Place Ville-Marie 5. Royal Trust | Dfb |
Picot [110] | 2004 | 3.1 | Italy | Milan | Piazza dell Scienza | Cfa |
Stathopoulos, Wu, Zacharias [173] | 2004 | 4.1 | Canada | Montreal | 1. Place de la Cathédrale 2. Phillips Square 3. Square Frère André 4. Place Ville-Marie 5. Royal Trust | Dfb |
Zacharias, Stathopoulos, Wu [7] | 2004 | 1 | USA | San Francisco | 1. Monument 2. 101 California 3. Bank of America 4. McKesson 5. Trinity 6. Fermont 7. 1 Bush | Csb |
Scudo and Dessì [146] | 2006 | 3.5 | Italy | Milan (Cinisello Balsamo) | 1. Piazza Costa 2. Piazza Gramsci | Cfa |
Robitu, Musy, Inard, Groleau [220] | 2006 | 3.1 | France | Nant | Fleuriot Square | Cfb |
Knez and Thorsson [242] | 2006 | 2 | Sweden | Göteborg | Gustav Adolfs torg | Cfb |
Chatzidimitriou, Yannas [140] | 2006 | 3.3 | Greece | Thessaloniki, | 1. Archaias Agoras Square 2. Platia Megalou Alexandrou 3. The square at the corner of the streets Leof. Stratou and Aggelaki | Csa |
Nikolopoulou, Lykoudis [201] | 2006 | 4.1, 4.2 | Greece Italy United Kingdom Germany | 1. Athens—Alimos 2. Athens—Alimos 3. Thessaloniki 4. Milan 5. Milan 6. Sheffield 7. Sheffield 8. Kassel 9. Kassel | 1. Karaiskaki square 2. Septembriou square 3. Makedonomahon square 4. Piazza Petazzi 5. Piazza IV Novembre 6. Peace Garden 7. Barker’s Pool 8. Florentiner Platz 9. Bahnhofsplatz | Csa |
Zambrano, Malafaia, Bastos [184] | 2006 | 4.1 | Brazil | Rio de Janeiro | Concordia Plaza | |
Johansson [128] | 2006 | 3.2 | Morocco | Fez | Place Seffarine | Bsh |
Eliasson, Knez, Westerberg, Thorsson, Lindberg [65] | 2007 | 2 | Sweden | Göteborg | Gustav Adolfs torg | Cfb |
Thorsson, Lindberg, Eliasson, Holmer [219] | 2007 | 5 | Sweden | Göteborg | Gustav Adolfs torg | Cfb |
Nikolopoulou, Lykoudis [54] | 2007 | 1 | Greece | Athens (Alimos) | Karaiskaki Square, Athens, Greece | Csa |
Thorsson, Honjo, Lindberg, Eliasson, Lim [66] | 2007 | 2 | Japan | Matsudo | Matsudo Station Square | Cfa |
Lindberg, Holmer, Thorsson [218] | 2008 | 5 | Sweden | Göteborg | Gustav Adolfs torg | Cfb |
De Castro Fontes, Aljawabra, Nikolopoulou [55] | 2008 | 1 | United Kingdom | Bath | Queen Square | Cfb |
Georgi and Tzesouri [100] | 2008 | 3.1 | Greece | Drama | Dikastirion Square | Csk |
Matzarakis, De Rocco, Najjar [113] | 2009 | 3.1 | France | Strasbourg | Market square—Place Kléber | Cfb |
Lin [177] | 2009 | 2, 4.1, 4.2 | Taiwan | Taichung City | NTMOFA | Cwa |
Georgi and Dimitriou [101] | 2010 | 3.1 | Greece | Chania | square of Courts, Platia Eleftherias | Csa |
Lenzholzer and van der Wulp [243] | 2010 | 2 | Netherlands | 1. Den Haag 2. Eindhoven 3. Groningen | 1. Spuiplein 2. Neckerspoel 3. Grote Markt | 1. Cfb 2. Cfb 3. Cfb |
Lenzholzer and Koh [10] | 2010 | 2 | Netherlands | 1. Den Haag 2. Eindhoven 3. Groningen | 1. Spuiplein 2. Neckerspoel 3. Grote Markt | 1. Cfb 2. Cfb 3. Cfb |
Lenzholzer [67] | 2010 | 2 | Netherlands | 1. Den Haag 2. Eindhoven 3. Groningen | 1. Spuiplein 2. Neckerspoel 3. Grote Markt | 1. Cfb 2. Cfb 3. Cfb |
Kariminia, Sh Ahmad, Ibrahim, Omar [244] | 2010 | 2 | Iran | Isfahan | 1 Emam Square (Naqsh-e Jahan Square) 2. Jolfa Square | BWk |
Lin, Matzarakis, Hwang [124] | 2010 | 3.2 | Taiwan | Huwei | 1. Student union square 2. Center square | Cwa |
Tseliou, Tsiros, Lykoudis, Nikolopoulou [187] | 2010 | 4.1 | Greece Italy United Kingdom Germany | 1. Athens—Alimos 2. Athens—Alimos 3. Thessaloniki 4. Milan 5. Milan 6. Sheffield 7. Sheffield 8. Kassel 9. Kassel | 1. Karaiskaki square 2. Septembriou square 3. Makedonomahon square 4. Piazza Petazzi 5. Piazza IV Novembre 6. Peace Garden 7. Barker’s Pool 8. Florentiner Platz 9. Bahnhofsplatz | Csa |
Aljawabra, Nikolopoulou [68] | 2010 | 2, 4.1 | Morocco | Marrakech | Al Koutoubia Plaza | Bsh |
Lindberg, Grimmond [245] | 2011 | 5 | Sweden | Göteborg | Guldhedstorget | Cfb |
Thorsson, Lindberg, Björklund, Holmer, Rayner [117] | 2011 | 3.2 | Sweden | Göteborg | Gustav Adolfs torg | Cfb |
Gaitani, Spanou, Saliari, Synnefa, Vassilakopoulou, Papadopoulou, Pavlou, Santamouris, Papaioannou, Lagoudaki [154] | 2011 | 3.5 | Greece | Athens | Messolongiou Square | Csa |
Lenzholzer [155] | 2011 | 3.5 | Netherlands | 1. Den Haag 2. Groningen | 1. Spuiplein 2. Grote Markt | 1. Cfb 2. Cfb |
Krüger, Minella, Rasia [118] | 2011 | 3.2 | Brazil | Curitiba | 1. Santos Andrade Square 2. General Osório Square | Cfb |
Kariminia. Ahmad, Omar, Ibrahim [202] | 2011 | 4.2 | Iran | Esfahan | Emam Square (Naqsh-e Jahan Square) | BWk |
Fintikakis, Gaitani, Santamouris [153] | 2011 | 3.5 | Albania | Tirana | Sheshi Fan S. Noli (Square Fan S. Noli) | Csa |
Stavrakakis, Tzanaki, Genetzaki, Anagnostakis, Galetakis, Grigorakis [221] | 2012 | 5 | Greece | Heraklion, Gazi | 1. Michael Katsamani Square 2. Square on the corner of Kondailaki and Nikos Kazantzakis street | Csa |
Axarli and Chatzidimitriou [78] | 2012 | 3.1 | Greece | Thessaloniki | 1. Chemistry square 2. Administration square | Csa |
Lenzholzer [74] | 2012 | 2 | Netherlands | 1. Den Haag 2. Eindhoven 3. Groningen | 1. Spuiplein 2. Neckerspoel 3. Grote Markt | 1. Cfb 2. Cfb 3. Cfb |
Kantor, Égerházi, Unger [175] | 2012 | 4.1 | Hungary | Szeged | 1. Ady Square 2. Honvéd Square | Cfa |
Kantor, Unger, Gulyas [174] | 2012 | 4.1 | Hungary | Szeged, Montreal, Taichung City and RUROS | 1. Ady Square 2. Honvéd Square | Cfa |
Xi, Li, Mochida, Meng [125] | 2012 | 3.2, 3.3 | China | Guangzhou | Distributor Square | Cwa |
Cohen, Potchter, Matzarakis [102] | 2012 | 3.1 | Israel | Tel Aviv, | 1 Rabin Square 2. Kupa Square | Csa |
Makaremi, Salleh, Jaafar, GhaffarianHoseini [76] | 2012 | 2, 4.1 | Malesia | University Putra Malaysia | Square 1 Square 2 | Af |
Pantavou, Theoharatos, Santamouris, Asimakopoulos [176] | 2013 | 4.1 | Greece | Athens | Syntagma Square | Csa |
Fröhlich, Matzarakis [156] | 2013 | 3.5 | Germany | Freiburg | Place of the Old Synagogue | Cfb |
Maras, Buttstädt, Hahmann, Hofmeister, Schneider [83] | 2013 | 3.1 | Germany | Aachen | Bahnhofsplatz | Cfb |
Szucs [144] | 2013 | 3.4 | Ireland | Dublin | Grand Canal Square | Cfb |
Gómez, Cueva, Valcuende, Matzarakis [103] | 2013 | 3.1 | Spain | Valencia | 1 Plaza de la Virgen, 2 Plaza del Ayuntamiento | Bsh |
Lindner-Cendrowska [207] | 2013 | 4.3 | Poland | Warsaw | Old Town Marketplace | Cfb |
Zhou, Chen, Deng, Mochida [141] | 2013 | 4.1 | China | Wuhan | N/A | Cfa |
Kariminia, Ahmad [75] | 2013 | 4.1 | Iran | Esfahan | Emam Square (Naqsh-e Jahan Square) | BWk |
Kariminia, Ahmad, Ibrahim [56] | 2013 | 4.2 | Iran | Esfahan | Emam Square (Naqsh-e Jahan Square) | BWk |
Cohen, Potchter, Matzarakis [188] | 2013 | 4.1 | Israel | Tel Aviv | Rabin Square | Csa |
Tsitoura, Tsoutsos, Daras [178] | 2014 | 4.1 | Greece | Chania, Rethymnon | 1. Talo Square—Chania 2. Square of Liberty—Heraklion 3. Square of Archanes, 4. Square Agnostos Stratiotis, Rethymno, Greece | Csa |
Maragkogiannis, Kolokotsa, Maravelakis, Konstantaras [135] | 2014 | 5 | Greece | Crete, Chania | Square 1866 | Csb |
Rossi, Anderini, Castellani, Nicolini, Morini [142] | 2015 | 3.4 | Italy | Citta di Castello | Matteotti Square | Cfb |
Ballout, Lacheheb, Bouchahm [81] | 2015 | 3.1, 3.5 | Algeria | Sétif | The Square of Independence | Csa |
Mazzotta, Mutani [130] | 2015 | 3.3 | Italy | Turin | Bottesini square | Cfa |
Battistella & Noro [79] | 2015 | 3.1 | Italy | Padua | Prato della Valle | Cfa |
Martinelli, Lin, Matzarakis [57] | 2015 | 1 | Italy | Rome | Piazza di San Silvestro | Csa |
Noro & Lazzarin [80] | 2015 | 3.1, 3.3 | Italy | Padua | Prato della Valle | Cfa |
Chatzidimitriou and Yannas [131] | 2015 | 3.3 | Greece | Thessaloniki | 1. Archaias Agoras Square 2. Platia Megalou Alexandrou 3. the square at the corner of the streets Leof. Stratou and Aggelaki | Csa |
Acero, Herranz-Pascual [189] | 2015 | 4.1 | Spain | Bilbao | 1. Unamuno Miguel Plaza 2. Indautxu Plaza | Cfb |
Stocco, Cantón, Correa [94] | 2015 | 3.1, 3.5 | Argentina | Mendoza | 1. San Martín square 2. Chile square 3. Manuel Belgrano square | BWk |
Kariminia, Ahmad, Saberi [120] | 2015 | 3.2 | Iran | Esfahan | Emam Square (Naqsh-e Jahan Square) | BWk |
Tseliou, Tsiros, Nikolopoulou, Papadopoulos [203] | 2016 | 4.2 | Greece | Athens | Fighting workers square Square IRO, | Csa |
Chatzidimitriou and Yannas [171] | 2016 | 3.5 | generic square | - | Generic square | - |
Salata, Golasi, Vollaro R, Vollaro A. [190] | 2016 | 4.1, 4.2 | Italy | Rome | Piazzale Della Minerva | Csa |
Tseliou and Tsiros [157] | 2016 | 3.5 | Greece | Athens | Fighting workers square Square IRO, | Csa |
Kantor, Kovacs, Takacs [104] | 2016 | 3.1 | Hungary | Szeged | Dugonics Square | Cfa |
Djukic, Vukmirovic, Stankovic [16] | 2016 | 3.5 | Serbia | Leskovac | Main city square | Cfa |
Cortesão, Alves, Corvacho, Rocha [82] | 2016 | 3.1, 3.3, 3.5 | Portugal | Porto | Poveiros Square | Csb |
Hirashima, Assis, Nikolopoulou [204] | 2016 | 4.2 | Brazil | Belo Horizonte | 1. Liberdade square 2. Sete de Setembro square | Cwa |
Piaskowy, Krüger [58] | 2016 | 1 | Brazil | Curitiba | Praça do Japão | Cfb |
Girgis, Elariane, Elrazik [143] | 2016 | 3.4 | Egypt | Cairo | El Hussein Square | BWh |
Kariminia, Motamedi, Shamshirband, Petković, Roy, Hashim [222] | 2016 | 5 | Iran | Esfahan | Emam Square (Naqsh-e Jahan Square) | BWk |
Kariminia, Shamshirband, Hashim, Saberi, Petković, Roy, Motamedi [224] | 2016 | 5 | Iran | Esfahan | 1 Emam Square (Naqsh-e Jahan Square) 2. Jolfa Square | BWk |
Kariminia [119] | 2016 | 3.2 | Iran | Esfahan | 1 Emam Square (Naqsh-e Jahan Square) 2. Jolfa Square | BWk |
Sharifi, Sivam, Boland [61] | 2016 | 1 | Australia | Adelaide | 1 Hayek Plaza (Festival Center) 2 Hindmarsh Square | Csb |
Morille and Musy [95] | 2017 | 3.1, 3.3, 3.5 | France | Lyon | 1. Francfort square 2. Square between the two Moncey building blocks | Cfb |
Tseliou, Tsiros, Nikolopoulou [179] | 2017 | 4.1 | Greece | Athens | Square IRO Fighting workers square | Csa |
Nouri and Costa [169] | 2017 | 3.5 | Portugal | Lisbon | Rossio | Csa |
Nouri, Costa, Matzarakis [121] | 2017 | 3.2 | Portugal | Lisbon | Rossio | Csa |
Piaskowy, Krüger [59] | 2017 | 1 | Brazil | Curitiba | Praça do Japão | Cfb |
Lancellotti, Ziede Bize [172] | 2017 | 3.5 | Chile | Antofagasta | Plaza de Armas | Csk |
Nasrollahi, Hatami, Taleghani [168] | 2017 | 3.5, 4.3 | Iran | Esfahan | 1. Emam Square (Naqsh-e Jahan Square) 2. Jame mosque | BWk |
Sharifi, Boland [217] | 2017 | 1 | Australia | 1. Sidney 2. Melbourne 3. Adelaide | 1. Friendship Plaza 2. Federation Square 3. Hayek Plaza (Festival Center) | 1. Cfa 2. Cfb 3. Csb |
Laureti, Martinelli, Battisti [158] | 2018 | 3.5 | Italy | Rome | Piazza di San Silvestro | Csa |
Gaspari, Fabbri, Lucchi [84] | 2018 | 3.1, 3.5 | Italy | Cesena | Piazza Bufalini | Cfa |
Piselli, Castaldo, Pigliautile, Pisello, Cotana [170] | 2018 | 3.5 | Italy | Perugia | Piazza Vittorio Veneto | Csa |
Ebrahimabadi, Johansson, Rizzo, Nilsson [158] | 2018 | 3.5 | Sweden | Kiruna | New square | Dfc |
Kantor, Chen, Gal [105] | 2018 | 3.1 | Hungary | Pécs | 1. Széchenyi Square 2. Sétatér Square | Cfb |
Kantor, Gal, Gulyas, Unger [126] | 2018 | 3.2 | Hungary | Szeged | Bartok Square | Cfa |
Hirashima, Katzschner, Ferreira, Assis, Katzschner [205] | 2018 | 4.2 | Germany, Brazil | 1. Kassel 2. Belo Horizonte 3. Belo Horizonte | 1. Opernplatz 2. Sete de Setembro Square 3. Liberdade Square | Cfb |
Đekić, Mitković, Dinić-Branković, Igić, Đekić, Mitković [106] | 2018 | 3.1, 3.3 | Serbia | Niš | Liberation square (King Milan Square) | Cfa |
Djekic J, Djukic, Vukmirovic, Djekic P, Dinic Brankovic [132] | 2018 | 3.3 | Serbia | Niš | Liberation square (King Milan Square) | Cfa |
Nouri, Lopes, Pedro Costa, Matzarakis [167] | 2018 | 3.5 | Portugal | Lisbon | Rossio | Csa |
Lindner-Cendrowska, Blazejczyk [191] | 2018 | 4.1, 4.3 | Poland | Warsaw | Old Town Marketplace | Cfb |
Jin, Zhao, Liu, Kang [127] | 2018 | 3.2 | China | Harbin | 1. Chinese–Baroque square 1 2. Chinese–Baroque square 2 3. Floods square 4. Beer Culture square 5. Sophia Church square | Dwa |
Smith, Henríquez [122] | 2018 | 3.2 | Chile | Chillan | Plaza de Armas | Csb |
Sharifi, Boland [61] | 2018 | 1 | Australia | Adelaide | 1 Hayek Plaza (Festival Center) 2 Hindmarsh Square | Csb |
Taleghani, Berardi [136] | 2018 | 3.3 | Canada | Toronto | Yonge-Dundas square | Dfa |
Aljawabra, Nikolopoulou [69] | 2018 | 2, 4.1 | Morocco | Marrakech | Al Koutoubia Plaza | Bsh |
Battista, de Lieto Vollaro, Zinzi [160] | 2019 | 3.5 | Italy | Rome, Centocelle district | Piazza dei Mirti | Csa |
Peng, Wang, Li [62] | 2019 | 1 | United Kingdom | Cambridge | Market Square | Cfb |
Klok, Rood, Kluck, Kleerekoper [71] | 2019 | 2 | Netherlands | Amsterdam | 1. Dam Square, 2. Frederiksplein 3. Statonsplein square, 4. Leidseplein square, 5. Mahlerplein square, 6. Rembrandtplein, 7. Thorbeckeplein, | |
Peng, Feng, Timmermans [212] | 2019 | 5 | Netherlands | Eindhoven | 1. Central plaza in city center 2. Paved square of Steven Simonplein 3. A small paved square in Kennedyplein 4. Neckerspoel, the northern square of the central railway station 5. Small square between Verigo and Matrix | Cfb |
Albdour and Baranyai [148] | 2019 | 4.1 | Hungary | Pécs | Széchenyi square | Cfb |
Albdour and Baranyai [86] | 2019 | 3.1 | Hungary | Pécs | Széchenyi square | Cfb |
Zölch, Rahman, Pfleiderer, Wagner, Pauleit [85] | 2019 | 3.1 | Germany | Munich | Bordeauxplatz | Cfb |
Jin, Wang, Qiao [211] | 2019 | 4.3 | China | Changchun | N/A | Dwa |
Kicovic, Vuckovic, Markovic, Jovic [223] | 2019 | 5 | Serbia | N/A | N/A | N/A |
Kubilay, Derome, Carmeliet [133] | 2019 | 3.3, 5 | Switzerland | Zurich | Münsterhof | Cfb |
Xi, Wang, Wang, Lv [210] | 2019 | 4.3 | China | Harbin | Square of the school library | Dwa |
Liu, Lian, Brown [114] | 2019 | 3.1 | China | Shanghai | Century Square | Cfa |
Dafri, Alkama [147] | 2019 | 3.5 | Algeria | Annaba | Square el Houria | Csa |
Krüger, Piaskowy, Moro, Minella | 2019 | 1 | Brazil | Curitiba | Praça do Japão | Cfb |
Marçal, da Silva, Santos, Santos [180] | 2019 | 4.1 | Brazil | 1. Teixeira 2. Patos | 1. Cassiano Rodrigues 2. Getúlio Vargas | Aw |
Zabetian, Kheyroddin [70] | 2019 | 2, 5 | India | Tehran | 1. Imam Hussain Square 2. Imam Khomeini Square | CSk |
Kubilay, Derome, Carmeliet [134] | 2020 | 3.3, 5 | Switzerland | Zurich | Münsterhof | Cfb |
Vasilikou and Nikolopoulou [129] | 2020 | 3.2 | Italy | 1. Rome 2. Rome 3. London | 1. Piazza Benedetto Cairoli 2. Campo dei Fiori 3. Covent Garden square (part) | 1. Csa 2. Csa 3. Cfb |
Battisti [137] | 2020 | 3.3, 3.5 | Italy | Rome | Piazza Bainsizza | Csa |
Del Campo, Aseguinolaza, Aja, Lopes [150] | 2020 | 3.5, 5 | Spain | Madrid | 1. de Mayo square 2. Pedro Zerolo square | Csa |
Gatto, Buccolieri, Aarrevaara, Ippolito, Emmanuel, Perronace, Santiago [96] | 2020 | 3.1 | Finland | Lahti | Market Square | Dfb |
Huang, Peng [192] | 2020 | 4.1 | China | Chongqing | Three Gorges Square | Cfa |
Jin, Jin, Kang [197] | 2020 | 4.1 | China | Harbin | 1. Gexin Cathedral Square 2. Sports Square 3. Century Square | Dwa |
Li, Wang, Ni, Chen, Xia [162] | 2020 | 3.5 | China | Guangzhou | Haixinsha Square | Cwa |
Boumaraf, Amireche [63] | 2020 | 1 | Algeria | Biskra | Liberty square | BWh |
Manavvi, Rajasekar [77] | 2020 | 2, 4.1 | India | New Delhi | 1. Hanuman Mandir Square 2. Gurudwara Bangla Sahib Square | BSh |
Gal, Kantor [123] | 2020 | 3.2, 5 | Hungary | Szeged | Bartók Square | Cfa |
Ibraheem, Hassan [149] | 2020 | 4.1 | Iraq | Baghdad | Al-Ghurery Square | BWh |
Dursun, Yavas, Yilmaz [161] | 2020 | 3.5 | Turkey | Erzurum | Yakutiye Square | Dsb |
Sharifi, Boland [217] | 2020 | 5 | Australia | 1. Sidney 2. Melbourne 3. Adelaide | 1. Friendship Plaza 2. Federation Square 3. Hayek Plaza (Festival Center) | 1. Cfa 2. Cfb 3. Csb |
Apostolopoulou and Tsoka [87] | 2021 | 3.1 | Greece | Athens, Ilioupoli, | War Heroes Square | Csa |
Peng, Feng, Timmermans [213] | 2021 | 5 | Netherlands | Eindhoven | 1. Central plaza in the city center 2. Paved square of Steven Simonplein 3. A small paved square in Kennedyplein 4. Neckerspoel, the northern square of the central railway station 5. Small square between Verigo and Matrix | Cfb |
Urrutia del Campo, Grijalba Aseguinolaza, Hernandez Minguillon [151] | 2021 | 3.5 | Spain | Madrid | de Mayo square | Csa |
Silva Lopes, Remoaldo, Ribeiro [208] | 2021 | 4.3 | Portugal | Porto | Liberdade Square | Csb |
Kubilay, Strebel, Derome, Carmeliet [88] | 2021 | 3.3 | Switzerland | Zurich | Münsterhof | Cfb |
Lehnert, Brabec, Jurek, Tokar, Geletič [97] | 2021 | 3.1 | Czech Republic | 1. Brno 2. Brno 3. Olomouc 4. Ostrava 5. Plzen | 1. Moravske Namesti (Moravian Square) 2. Náměstí Svobody, 3. Horni namesti, Olomouc 4. Masarykovo namesti, Ostrava 5. Namesti Republiky, Plzen | 1. Cfb 2. Cfb 3. Cfb 4. Cfb |
Lehnert, Brabec, Jurek, Tokar, Geletic [98] | 2021 | 3.1 | Czech Republic | 1. Brno 2. Brno 3. Olomouc 4. Ostrava 5. Plzen | 1. Moravske Namesti (Moravian Square) 2. Náměstí Svobody (Librety Square) 3. Horni namesti (Upper Square) 4. Masarykovo Square 5. Square of Republic | 1. Cfb 2. Cfb 3. Cfb 4. Cfb 5. Cfb |
Rudisser, Weiss, Unger [215] | 2021 | 5 | Austria | Graz | 1 Freiheitsplatz 2 Karmeliterplatz | Cfb |
Liu, Zhao, Xu, Ahmadian [246] | 2021 | 3.1 | China | Zhanjiang, Lingnan Normal University | 1. Square A 2. Square B 3. Square C 4. Square D | Cwa |
Luo, Hao, Wang, Xu [109] | 2021 | 3.1, 3.3 | China | Xi’an | East Gate Square, Eurasia University | Cwa |
Peng, Peng, Feng, Zhong, Wang [214] | 2021 | 5 | China | Changsha | Wuyi square | Cfa |
Fang, Zheng, Feng, Shi, Lin, Gao [181] | 2021 | 4.1 | China | Guangzhou | University square—North | Cwa |
Fan, Du, Li, Zhang [163] | 2021 | 3.5 | China | Maling Village | 1. Basketball square 2. Pavilion square 3. Triangle square 4. Fitness square | Cwa |
Sayad, Alkama, Rebhi [89] | 2021 | 3.1, 3.5 | Algeria | Guelma | Martyrs square | Csa |
Stocco, Canton, Correa [90] | 2021 | 3.1, 3.5 | Argentina | Mendoza | Plaza Chile | BWk |
Teixeira [99] | 2021 | 3.1, 3.3 | Brazil | Aracaju | 1. Gal. Valadao 2. Bandeira 3. Camerino | As |
Kenawy, Elkadi [72] | 2021 | 2 | Australia | Melbourne | 1. Federation Square 2. Burwood campus Square | Cfb |
Battista, Vollaro, Evangelisti [165] | 2022 | 3.5 | Italy | Rome | 1. Mancini square 2. Carracci square | Csa |
Del Serrone, Peluso, Moretti [91] | 2022 | 3.1, 3.3, 3.5 | Italy | Rome | St. Peter in Chains’ square | Csa |
Pereira Guimarães and Dessì [92] | 2022 | 3.1 | Italy | Milan | Angilberto II Square | Cfa |
Tseliou, Koletsis, Pantavou, Thoma, Lykoudis, Tsiros [15] | 2022 | 3.5 | Greece | Athens | Syntagma square | Csa |
Karimi, Mohammad [209] | 2022 | 4.3 | Spain | 1. Sevilla 2. Sevilla 3. Sevilla 4. Madrid 5. Madrid 6. Madrid | 1. Plaza de España 2. Alameda de Hercules 3. Plaza Nueva 4. Plaza de Colón 5. Plaza Mayor 6. Plaza de Santa Ana | Csa |
Zhang, Hu, Cao, Liu [164] | 2022 | 3.5 | China | Qingdao | May Fourth Square | |
Yang, Zhao, Zou, Xia, Lou, Liu, Ji [115] | 2022 | 3.1 | China | Guangzhou | University square—Center | Cwa |
Zhen, Chen, Zheng [182] | 2022 | 4.1 | China | Xi’an | Scientific and Technological Innovation Harbor Square | Cwa |
Yu, Fukuda, Zhou, Ma [19] | 2022 | 3.5 | China | Xi’an | Big Wild Goose Pagoda Square | Cwa |
Xiao, Yuizono [18] | 2022 | 3.1, 3.5 | Japan | Ishikawa | Komatsu Station square | Cfa |
Eltanboly, Afify [138] | 2022 | 3.3 | Egypt | Cairo | Opera square | BWh |
Wei, Lian, Liu [206] | 2022 | 4.2 | China | Shanghai | 1. Knowledge and Innovation square 2. NAM square | Cfa |
Kim, Kim, Jo, Kim [152] | 2022 | 3.5, 5 | Korea | Seoul | Gwanghwamun Square | Cwa |
Boeri, Longo, Fabbri, Roversi, Coulanger [64] | 2023 | 1 | Italy | Bologna | 1 Piazza Verdi 2 Piazza Scaravilli | Cfa |
Battista, de Lieto Vollaro E., Ocłoń, de Lieto Vollaro R. [166] | 2023 | 3.5 | Italy | Rome | 1. Mancini square 2. Carracci square | Csa |
Stark da Silva, Duarte, Pauleit [116] | 2023 | 3.5 | Germany | Munich | 1. Alpenplatz 2. Alter Hof 3. Bordeauxplatz 4. Hohenzollernplatz 5. Marstallplatz | Cfb |
Palomo Amores [111] | 2023 | 3.1 | Spain | Seville | Los Naranjos de Arias Montano Square | Csa |
Huang, Yao, Xu, Zhang [73] | 2023 | 2 | China | Chongqing China | 1. Guanyinqiao Square, Chongqing China 2. Sanxia Square, Chongqing China | Cfa |
Manavvi, Rajasekar [216] | 2023 | 4.2, 5 | India | Chandigarh, New Delhi Gurugram | 1. Plaza, Chandigarh, 2. Dilli Haat, INA, New Delhi 3. Dilli Haat, Pitampura, New Delhi 4. Cyber hub, Gurugram | Bsh |
Gholami, Jalilisadrabad, Amrollahi [139] | 2023 | 3.3 | Iran | Isfahan | Jolfa square | BWk |
Guo, Guo, Zhang, Dong, Zhao [93] | 2023 | 3.1 | China | Dalian | 1. Square A-1, 2. Square A-2, 3. Square B, 4. Square C, 5. Square D | Dwa |
References
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Whyte, W. The Social Life of Small Urban Spaces; Conservation Foundation: Washington, DC, USA, 1980; ISBN 0-89164-057-6. [Google Scholar]
- Marcus, C.C.; Francis, C. People Places: Design Guidelines for Urban Open Space; Van Nostrand Reinhold: New York, NY, USA, 1990; ISBN 978-0-442-31929-8. [Google Scholar]
- Carr, S.; Francis, M.; Rivlin, L.G.; Stone, A.M. Public Space; Cambridge University Press: Cambridge, MA, USA, 1992; ISBN 0-521-35960-0. [Google Scholar]
- Givoni, B. Climate Considerations in Building and Urban Design; John Wiley & Sons: Hoboken, NJ, USA, 1998; ISBN 0-471-29177-3. [Google Scholar]
- Zacharias, J.; Stathopoulos, T.; Wu, H.Q. Spatial Behavior in San Francisco’s Plazas—The Effects of Microclimate, Other People, and Environmental Design. Environ. Behav. 2004, 36, 638–658. [Google Scholar] [CrossRef]
- Gehl, J. Cities for People; Island Press: Washington, DC, USA, 2010; ISBN 978-1-59726-573-7. [Google Scholar]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Thermal Comfort in Outdoor Urban Spaces: Understanding the Human Parameter. Sol. Energy 2001, 70, 227–235. [Google Scholar] [CrossRef]
- Lenzholzer, S.; Koh, J. Immersed in Microclimatic Space: Microclimate Experience and Perception of Spatial Configurations in Dutch Squares. Landsc. Urban Plann. 2010, 95, 1–15. [Google Scholar] [CrossRef]
- Erell, E.; Pearlmutter, D.; Williamson, T. Urban Microclimate: Designing the Spaces between Buildings; Routledge: London, UK, 2012. [Google Scholar]
- Nikolopoulou, M. Designing Open Spaces in the Urban Environment: A Bioclimatic Approach: RUROS—Rediscovering the Urban Realm and Open Spaces; Center for Renewable Energy Sources: Athens, Greece, 2004; ISBN 960-86907-2-2. [Google Scholar]
- Brown, R. Design with Microclimate: The Secret to Comfortable Outdoor Spaces; Island Press: Washington, DC, USA, 2010; ISBN 978-1-59726-739-7. [Google Scholar]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Tseliou, A.; Koletsis, I.; Pantavou, K.; Thoma, E.; Lykoudis, S.; Tsiros, I.X. Evaluating the Effects of Different Mitigation Strategies on the Warm Thermal Environment of an Urban Square in Athens, Greece. Urban Clim. 2022, 44, 101217. [Google Scholar] [CrossRef]
- Djukic, A.; Vukmirovic, M.; Stankovic, S. Principles of Climate Sensitive Urban Design Analysis in Identification of Suitable Urban Design Proposals. Case Study: Central Zone of Leskovac Competition. Energy Build. 2016, 115, 23–35. [Google Scholar] [CrossRef]
- Tumini, I.; Higueras García, E.; Baereswyl Rada, S. Urban Microclimate and Thermal Comfort Modelling: Strategies for Urban Renovation. Int. J. Sustain. Build. Technol. Urban Dev. 2016, 7, 22–37. [Google Scholar] [CrossRef]
- Xiao, J.; Yuizono, T. Climate-Adaptive Landscape Design: Microclimate and Thermal Comfort Regulation of Station Square in the Hokuriku Region, Japan. Build. Environ. 2022, 212, 108813. [Google Scholar] [CrossRef]
- Yu, H.; Fukuda, H.; Zhou, M.; Ma, X. Improvement Strategies for Microclimate and Thermal Comfort for Urban Squares: A Case of a Cold Climate Area in China. Buildings 2022, 12, 944. [Google Scholar] [CrossRef]
- Sitte, C. The Art of Building Cities: City Building According to Its Artistic Fundamentals; Reinhold Pub. Corp.: New York, NY, USA, 1945. [Google Scholar]
- Bosselmann, P.; Flores, J.; Gray, W.; Priestley, T.; Anderson, R.; Arens, E.; Dowty, P.; So, S.; Kim, J.-J. Sun, Wind, and Comfort: A Study of Open Spaces and Sidewalks in Four Downtown Areas; Institute of Urban and Regional Development, University of California, Berkeley: Berkeley, CA, USA, 1984. [Google Scholar]
- Chen, L.; Ng, E. Outdoor Thermal Comfort and Outdoor Activities: A Review of Research in the Past Decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Elnabawi, M.H.; Hamza, N. Behavioural Perspectives of Outdoor Thermal Comfort in Urban Areas: A Critical Review. Atmosphere 2020, 11, 51. [Google Scholar] [CrossRef]
- Lai, D.; Lian, Z.; Liu, W.; Guo, C.; Liu, W.; Liu, K.; Chen, Q. A Comprehensive Review of Thermal Comfort Studies in Urban Open Spaces. Sci. Total Environ. 2020, 742, 140092. [Google Scholar] [CrossRef] [PubMed]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. Outdoor Human Thermal Perception in Various Climates: A Comprehensive Review of Approaches, Methods and Quantification. Sci. Total Environ. 2018, 631–632, 390–406. [Google Scholar] [CrossRef] [PubMed]
- Antonini, E.; Vodola, V.; Gaspari, J.; De Giglio, M. Outdoor Wellbeing and Quality of Life: A Scientific Literature Review on Thermal Comfort. Energies 2020, 13, 2079. [Google Scholar] [CrossRef]
- Johansson, E.; Thorsson, S.; Emmanuel, R.; Krüger, E. Instruments and Methods in Outdoor Thermal Comfort Studies–The Need for Standardization. Urban Clim. 2014, 10, 346–366. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, A. Study on Importance, Procedure, and Scope of Outdoor Thermal Comfort—A Review. Sustain. Cities Soc. 2020, 61, 102297. [Google Scholar] [CrossRef]
- Potchter, O.; Cohen, P.; Lin, T.-P.; Matzarakis, A. A Systematic Review Advocating a Framework and Benchmarks for Assessing Outdoor Human Thermal Perception. Sci. Total Environ. 2022, 833, 155128. [Google Scholar] [CrossRef] [PubMed]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; Van Heijst, G.J.F. A Review on the CFD Analysis of Urban Microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Lai, D.; Liu, W.; Gan, T.; Liu, K.; Chen, Q. A Review of Mitigating Strategies to Improve the Thermal Environment and Thermal Comfort in Urban Outdoor Spaces. Sci. Total Environ. 2019, 661, 337–353. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Ghosouri, A.; Khodakarami, J.; Taleghani, M. Heat-Mitigation Strategies to Improve Pedestrian Thermal Comfort in Urban Environments: A Review. Sustainability 2020, 12, 10000. [Google Scholar] [CrossRef]
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the Impact of Urban Geometry and Pedestrian Level Greening on Outdoor Thermal Comfort. Renew. Sust. Energ. Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Mirabi, E.; Nasrollahi, N. Urban Facade Geometry on Outdoor Comfort Conditions: A Review. Eur. Online J. Nat. Soc. Sci. 2020, 9, 655. [Google Scholar] [CrossRef]
- Aghamolaei, R.; Azizi, M.M.; Aminzadeh, B.; O’Donnell, J. A Comprehensive Review of Outdoor Thermal Comfort in Urban Areas: Effective Parameters and Approaches. Energy Environ. 2022, 0958305X221116176. [Google Scholar] [CrossRef]
- Li, M.; Yin, H.; Qu, M.; Trivers, I. Outdoor Comfort in Public Spaces, a Critical Review. In Proceedings of the 7th International High Performance Buildings Conference at Purdue 2022; Curran Associates: Red Hook, NY, USA, 2022. [Google Scholar]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-Met Microclimate Model’s Performance and Assessing Cool Materials and Urban Vegetation Applications—A Review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat Mitigation Benefits of Urban Green and Blue Infrastructures: A Systematic Review of Modeling Techniques, Validation and Scenario Simulation in ENVI-Met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Dunjić, J. Outdoor Thermal Comfort Research in Urban Areas of Central and Southeast Europe: A Review. Geogr. Pannonica 2019, 23, 359–373. [Google Scholar] [CrossRef]
- Li, J.; Liu, N. The Perception, Optimization Strategies and Prospects of Outdoor Thermal Comfort in China: A Review. Build. Environ. 2020, 170, 106614. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Lam, C.K.C.; Kenawy, I. Outdoor Thermal Comfort Assessment: A Review on Thermal Comfort Research in Australia. Build. Environ. 2020, 177, 106917. [Google Scholar] [CrossRef]
- Khaire, J.D.; Ortega Madrigal, L.; Serrano Lanzarote, B. Outdoor Thermal Comfort in Built Environment: A Review of Studies in India. Energy Build. 2024, 303, 113758. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Hamel, R.E. The Dominance of English in the International Scientific Periodical Literature and the Future of Language Use in Science. AILA Rev. 2007, 20, 53–71. [Google Scholar] [CrossRef]
- Wohlin, C. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software Engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering; Association for Computing Machinery: New York, NY, USA, 2014; pp. 1–10. [Google Scholar]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, B.A.; Bahr, H.M.; Albrecht, S.L. Social Science Research Methods; Prentice-Hall: Englewood Cliffs, NJ, USA, 1984; ISBN 978-0-13-818336-3. [Google Scholar]
- Creswell, J.W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 3rd ed.; Sage: Los Angeles, CA, USA, 2009; ISBN 978-1-4129-6556-9. [Google Scholar]
- Neuman, W.L. Social Research Methods: Qualitative and Quantitative Approaches, 7th ed.; Pearson new international edition; Pearson: Harlow, UK; Essex, CA, USA, 2014; ISBN 978-1-292-02023-5. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Rubel, F.; Brugger, K.; Haslinger, K.; Auer, I. The Climate of the European Alps: Shift of Very High Resolution Köppen-Geiger Climate Zones 1800–2100. Meteorol. Z. 2017, 26, 115–125. [Google Scholar] [CrossRef]
- Zacharias, J.; Stathopoulos, T.; Wu, H.Q. Microclimate and Downtown Open Space Activity. Environ. Behav. 2001, 33, 296–315. [Google Scholar] [CrossRef]
- Nikolopoulou, M.; Lykoudis, S. Use of Outdoor Spaces and Microclimate in a Mediterranean Urban Area. Build. Environ. 2007, 42, 3691–3707. [Google Scholar] [CrossRef]
- De Castro Fontes, M.S.G.; Aljawabra, F.; Nikolopoulou, M. Open Urban Spaces Quality: A Study in a Historical Square in Bath—UK. In Proceedings of the PLEA—Towards Zero Energy Buildings: International Conference on Passive and Low Energy Architecture; University College Dublin: Dublin, Ireland, 2008. [Google Scholar]
- Kariminia, S.; Ahmad, S.S.; Ibrahim, N. Landscape Attributes, Microclimate and Thermal Comfort of an Urban Square in Moderate and Dry Climate. In Proceedings of the Advanced Materials Research; Trans Tech Publications Ltd.: Jilin, China, 2013; Volume 610–613, p. 3784. [Google Scholar]
- Martinelli, L.; Lin, T.-P.; Matzarakis, A. Assessment of the Influence of Daily Shadings Pattern on Human Thermal Comfort and Attendance in Rome during Summer Period. Build. Environ. 2015, 92, 30–38. [Google Scholar] [CrossRef]
- Piaskowy, N.; Krüger, E.L. Analysis of Shading and Usage of Sun-Lit Areas in an Urban Square in a Subtropical Location. In Proceedings of 9th Windsor Conference Making Comfort Relevant; Nicol, F., Roaf, S., Brotas, L., Humphreys, M.A., Eds.; NCEUB: London, UK, 2016; pp. 1317–1324. [Google Scholar]
- Piaskowy, N.; Krüger, E. Impact of Solar Access on Visitors’ Behavior in an Urban Square in a Subtropical Location. In Proceedings of the PLEA International Conference: Design to Thrive; Brotas, L., Roaf, S., Nicol, F., Eds.; NCEUB: London, UK, 2017; Volume 2, pp. 1849–1856. [Google Scholar]
- Kruger, E.L.; Costa, T. Interferences of Urban Form on Human Thermal Perception. Sci. Total Environ. 2019, 653, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, E.; Sivam, A.; Boland, J. Resilience to Heat in Public Space: A Case Study of Adelaide, South Australia. J. Environ. Plan. Manag. 2016, 59, 1833–1854. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, Y.; Li, L. Correlational Study on Thermal Comfort and Outdoor Activities. In Proceedings of the Journal of Physics: Conference Series; Scartezzini, J.-L., Smith, B., Eds.; Institute of Physics Publishing: Bristol, UK, 2019; Volume 1343. [Google Scholar]
- Boumaraf, H.; Amireche, L. The Impact of Microclimates on the Variation of User Density and the Length of Time Users Stay in Areas of Public Space in Arid Regions. Intell. Build. Int. 2020, 12, 133–149. [Google Scholar] [CrossRef]
- Boeri, A.; Longo, D.; Fabbri, K.; Roversi, R.; Boulanger, S. The Relation between Outdoor Microclimate and People Flow in Historic City Context the Case Study of Bologna within the ROCK Project. Sustainability 2023, 15, 7527. [Google Scholar] [CrossRef]
- Eliasson, I.; Knez, I.; Westerberg, U.; Thorsson, S.; Lindberg, F. Climate and Behaviour in a Nordic City. Landsc. Urban Plan. 2007, 82, 72–84. [Google Scholar] [CrossRef]
- Thorsson, S.; Honjo, T.; Lindberg, F.; Eliasson, I.; Lim, E.-M. Thermal Comfort and Outdoor Activity in Japanese Urban Public Places. Environ. Behav. 2007, 39, 660–684. [Google Scholar] [CrossRef]
- Lenzholzer, S. Engrained Experience-a Comparison of Microclimate Perception Schemata and Microclimate Measurements in Dutch Urban Squares. Int. J. Biometeorol. 2010, 54, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Aljawabra, F.; Nikolopoulou, M. Influence of Hot Arid Climate on the Use of Outdoor Urban Spaces and Thermal Comfort: Do Cultural and Social Backgrounds Matter? Intell. Build. Int. 2010, 2, 198–217. [Google Scholar] [CrossRef]
- Aljawabra, F.; Nikolopoulou, M. Thermal Comfort in Urban Spaces: A Cross-Cultural Study in the Hot Arid Climate. Int. J. Biometeorol. 2018, 62, 1901–1909. [Google Scholar] [CrossRef]
- Zabetian, E.; Kheyroddin, R. Comparative Evaluation of Relationship between Psychological Adaptations in Order to Reach Thermal Comfort and Sense of Place in Urban Spaces. Urban Clim. 2019, 29, 100483. [Google Scholar] [CrossRef]
- Klok, L.; Rood, N.; Kluck, J.; Kleerekoper, L. Assessment of Thermally Comfortable Urban Spaces in Amsterdam during Hot Summer Days. Int. J. Biometeorol. 2019, 63, 129–141. [Google Scholar] [CrossRef]
- Kenawy, I.; Elkadi, H. Effects of Cultural Diversity and Climatic Background on Outdoor Thermal Perception in Melbourne City, Australia. Build. Environ. 2021, 195, 107746. [Google Scholar] [CrossRef]
- Huang, X.; Yao, R.; Xu, T.; Zhang, S. The Impact of Heatwaves on Human Perceived Thermal Comfort and Thermal Resilience Potential in Urban Public Open Spaces. Build. Environ. 2023, 242. [Google Scholar] [CrossRef]
- Lenzholzer, S. Research and Design for Thermal Comfort in Dutch Urban Squares. Resour. Conserv. Recycl. 2012, 64, 39–48. [Google Scholar] [CrossRef]
- Kariminia, S.; Ahmad, S.S. Dependence of Visitors’ Thermal Sensations on Built Environments at an Urban Square. In Proceedings of the Ace-Bs 2013 Hanoi (ASEAN Conference on Environment-Behaviour Studies); Abbas, M.Y., Ed.; Elsevier Science Bv: Amsterdam, The Netherlands, 2013; Volume 85, pp. 523–534. [Google Scholar]
- Makaremi, N.; Salleh, E.; Jaafar, M.Z.; GhaffarianHoseini, A. Thermal Comfort Conditions of Shaded Outdoor Spaces in Hot and Humid Climate of Malaysia. Build. Environ. 2012, 48, 7–14. [Google Scholar] [CrossRef]
- Manavvi, S.; Rajasekar, E. Semantics of Outdoor Thermal Comfort in Religious Squares of Composite Climate: New Delhi, India. Int. J. Biometeorol. 2020, 64, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Axarli, K.; Chatzidimitriou, A. Redesigning Urban Open Spaces Based on Bioclimatic Criteria: Two Squares in Thessaloniki, Greece. In Proceedings of the 28th International PLEA Conference on Sustainable Architecture + Urban Design: Opportunities, Limits and Needs—Towards an Environmentally Responsible Architecture, Lima, Peru, 7–9 November 2012. [Google Scholar]
- Battistella, L.; Noro, M. Urban Heat Island in Padua, Italy: Simulation Analysis and Mitigation Strategies. In Proceedings of the Building Simulation Applications; Gasparella, A., Baratieri, M., Patuzzi, F., Corrado, V., Eds.; Free University of Bozen Bolzano: Bolzano, Italy, 2015; Volume 2015, pp. 99–107. [Google Scholar]
- Noro, M.; Lazzarin, R. Urban Heat Island in Padua, Italy: Simulation Analysis and Mitigation Strategies. Urban Clim. 2015, 14, 187–196. [Google Scholar] [CrossRef]
- Ballout, A.; Lacheheb, D.E.Z.; Bouchahm, Y. Improvement of Thermal Comfort Conditions in an Urban Space (Case Study: The Square of Independence, Sétif, Algeria). Eur. J. Sustain. Dev. 2015, 4, 407. [Google Scholar] [CrossRef]
- Cortesão, J.; Alves, F.B.; Corvacho, H.; Rocha, C. Retrofitting Public Spaces for Thermal Comfort and Sustainability. Indoor Built Environ. 2016, 25, 1085–1095. [Google Scholar] [CrossRef]
- Maras, I.; Buttstädt, M.; Hahmann, J.; Hofmeister, H.; Schneider, C. Investigating Public Places and Impacts of Heat Stress in the City of Aachen, Germany. Erde 2013, 144, 290–303. [Google Scholar] [CrossRef]
- Gaspari, J.; Fabbri, K.; Lucchi, M. The Use of Outdoor Microclimate Analysis to Support Decision-Making Process: Case Study of Bufalini Square in Cesena. Sustain. Cities Soc. 2018, 42, 206–215. [Google Scholar] [CrossRef]
- Zölch, T.; Rahman, M.A.; Pfleiderer, E.; Wagner, G.; Pauleit, S. Designing Public Squares with Green Infrastructure to Optimize Human Thermal Comfort. Build. Environ. 2019, 149, 640–654. [Google Scholar] [CrossRef]
- Albdour, M.S.; Baranyai, B. Water Body Effect on Microclimate in Summertime: A Case Study from PÉCS. Pollack Period. 2019, 14, 131–140. [Google Scholar] [CrossRef]
- Apostolopoulou, D.; Tsoka, S. Climate Change and Built Environment—The Role of Urban Greenery as a Mitigation Strategy in Greek Urban Areas. In Proceedings of the IOP Conference Series, Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 899. [Google Scholar]
- Kubilay, A.; Strebel, D.; Derome, D.; Carmeliet, J. Mitigation Measures for Urban Heat Island and Their Impact on Pedestrian Thermal Comfort. In Proceedings of the Journal of Physics: Conference Series; Qin, M., Rode, C., Eds.; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 2069. [Google Scholar]
- Sayad, B.; Alkama, D.; Rebhi, R.; Kidar, A.; Lorenzini, G.; Ahmad, H.; Menni, Y. Enhanced Outdoor Thermal Comfort through Natural Design Technique: In-Situ Measurement and Microclimate Simulation. Instrum. Mesure Metrol. 2021, 20, 131–136. [Google Scholar] [CrossRef]
- Stocco, S.; Canton, M.A.; Correa, E. Evaluation of Design Schemes for Urban Squares in Arid Climate Cities, Mendoza, Argentina. Build. Simul. 2021, 14, 763–777. [Google Scholar] [CrossRef]
- Del Serrone, G.; Peluso, P.; Moretti, L. Evaluation of Microclimate Benefits Due to Cool Pavements and Green Infrastructures on Urban Heat Islands. Atmosphere 2022, 13, 1586. [Google Scholar] [CrossRef]
- Pereira Guimarães, M.; Dessì, V. A Multi-Functional Design Approach to Deal with New Urban Challenges. In Proceedings of the Smart Innovation, Systems and Technologies; Littlewood, J.R., Howlett, R.J., Jain, L.C., Eds.; Springer Science and Business Media Deutschland GmbH: Cham, Switzerland, 2022; Volume 263, pp. 387–397. [Google Scholar]
- Guo, F.; Guo, R.; Zhang, H.; Dong, J.; Zhao, J. A Canopy Shading-Based Approach to Heat Exposure Risk Mitigation in Small Squares. Urban Clim. 2023, 49. [Google Scholar] [CrossRef]
- Stocco, S.; Cantón, M.A.; Correa, E.N. Design of Urban Green Square in Dry Areas: Thermal Performance and Comfort. Urban For. Urban Green. 2015, 14, 323–335. [Google Scholar] [CrossRef]
- Morille, B.; Musy, M. Comparison of the Impact of Three Climate Adaptation Strategies on Summer Thermal Comfort—Cases Study in Lyon, France. In Proceedings of the Procedia Environmental Sciences; Elsevier Science Bv: Amsterdam, The Netherlands, 2017; Volume 38, pp. 619–626. [Google Scholar]
- Gatto, E.; Buccolieri, R.; Aarrevaara, E.; Ippolito, F.; Emmanuel, R.; Perronace, L.; Santiago, J.L. Impact of Urban Vegetation on Outdoor Thermal Comfort: Comparison between a Mediterranean City (Lecce, Italy) and a Northern European City (Lahti, Finland). Forests 2020, 11, 228. [Google Scholar] [CrossRef]
- Lehnert, M.; Tokar, V.; Jurek, M.; Geletič, J. Summer Thermal Comfort in Czech Cities: Measured Effects of Blue and Green Features in City Centres. Int. J. Biometeorol. 2021, 65, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, M.; Brabec, M.; Jurek, M.; Tokar, V.; Geletic, J. The Role of Blue and Green Infrastructure in Thermal Sensation in Public Urban Areas: A Case Study of Summer Days in Four Czech Cities. Sust. Cities Soc. 2021, 66, 102683. [Google Scholar] [CrossRef]
- Teixeira, C.F.B. Green Space Configuration and Its Impact on Human Behavior and URBAN Environments. Urban Clim. 2021, 35, 100746. [Google Scholar] [CrossRef]
- Georgi, J.N.; Tzesouri, A. Monitoring Thermal Comfort in Outdoor Urban Spaces for Bioclimatic Conditions Improvement. In Proceedings of the 1st Wseas International Conference on Landscape Architecture (la ’08): New Aspects of Landscape Architecture; Panagopoulos, T., Burley, J.B., Eds.; World Scientific and Engineering Acad and Soc: Athens, Greece, 2008; p. 98. [Google Scholar]
- Georgi, J.N.; Dimitriou, D. The Contribution of Urban Green Spaces to the Improvement of Environment in Cities: Case Study of Chania, Greece. Build. Environ. 2010, 45, 1401–1414. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Daily and Seasonal Climatic Conditions of Green Urban Open Spaces in the Mediterranean Climate and Their Impact on Human Comfort. Build. Environ. 2012, 51, 285–295. [Google Scholar] [CrossRef]
- Gómez, F.; Cueva, A.P.; Valcuende, M.; Matzarakis, A. Research on Ecological Design to Enhance Comfort in Open Spaces of a City (Valencia, Spain). Utility of the Physiological Equivalent Temperature (PET). Ecol. Eng. 2013, 57, 27–39. [Google Scholar] [CrossRef]
- Kantor, N.; Kovacs, A.; Takacs, A. Small-Scale Human-Biometeorological Impacts of Shading by a Large Tree. Open Geosci. 2016, 8, 231–245. [Google Scholar] [CrossRef]
- Kantor, N.; Chen, L.; Gal, C.V. Human-Biometeorological Significance of Shading in Urban Public Spaces-Summertime Measurements in Pecs, Hungary. Landsc. Urban Plan. 2018, 170, 241–255. [Google Scholar] [CrossRef]
- Đekić, J.; Mitković, P.; Dinić-Branković, M.; Igić, M.; Đekić, P.; Mitković, M. The Study of Effects of Greenery on Temperature Reduction in Urban Areas. Therm. Sci. 2018, 22, 988–1000. [Google Scholar] [CrossRef]
- Savić, S.; Milanović, B.; Milošević, D.; Dunjić, J.; Pecelj, M.; Lukić, M.; Ostojić, M.; Fekete, R. Thermal Assessments at Local and Micro Scales during Hot Summer Days: A Case Study of Belgrade (Serbia). Időjárá 2024, 128, 121–141. [Google Scholar] [CrossRef]
- Vasić, M.; Milošević, D.; Savić, S.; Bjelajac, D.; Arsenović, D.; Dunjić, J. Micrometeorological Measurements and Biometeorological Survey in Different Urban Settings of Novi Sad (Serbia). Bul. Serbian Geograp. Soc. 2022, 102, 45–66. [Google Scholar] [CrossRef]
- Luo, W.; Hao, S.; Wang, Y.; Xu, Z. Research on Outdoor Thermal Environment of Campus in Cold Area in Winter with Different Underlying Surfaces. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 787. [Google Scholar]
- Picot, X. Thermal Comfort in Urban Spaces: Impact of Vegetation Growth: Case Study: Piazza Della Scienza, Milan, Italy. Energy Build. 2004, 36, 329–334. [Google Scholar] [CrossRef]
- Palomo Amores, T.R.; Sánchez Ramos, J.; Guerrero Delgado, M.C.; Castro Medina, D.; Cerezo-Narvaéz, A.; Álvarez Domínguez, S. Effect of Green Infrastructures Supported by Adaptative Solar Shading Systems on Livability in Open Spaces. Urban For. Urban Green. 2023, 82. [Google Scholar] [CrossRef]
- Brown, R.; Gillespie, T.J. Estimating Outdoor Thermal Comfort Using a Cylindrical Radiation Thermometer and an Energy Budget Model. Int. J. Biometeorol. 1986, 30, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; De Rocco, M.; Najjar, G. Thermal Bioclimate in Strasbourg—The 2003 Heat Wave. Theor. Appl. Climatol. 2009, 98, 209–220. [Google Scholar] [CrossRef]
- Liu, B.; Lian, Z.; Brown, R.D. Effect of Landscape Microclimates on Thermal Comfort and Physiological Wellbeing. Sustainability 2019, 11, 5387. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Zou, Y.; Xia, D.; Lou, S.; Liu, W.; Ji, K. Effects of Tree Species and Layout on the Outdoor Thermal Environment of Squares in Hot-Humid Areas of China. Buildings 2022, 12, 1867. [Google Scholar] [CrossRef]
- Stark da Silva, P.W.; Duarte, D.; Pauleit, S. The Role of the Design of Public Squares and Vegetation Composition on Human Thermal Comfort in Different Seasons a Quantitative Assessment. Land 2023, 12, 427. [Google Scholar] [CrossRef]
- Thorsson, S.; Lindberg, F.; Björklund, J.; Holmer, B.; Rayner, D. Potential Changes in Outdoor Thermal Comfort Conditions in Gothenburg, Sweden Due to Climate Change: The Influence of Urban Geometry. Int. J. Climatol. 2011, 31, 324–335. [Google Scholar] [CrossRef]
- Krüger, E.L.; Minella, F.O.; Rasia, F. Impact of Urban Geometry on Outdoor Thermal Comfort and Air Quality from Field Measurements in Curitiba, Brazil. Build. Environ. 2011, 46, 621–634. [Google Scholar] [CrossRef]
- Kariminia, S. Effect of Galleries on Thermal Conditions of Urban Open Areas. In Proceedings of the Environment-Behaviour Proceedings Journal; e-IPH Ltd.: Sheffield, UK, 2016; Volume 1, pp. 215–224. [Google Scholar]
- Kariminia, S.; Ahmad, S.S.; Saberi, A. Microclimatic Conditions of an Urban Square: Role of Built Environment and Geometry. In Proceedings of the Asian Conference on Environment-Behaviour Studies (ace-Bs 2014 Seoul); Abbas, M.Y., Ed.; Elsevier Science Bv: Amsterdam, The Netherlands, 2015; Volume 170, pp. 718–727. [Google Scholar]
- Nouri, A.S.; Costa, J.P.; Matzarakis, A. Examining Default Urban-Aspect-Ratios and Sky-View-Factors to Identify Priorities for Thermal-Sensitive Public Space Design in Hot-Summer Mediterranean Climates: The Lisbon Case. Build. Environ. 2017, 126, 442–456. [Google Scholar] [CrossRef]
- Smith, P.; Henríquez, C. Microclimate Metrics Linked to the Use and Perception of Public Spaces: The Case of Chillán City, Chile. Atmosphere 2018, 9, 186. [Google Scholar] [CrossRef]
- Gal, C.; Kantor, N. Modeling Mean Radiant Temperature in Outdoor Spaces, A Comparative Numerical Simulation and Validation Study. Urban Clim. 2020, 32, 100571. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L. Shading Effect on Long-Term Outdoor Thermal Comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Xi, T.; Li, Q.; Mochida, A.; Meng, Q. Study on the Outdoor Thermal Environment and Thermal Comfort around Campus Clusters in Subtropical Urban Areas. Build. Environ. 2012, 52, 162–170. [Google Scholar] [CrossRef]
- Kantor, N.; Gal, C.V.; Gulyas, A.; Unger, J. The Impact of Facade Orientation and Woody Vegetation on Summertime Heat Stress Patterns in a Central European Square: Comparison of Radiation Measurements and Simulations. Adv. Meteorol. 2018, 2018, 2650642. [Google Scholar] [CrossRef]
- Jin, H.; Zhao, J.; Liu, S.; Kang, J. Climate Adaptability Construction Technology of Historic Conservation Areas: The Case Study of the Chinese-Baroque Historic Conservation Area in Harbin. Sustainability 2018, 10, 3374. [Google Scholar] [CrossRef]
- Johansson, E. Influence of Urban Geometry on Outdoor Thermal Comfort in a Hot Dry Climate: A Study in Fez, Morocco. Build. Environ. 2006, 41, 1326–1338. [Google Scholar] [CrossRef]
- Vasilikou, C.; Nikolopoulou, M. Thermal Walks: Identifying Pedestrian Thermal Comfort Variations in the Urban Continuum of Historic City Centres. In Proceedings of the Sustainable Architecture for a Renewable Future; Fraunhofer IRB Verlag: Stuttgart, Germany, 2013. [Google Scholar]
- Mazzotta, A.; Mutani, G. Environmental High Performance Urban Open Spaces Paving: Experimentations in Urban Barriera (Turin, Italy). Energy Procedia 2015, 78, 669–674. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Microctimate Development in Open Urban Spaces: The Influence of Form and Materials. Energy Build. 2015, 108, 156–174. [Google Scholar] [CrossRef]
- Djekic, J.; Djukic, A.; Vukmirovic, M.; Djekic, P.; Dinic Brankovic, M. Thermal Comfort of Pedestrian Spaces and the Influence of Pavement Materials on Warming up during Summer. Energy Build. 2018, 159, 474–485. [Google Scholar] [CrossRef]
- Kubilay, A.; Derome, D.; Carmeliet, J. Coupled Numerical Simulations of Cooling Potential Due to Evaporation in a Street Canyon and an Urban Public Square. In Proceedings of the Journal of Physics: Conference Series; Scartezzini, J.-L., Smith, B., Eds.; Institute of Physics Publishing: Bristol, UK, 2019; Volume 1343. [Google Scholar]
- Kubilay, A.; Derome, D.; Carmeliet, J. Coupled Numerical Simulations of Mitigation Measures for Local Heat Island Effect in an Urban Neighborhood. In Proceedings of the Building Simulation Conference Proceedings, Rome, Italy, 2–4 September 2019; Corrado, V., Fabrizio, E., Gasparella, A., Patuzzi, F., Eds.; Volume 1, pp. 322–329. [Google Scholar]
- Maragkogiannis, K.; Kolokotsa, D.; Maravelakis, E.; Konstantaras, A. Combining Terrestrial Laser Scanning and Computational Fluid Dynamics for the Study of the Urban Thermal Environment. Sustain. Cities Soc. 2014, 13, 207–216. [Google Scholar] [CrossRef]
- Taleghani, M.; Berardi, U. The Effect of Pavement Characteristics on Pedestrians’ Thermal Comfort in Toronto. Urban Clim. 2018, 24, 449–459. [Google Scholar] [CrossRef]
- Battisti, A. Bioclimatic Architecture and Urban Morphology. Studies on Intermediate Urban Open Spaces. Energies 2020, 13, 5819. [Google Scholar] [CrossRef]
- Eltanboly, M.F.; Afify, M.M. The Influence of Using Responsive Façade as a Tool for Improving the Built Environment: Case Study: Attaba—Opera Square. In Proceedings of the IOP Conference Series, Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2022; Volume 992. [Google Scholar]
- Gholami, Z.; Jalilisadrabad, S.; Amrollahi, R. Investigating the Impact of Using Modified Cool Materials by Titanium Dioxide (TiO2)-Based Photocatalytic Self-Cleaning Nanoparticles in Urban Facades on Urban Microclimate Parameters. Case Stud. Constr. Mater. 2023, 19. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Chrissomallidou, N.; Yannas, S. Ground Surface Materials and Microclimates in Urban Open Spaces. In Proceedings of the PLEA—International Conference on Passive and Low Energy Architecture, Geneva, Switzerland, 6–8 September 2006; pp. II485–II490. [Google Scholar]
- Zhou, Z.; Chen, H.; Deng, Q.; Mochida, A. A Field Study of Thermal Comfort in Outdoor and Semi-Outdoor Environments in a Humid Subtropical Climate City. J. Asian Archit. Build. Eng. 2013, 12, 73–79. [Google Scholar] [CrossRef]
- Rossi, F.; Anderini, E.; Castellani, B.; Nicolini, A.; Morini, E. Integrated Improvement of Occupants’ Comfort in Urban Areas during Outdoor Events. Build. Environ. 2015, 93, 285–292. [Google Scholar] [CrossRef]
- Girgis, N.; Elariane, S.; Elrazik, M.A. Evaluation of Heat Exhausts Impacts on Pedestrian Thermal Comfort. Sustain. Cities Soc. 2016, 27, 152–159. [Google Scholar] [CrossRef]
- Szucs, A. Wind Comfort in a Public Urban Space-Case Study within Dublin Docklands. Front. Archit. Res. 2013, 2, 50–66. [Google Scholar] [CrossRef]
- Yannas, S. Toward More Sustainable Cities. Sol. Energy 2001, 70, 281–294. [Google Scholar] [CrossRef]
- Scudo, G.; Dessì, V. Thermal Comfort in Urban Space Renewal. In Proceedings of the PLEA 2006—23rd International Conference on Passive and Low Energy Architecture, Conference Proceedings, Geneva, Switzerland, 6–8 September 2006; pp. II491–II495. [Google Scholar]
- Dafri, I.; Alkama, D. Evaluation of Thermal Comfort in Outdoor Public Space: Case of Study: City of Annaba-Algeria. In Proceedings of the Journal of Physics: Conference Series; Scartezzini, J.-L., Smith, B., Eds.; Institute of Physics Publishing: Bristol, UK, 2019; Volume 1343. [Google Scholar]
- Albdour, M.S.; Baranyai, B. Numerical Evaluation of Outdoor Thermal Comfort and Weather Parameters in Summertime at Széchenyi Square. Pollack Period. 2019, 14, 131–142. [Google Scholar] [CrossRef]
- Ibraheem, S.Q.; Hassan, S.A. The Effect of the Characteristics Formation of Urban Open Space on Thermal Comfort for Pedestrians. In Proceedings of the IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2020; Volume 881. [Google Scholar]
- Del Campo, N.U.; Aseguinolaza, O.G.; Aja, A.H.; Lopes, V.L. A Case-Based Urban Microclimate Variety Classification Procedure: Finishing Materials and Shading in Urban Design. J. Urban Environ. Eng. 2020, 14, 42–51. [Google Scholar] [CrossRef]
- Urrutia del Campo, N.; Grijalba Aseguinolaza, O.; Hernandez Minguillon, R. Multicriteria Methodology for Open Space Analysis: Understanding Environmental Performance and Diversity. Int. J. E-Plan. Res. 2021, 10, 39–57. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.W.; Jo, Y.; Kim, E.J. Findings from a Field Study of Urban Microclimate in Korea Using Mobile Meteorological Measurements. Open House Int. 2022, 47, 473–493. [Google Scholar] [CrossRef]
- Fintikakis, N.; Gaitani, N.; Santamouris, M.; Assimakopoulos, M.; Assimakopoulos, D.N.; Fintikaki, M.; Albanis, G.; Papadimitriou, K.; Chryssochoides, E.; Katopodi, K.; et al. Bioclimatic Design of Open Public Spaces in the Historic Centre of Tirana, Albania. Sustain. Cities Soc. 2011, 1, 54–62. [Google Scholar] [CrossRef]
- Gaitani, N.; Spanou, A.; Saliari, M.; Synnefa, A.; Vassilakopoulou, K.; Papadopoulou, K.; Pavlou, K.; Santamouris, M.; Papaioannou, M.; Lagoudaki, A. Improving the Microclimate in Urban Areas: A Case Study in the Centre of Athens. Build. Serv. Eng. Res. Technol. 2011, 32, 53–71. [Google Scholar] [CrossRef]
- Lenzholzer, S. An Optimized Model for a Thermally Comfortable Dutch Urban Square. In Proceedings of the PLEA 2011—Architecture and Sustainable Development, Conference Proceedings of the 27th International Conference on Passive and Low Energy Architecture, Louvain-la-Neuve, Belgium, 13–15 July 2011; pp. 403–408.
- Fröhlich, D.; Matzarakis, A. Modeling of Changes in Thermal Bioclimate: Examples Based on Urban Spaces in Freiburg, Germany. Theor. Appl. Climatol. 2013, 111, 547–558. [Google Scholar] [CrossRef]
- Tseliou, A.; Tsiros, I.X. Modeling Urban Microclimate to Ameliorate Thermal Sensation Conditions in Outdoor Areas in Athens (Greece). Build. Simul. 2016, 9, 251–267. [Google Scholar] [CrossRef]
- Laureti, F.; Martinelli, L.; Battisti, A. Assessment and Mitigation Strategies to Counteract Overheating in Urban Historical Areas in Rome. Clim. 2018, 6, 18. [Google Scholar] [CrossRef]
- Ebrahimabadi, S.; Johansson, C.; Rizzo, A.; Nilsson, K. Microclimate Assessment Method for Urban Design—A Case Study in Subarctic Climate. Urban Des. Int. 2018, 23, 116–131. [Google Scholar] [CrossRef]
- Battista, G.; de Lieto Vollaro, R.; Zinzi, M. Assessment of Urban Overheating Mitigation Strategies in a Square in Rome, Italy. Sol. Energy 2019, 180, 608–621. [Google Scholar] [CrossRef]
- Dursun, D.; Yavas, M.; Yilmaz, S. Microclimate Assessment of Design Proposals for Public Space in Cold Climate Zone: Case of Yakutiye Square. Megaron 2020, 15, 321–331. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Ni, Z.; Chen, S.; Xia, B. An Integrated Strategy to Improve the Microclimate Regulation of Green-Blue-Grey Infrastructures in Specific Urban Forms. J. Clean. Prod. 2020, 271, 122555. [Google Scholar] [CrossRef]
- Fan, Q.; Du, F.; Li, H.; Zhang, C. Thermal-Comfort Evaluation of and Plan for Public Space of Maling Village, Henan, China. PLoS ONE 2021, 16, e0256439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, X.; Cao, X.; Liu, Z. Numerical Simulation of the Thermal Environment during Summer in Coastal Open Space and Research on Evaluating the Cooling Effect: A Case Study of May Fourth Square, Qingdao. Sustainability 2022, 14, 15126. [Google Scholar] [CrossRef]
- Battista, G.; Vollaro, E.d.L.; Evangelisti, L.; Vollaro, R. de L. Urban Overheating Mitigation Strategies Opportunities: A Case Study of a Square in Rome (Italy). Sustainability 2022, 14, 16939. [Google Scholar] [CrossRef]
- Battista, G.; de Lieto Vollaro, E.; Ocłoń, P.; de Lieto Vollaro, R. Effects of Urban Heat Island Mitigation Strategies in an Urban Square: A Numerical Modelling and Experimental Investigation. Energy Build. 2023, 282, 112809. [Google Scholar] [CrossRef]
- Nouri, A.S.; Lopes, A.; Pedro Costa, J.; Matzarakis, A. Confronting Potential Future Augmentations of the Physiologically Equivalent Temperature through Public Space Design: The Case of Rossio, Lisbon. Sustain. Cities Soc. 2018, 37, 7–25. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Hatami, Z.; Taleghani, M. Development of Outdoor Thermal Comfort Model for Tourists in Urban Historical Areas; A Case Study in Isfahan. Build. Environ. 2017, 125, 356–372. [Google Scholar] [CrossRef]
- Nouri, A.S.; Costa, J.P. Addressing Thermophysiological Thresholds and Psychological Aspects during Hot and Dry Mediterranean Summers through Public Space Design: The Case of Rossio. Build. Environ. 2017, 118, 67–90. [Google Scholar] [CrossRef]
- Piselli, C.; Castaldo, V.L.; Pigliautile, I.; Pisello, A.L.; Cotana, F. Outdoor Comfort Conditions in Urban Areas: On Citizens’ Perspective about Microclimate Mitigation of Urban Transit Areas. Sust. Cities Soc. 2018, 39, 16–36. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Microclimate Design for Open Spaces: Ranking Urban Design Effects on Pedestrian Thermal Comfort in Summer. Sustain. Cities Soc. 2016, 26, 27–47. [Google Scholar] [CrossRef]
- Lancellotti, G.P.; Ziede Bize, M. A Cool Urban Island Change 1990–2014. Comparative Bioclimatic Analysis in a Desert Climate, the Case of Antofagasta City Square. In Proceedings of the IOP Conference Series: Materials Science and Engineering; Drusa, M., Yilmaz, I., Rybak, J., Marschalko, M., Segalini, A., Coisson, E., Eds.; Institute of Physics Publishing: Bristol, UK, 2017; Volume 245. [Google Scholar]
- Stathopoulos, T.; Wu, H.Q.; Zacharias, J. Outdoor Human Comfort in an Urban Climate. Build. Environ. 2004, 39, 297–305. [Google Scholar] [CrossRef]
- Kántor, N.; Unger, J.; Gulyas, A. Subjective Estimations of Thermal Environment in Recreational Urban Spaces-Part 2: International Comparison. Int. J. Biometeorol. 2012, 56, 1089–1101. [Google Scholar] [CrossRef]
- Kántor, N.; Égerházi, L.; Unger, J. Subjective Estimation of Thermal Environment in Recreational Urban Spaces-Part 1: Investigations in Szeged, Hungary. Int. J. Biometeorol. 2012, 56, 1075–1088. [Google Scholar] [CrossRef] [PubMed]
- Pantavou, K.; Theoharatos, G.; Santamouris, M.; Asimakopoulos, D. Outdoor Thermal Sensation of Pedestrians in a Mediterranean Climate and a Comparison with UTCI. Build. Environ. 2013, 66, 82–95. [Google Scholar] [CrossRef]
- Lin, T.-P. Thermal Perception, Adaptation and Attendance in a Public Square in Hot and Humid Regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Tsitoura, M.; Tsoutsos, T.; Daras, T. Evaluation of Comfort Conditions in Urban Open Spaces. Application in the Island of Crete. Energy Conv. Manag. 2014, 86, 250–258. [Google Scholar] [CrossRef]
- Tseliou, A.; Tsiros, I.X.; Nikolopoulou, M. Seasonal Differences in Thermal Sensation in the Outdoor Urban Environment of Mediterranean Climates–the Example of Athens, Greece. Int. J. Biometeorol. 2017, 61, 1191–1208. [Google Scholar] [CrossRef] [PubMed]
- Marçal, N.A.; da Silva, R.M.; Santos, C.A.G.; Santos, J.S.D. Analysis of the Environmental Thermal Comfort Conditions in Public Squares in the Semiarid Region of Northeastern Brazil. Build. Environ. 2019, 152, 145–159. [Google Scholar] [CrossRef]
- Fang, Z.; Zheng, Z.; Feng, X.; Shi, D.; Lin, Z.; Gao, Y. Investigation of Outdoor Thermal Comfort Prediction Models in South China: A Case Study in Guangzhou. Build. Environ. 2021, 188, 107424. [Google Scholar] [CrossRef]
- Zhen, M.; Chen, Z.; Zheng, R. Outdoor Wind Comfort and Adaptation in a Cold Region. Buildings 2022, 12, 476. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Zambrano, L.; Malafaia, C.; Bastos, L.E.G. Thermal Comfort Evaluation in Outdoor Space of Tropical Humid Climate. In Proceedings of the PLEA 2006—23rd International Conference on Passive and Low Energy Architecture, Conference Proceedings, Geneva, Switzerland, 6–8 September 2006; pp. I377–I382. [Google Scholar]
- Mayer, H.; Höppe, P. Thermal Comfort of Man in Different Urban Environments. Theor. Appl. Climatol. 1987, 38, 43–49. [Google Scholar] [CrossRef]
- Höppe, P. The Physiological Equivalent Temperature–a Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Tseliou, A.; Tsiros, I.X.; Lykoudis, S.; Nikolopoulou, M. An Evaluation of Three Biometeorological Indices for Human Thermal Comfort in Urban Outdoor Areas under Real Climatic Conditions. Build. Environ. 2010, 45, 1346–1352. [Google Scholar] [CrossRef]
- Cohen, P.; Potchter, O.; Matzarakis, A. Human Thermal Perception of Coastal Mediterranean Outdoor Urban Environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar] [CrossRef]
- Acero, J.A.; Herranz-Pascual, K. A Comparison of Thermal Comfort Conditions in Four Urban Spaces by Means of Measurements and Modelling Techniques. Build. Environ. 2015, 93, 245–257. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Vollaro, R.d.L.; Vollaro, A. de L. Outdoor Thermal Comfort in the Mediterranean Area. A Transversal Study in Rome, Italy. Build. Environ. 2016, 96, 46–61. [Google Scholar] [CrossRef]
- Lindner-Cendrowska, K.; Blazejczyk, K. Impact of Selected Personal Factors on Seasonal Variability of Recreationist Weather Perceptions and Preferences in Warsaw (Poland). Int. J. Biometeorol. 2018, 62, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Peng, M. The Outdoor Thermal Comfort of Urban Square: A Field Study in a Cold Season in Chongqing. In Proceedings of the IOP Conference Series, Earth and Environmental Science; Tang, W., Ed.; Institute of Physics Publishing: Bristol, UK, 2020; Volume 467. [Google Scholar]
- Gonzalez, R.; Nishi, Y.; Gagge, P. Experimental Evaluation of Standard Effective Temperature a New Biometeorological Index of Man’s Thermal Discomfort. Int. J. Biometeorol. 1974, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Gagge, P.; Fobelets, A.; Berglund, L. A Standard Predictive Index of Human Response to Thermal Environment. In Proceedings of the ASHRAE Transactions; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, Georgia, 1986; Volume 92, pp. 709–731. [Google Scholar]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why Another Thermal Index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Błażejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Epstein, Y.; Psikuta, A.; Kampmann, B. An Introduction to the Universal Thermal Climate Index (UTCI). Geogr. Pol. 2013, 86, 5–10. [Google Scholar] [CrossRef]
- Jin, Y.; Jin, H.; Kang, J. Combined Effects of the Thermal-Acoustic Environment on Subjective Evaluations in Urban Squares. Build. Environ. 2020, 168, 106517. [Google Scholar] [CrossRef]
- Humphreys, M. Field Studies of Thermal Comfort Compared and Applied. Appl. Ergon. 1976, 7, 230. [Google Scholar] [CrossRef]
- Humphreys, M.A.; Hancock, M. Do People Like to Feel ‘Neutral’? : Exploring the Variation of the Desired Thermal Sensation on the ASHRAE Scale. Energy Build. 2007, 39, 867–874. [Google Scholar] [CrossRef]
- ASHRAE Standard 55-2023; Thermal Environmental Conditions for Human Occupancy. ASHRAE Inc.: Atlanta, GA, USA, 2023.
- Nikolopoulou, M.; Lykoudis, S. Thermal Comfort in Outdoor Urban Spaces: Analysis across Different European Countries. Build. Environ. 2006, 41, 1455–1470. [Google Scholar] [CrossRef]
- Kariminia, S.; Ahmad, S.S.; Omar, M.; Ibrahim, N. Urban Outdoor Thermal Comfort Prediction for Public Square in Moderate and Dry Climate. In Proceedings of the ISBEIA—Symposium on Business, Engineering and Industrial Applications, Langkawi, Malaysia, 25–28 September 2011; pp. 308–313. [Google Scholar]
- Tseliou, A.; Tsiros, I.X.; Nikolopoulou, M.; Papadopoulos, G. Outdoor Thermal Sensation in a Mediterranean Climate (Athens): The Effect of Selected Microclimatic Parameters. Archit. Sci. Rev. 2016, 59, 190–202. [Google Scholar] [CrossRef]
- Hirashima, S.Q.d.S.; Assis, E.S.d.; Nikolopoulou, M. Daytime Thermal Comfort in Urban Spaces: A Field Study in Brazil. Build. Environ. 2016, 107, 245–253. [Google Scholar] [CrossRef]
- Hirashima, S.Q.D.S.; Katzschner, A.; Ferreira, D.G.; Assis, E.S.D.; Katzschner, L. Thermal Comfort Comparison and Evaluation in Different Climates. Urban Clim. 2018, 23, 219–230. [Google Scholar] [CrossRef]
- Wei, D.; Lian, Z.; Liu, B. A Field Study of Outdoor Human Thermal Perception in Three Seasons in Shanghai, China. Buildings 2022, 12, 1453. [Google Scholar] [CrossRef]
- Lindner-Cendrowska, K. Assessment of Bioclimatic Conditions in Cities for Tourism and Recreational Purposes (a Warsaw Case Study). Geogr. Pol. 2013, 86, 55–66. [Google Scholar] [CrossRef]
- Silva Lopes, H.; Remoaldo, P.C.; Ribeiro, V.; Martin-Vide, J. Perceptions of Human Thermal Comfort in an Urban Tourism Destination—A Case Study of Porto (Portugal). Build. Environ. 2021, 205, 108246. [Google Scholar] [CrossRef]
- Karimi, A.; Mohammad, P. Effect of Outdoor Thermal Comfort Condition on Visit of Tourists in Historical Urban Plazas of Sevilla and Madrid. Environ. Sci. Pollut. Res. 2022, 29, 60641–60661. [Google Scholar] [CrossRef]
- Xi, T.; Wang, S.; Wang, Q.; Lv, X. College Students’ Subjective Response to Outdoor Thermal Environment in a Severely Cold Climate City. In Proceedings of the Technologies and Materials for Renewable Energy, Environment and Sustainability (tmrees19); Shaban, A.H., Salame, C.T., Aillerie, M., Papageorgas, P., Eds.; AIP Publishing: Melville, NY, USA, 2019; Volume 2123, p. 020023. [Google Scholar]
- Jin, H.; Wang, B.; Qiao, L. Studies of Elderly Thermal Comfort in Outdoor Environments in Severe Cold Area of China. In Proceedings of the Smart Innovation, Systems and Technologies; Howlett, R.J., Littlewood, J., Ekanyake, C., Kaparaju, P., Vlacic, L., Eds.; Springer Science and Business Media Deutschland GmbH: Cham, Switzerland, 2019; Volume 131, pp. 32–42. [Google Scholar]
- Peng, Y.; Feng, T.; Timmermans, H.J.P. Expanded Comfort Assessment in Outdoor Urban Public Spaces Using Box-Cox Transformation. Landsc. Urban Plan. 2019, 190, 103594. [Google Scholar] [CrossRef]
- Peng, Y.; Feng, T.; Timmermans, H.J.P. Heterogeneity in Outdoor Comfort Assessment in Urban Public Spaces. Sci. Total Environ. 2021, 790, 147941. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Peng, Z.; Feng, T.; Zhong, C.; Wang, W. Assessing Comfort in Urban Public Spaces: A Structural Equation Model Involving Environmental Attitude and Perception. Int. J. Environ. Res. Public Health 2021, 18, 1287. [Google Scholar] [CrossRef] [PubMed]
- Rudisser, D.; Weiss, T.; Unger, L. Spatially Resolved Analysis of Urban Thermal Environments Based on a Three-Dimensional Sampling Algorithm and UAV-Based Radiometric Measurements. Sensors 2021, 21, 4847. [Google Scholar] [CrossRef] [PubMed]
- Manavvi, S.; Rajasekar, E. Assessing Thermal Comfort in Urban Squares in Humid Subtropical Climate: A Structural Equation Modelling Approach. Build. Environ. 2023, 229, 109931. [Google Scholar] [CrossRef]
- Sharifi, E.; Boland, J. Passive Activity Observation (PAO) Method to Estimate Outdoor Thermal Adaptation in Public Space: Case Studies in Australian Cities. Int. J. Biometeorol. 2020, 64, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0—Modelling Spatial Variations of 3D Radiant Fluxes and Mean Radiant Temperature in Complex Urban Settings. Int. J. Biometeorol. 2008, 52, 697–713. [Google Scholar] [CrossRef] [PubMed]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different Methods for Estimating the Mean Radiant Temperature in an Outdoor Urban Setting. Int. J. Climatol. 2007, 27, 1983–1993. [Google Scholar] [CrossRef]
- Robitu, M.; Musy, M.; Inard, C.; Groleau, D. Modeling the Influence of Vegetation and Water Pond on Urban Microclimate. Solar Energy 2006, 80, 435–447. [Google Scholar] [CrossRef]
- Stavrakakis, G.M.; Tzanaki, E.; Genetzaki, V.I.; Anagnostakis, G.; Galetakis, G.; Grigorakis, E. A Computational Methodology for Effective Bioclimatic-Design Applications in the Urban Environment. Sust. Cities Soc. 2012, 4, 41–57. [Google Scholar] [CrossRef]
- Kariminia, S.; Motamedi, S.; Shamshirband, S.; Petković, D.; Roy, C.; Hashim, R. Adaptation of ANFIS Model to Assess Thermal Comfort of an Urban Square in Moderate and Dry Climate. Stoch. Environ. Res. Risk Assess. 2016, 30, 1189–1203. [Google Scholar] [CrossRef]
- Kicovic, D.; Vuckovic, D.; Markovic, D.; Jovic, S. Assessment of Visitors’ Thermal Comfort Based on Physiologically Equivalent Temperature in Open Urban Areas. Urban Clim. 2019, 28, 100466. [Google Scholar] [CrossRef]
- Kariminia, S.; Shamshirband, S.; Hashim, R.; Saberi, A.; Petković, D.; Roy, C.; Motamedi, S. A Simulation Model for Visitors’ Thermal Comfort at Urban Public Squares Using Non-Probabilistic Binary-Linear Classifier through Soft-Computing Methodologies. Energy 2016, 101, 568–580. [Google Scholar] [CrossRef]
- Wolfrum, S. Squares: Urban Spaces in Europe; Birkhäuser: Basel, Switzerland, 2014. [Google Scholar]
- Dirksen, M.; Ronda, R.J.; Theeuwes, N.E.; Pagani, G.A. Sky View Factor Calculations and Its Application in Urban Heat Island Studies. Urban Clim. 2019, 30, 100498. [Google Scholar] [CrossRef]
- Nunez, M.; Oke, T.R. The Energy Balance of an Urban Canyon. J. Appl. Meteorol. Climatol. 1977, 16, 11–19. [Google Scholar] [CrossRef]
- Ahmad, K.; Khare, M.; Chaudhry, K.K. Wind Tunnel Simulation Studies on Dispersion at Urban Street Canyons and Intersections—A Review. J. Wind. Eng. Ind. Aerodyn. 2005, 93, 697–717. [Google Scholar] [CrossRef]
- Zucker, P. The Space-Volume Relation in the History of Town Planning. J. Aesthet. Art Crit. 1956, 14, 439–444. [Google Scholar] [CrossRef]
- Moughtin, C. Urban Design: Street and Square; Architectural Press: Oxford, UK, 2003; ISBN 0-7506-5717-0. [Google Scholar]
- de Freitas, C. A Comprehensive Catalog and Classification of Human Thermal Climate Indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, C.; Grigorieva, A. A Comparison and Appraisal of a Comprehensive Range of Human Thermal Climate Indices. Int. J. Biometeorol. 2017, 61, 487–512. [Google Scholar] [CrossRef] [PubMed]
- Höppe, P. A New Procedure to Determine the Mean Radiant Temperature Outdoors. Wetter Und Leben 1992, 44, 147–151. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments—Application of the RayMan Model. Int. J. Biometeorol. 2007, 51, 323–334. [Google Scholar] [CrossRef]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments: Basics of the RayMan Model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Pickup, J.; de Dear, R. An Outdoor Thermal Comfort Index (OUT_SET*)-Part I-the Model and Its Assumptions. Biometeorol. Urban Climatol. Turn Millenn. 2000, 99. [Google Scholar]
- Golasi, I.; Salata, F.; Vollaro, E.d.L.; Coppi, M.; Vollaro, A.d.L. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices. Energies 2016, 9, 550. [Google Scholar] [CrossRef]
- Gagge; Stolwijk, J.A.J.; Hardy, J.D. Comfort and Thermal Sensations and Associated Physiological Responses at Various Ambient Temperatures. Environ. Res. 1967, 1, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Santana, T.C.; Guiselini, C.; Montenegro, A.A.d.A.; Pandorfi, H.; da Silva, R.A.B.; da Silva e Silva, R.; Batista, P.H.D.; Cavalcanti, S.D.L.; Gomes, N.F.; da Silva, M.V.; et al. Green Roofs Are Effective in Cooling and Mitigating Urban Heat Islands to Improve Human Thermal Comfort. Model. Earth Syst. Environ. 2023, 9, 3985–3998. [Google Scholar] [CrossRef]
- Santana, T.C.; Guiselini, C.; Cavalcanti, S.D.L.; Silva, M.V.d.; Vigoderis, R.B.; Santos Júnior, J.A.; Moraes, A.S.; Jardim, A.M. da R.F. Quality of Rainwater Drained by a Green Roof in the Metropolitan Region of Recife, Brazil. J. Water Process Eng. 2022, 49, 102953. [Google Scholar] [CrossRef]
- Coutts, A.M.; Tapper, N.J.; Beringer, J.; Loughnan, M.; Demuzere, M. Watering Our Cities: The Capacity for Water Sensitive Urban Design to Support Urban Cooling and Improve Human Thermal Comfort in the Australian Context. Prog. Phys. Geogr. Earth Environ. 2013, 37, 2–28. [Google Scholar] [CrossRef]
- Knez, I.; Thorsson, S. Influences of Culture and Environmental Attitude on Thermal, Emotional and Perceptual Evaluations of a Public Square. Int. J. Biometeorol. 2006, 50, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Lenzholzer, S.; van der Wulp, N.Y. Thermal Experience and Perception of the Built Environment in Dutch Urban Squares. J. Urban Des. 2010, 15, 375–401. [Google Scholar] [CrossRef]
- Kariminia, S.; Sh Ahmad, S.; Ibrahim, N.; Omar, M. Outdoor Thermal Comfort of Two Public Squares in Temperate and Dry Region of Esfahan, Iran. In 2010 International Conference on Science and Social Research (CSSR 2010), Kuala Lumpur, Malaysia, 5–7 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1266–1271. [Google Scholar]
- Lindberg, F.; Grimmond, C.S.B. The Influence of Vegetation and Building Morphology on Shadow Patterns and Mean Radiant Temperatures in Urban Areas: Model Development and Evaluation. Theor. Appl. Climatol. 2011, 105, 311–323. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, D.J.; Xu, M.; Ahmadian, E. Effects of Landscape Patterns on the Summer Microclimate and Human Comfort in Urban Squares in China. Sustain. Cities Soc. 2021, 73, 103099. [Google Scholar] [CrossRef]
CLUSTERS (Types of Research Design-Research Focus) | Quantitative—Qualitative Data Collection | Non Experimental—Quasi Experimental | Time—Duration | Primary Objectives Measured Outcome | Number of Studies |
---|---|---|---|---|---|
I Cluster—Human behavior and user activity for OTC urban redesign of city squares | Quantitative | Non-experimental | Cross-sectional | Explanation | 14 |
Multiple cross-sectional—(seasons based) | |||||
II Cluster—Psychological and cultural factors for OTC urban redesign of city squares | Qualitative | quasi-experimental research | Cross-sectional | Description | 18 |
Multiple cross-sectional (seasons based) | |||||
III Cluster—Thermal comfort and heat mitigation measures—comparison for OTC urban redesign of city squares | Mixed—Quantitative and Qualitative | quasi-experimental research | Cross-sectional | Explanation | 94 |
Multiple cross-sectional (seasons based) | |||||
IV Cluster—Outdoor thermal comfort perception comparison for OTC urban redesign of city squares | Mixed—Qualitative and Quantitative | quasi-experimental research | Cross-sectional | Description and Explanation | 34 |
Multiple cross-sectional (seasons based) | |||||
V Cluster measurement methods and techniques development for OTC urban redesign of city squares | Quantitative | quasi-experimental research | Cross-sectional | Exploration | 13 |
Studied Built Environment | Parameter | Number of Urban Squares Studied | Percent of the Total Number of Urban Squares Studied (%) |
---|---|---|---|
Size of squares | Small < 5000 m2 | 114 | 36.42 |
5000 m2 ≤ Medium < 15,000 m2 | 148 | 47.28 | |
15,000 m2 ≤ Large < 25,000 m2 | 25 | 7.99 | |
Extra Large ≥ 25,000 m2 | 26 | 8.31 | |
Square shape | Square | 48 | 15.33 |
Rectangular | 112 | 35.78 | |
Trapezoidal | 22 | 7.02 | |
Polygonal | 113 | 36.10 | |
Triangular | 15 | 4.79 | |
Rounded | 2 | 0.63 | |
Dominant axel orientation | W-E | 47 | 15.01 |
WSW-ENE | 28 | 8.94 | |
SW-NE | 38 | 12.14 | |
SSW-NNE | 42 | 13.41 | |
S-N | 66 | 21.08 | |
SSE-NNW | 41 | 13.09 | |
SE-NW | 38 | 12.14 | |
ESE-WNW | 15 | 4.79 | |
Square genesis | N (new—modern) | 144 | 46.01 |
T (traditional) | 169 | 53.99 |
Studied Built Environment | Number of Studies | Percent of the Total Number of Studies (%) |
---|---|---|
SVF—Sky view factor | 30 | 17.34 |
H/W—Height/width aspect ratio | 28 | 16.18 |
Alb—Albedo | 22 | 12.72 |
VT—Vegetation type | 35 | 20.23 |
VC—Vegetation canopy | 15 | 8.67 |
VAD—Vegetation arrangement design | 6 | 3.47 |
AV—Amount of vegetation | 55 | 31.79 |
LAD—Leaf area density | 16 | 9.25 |
GSM—ground surface materials | 39 | 22.54 |
Col—Color | 11 | 6.36 |
VOA—Volume and object arrangement design | 24 | 13.87 |
FM—Façade materials | 9 | 5.20 |
Data Collection Method | Number of Studies | Percent of the Total Number of Studies (%) |
---|---|---|
NP—On-site counting of the number of people | 18 | 10.40 |
AK—Manual Recording activity of people | 30 | 17.34 |
F—On-site taking photos for people activity measures | 18 | 10.40 |
FED—Fish Eye diagram | 7 | 4.05 |
Sen—On-site sensors micrometeorological measurement | 16 | 9.25 |
DM—on-site measurements with a portable meteorological station | 120 | 69.36 |
IRC—On-site Infra-red camera recording | 7 | 4.05 |
PMS—using data from the referent meteorological station | 74 | 42.77 |
INT—On-site filled out Structured interview—questionary | 55 | 31.79 |
VR—on-site video recording | 2 | 1.16 |
AlbM—on-site albedo measurement | 3 | 1.73 |
Sim—using computer simulation | 78 | 45.09 |
PS—using data from previous studies | 12 | 6.94 |
Studied Built Environment | Number of Studies | Percent of the Total Number of Studies (%) |
---|---|---|
Tmrt—Mean radiant temperature | 50 | 28.90 |
PMV—Predicted mean vote | 36 | 20.81 |
PPD—Predicted Percentage of dissatisfied | 3 | 1.73 |
PET—Physiological equivalent temperature | 76 | 43.93 |
UTCI—Universal Thermal Climate Index | 22 | 12.72 |
OUT-Set—Outdoor Standard Effective Temperature | 3 | 1.73 |
MOCI—Mediterranean Outdoor Comfort Index | 1 | 0.58 |
Studied Built Environment | Number of Studies | Percent of the Total Number of Studies (%) |
---|---|---|
Ta—air temperature (dry bulb temperature) (°C) | 163 | 94.22 |
RH—Relative humidity (%) | 163 | 94.22 |
AP—Atmospheric pressure (hPa) | 5 | 2.89 |
Tg—globe thermometer temp—(°C) | 59 | 34.10 |
Tw—wet bulb temperature (°C) | 3 | 1.73 |
Tsurf—ground surface temperature | 32 | 18.50 |
Tfac—Façade surface temperature | 6 | 3.47 |
SW—Short wave irradiance (W/m2) | 31 | 17.92 |
LW—Long wave irradiance (W/m2) | 25 | 14.45 |
Slux—solar illumination (cd/m2, lum) | 3 | 1.73 |
Gr—global solar radiation | 39 | 22.54 |
Ws—wind speed | 146 | 84.39 |
Wd -wind direction | 65 | 37.57 |
CC—cloud cover | 12 | 6.94 |
PM particles | 3 | 1.73 |
SH—Soil relative humidity | 2 | 1.16 |
Questionary Survey | Number of Studies | Percent of the Total Number of Studies (%) |
---|---|---|
Clo—Clothing level | 40 | 23.12 |
Ma—metabolism | 34 | 19.65 |
TSV Thermal sensation vote | 37 | 21.39 |
ACV—Actual comfort vote | 9 | 5.20 |
ATCV—Actual thermal comfort vote | 6 | 3.47 |
ASV Actual sensational vote | 14 | 8.09 |
EAS—Emotion about space | 5 | 2.89 |
WPT—Weather perception today | 3 | 1.73 |
WPV—weather preference vote | 4 | 2.31 |
APM—actual personal mood | 5 | 2.89 |
OCV—Overall comfort vote | 3 | 1.73 |
Tperc—Subjectively estimated temperature | 1 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandić, L.; Đjukić, A.; Marić, J.; Mitrović, B. A Systematic Review of Outdoor Thermal Comfort Studies for the Urban (Re)Design of City Squares. Sustainability 2024, 16, 4920. https://doi.org/10.3390/su16124920
Mandić L, Đjukić A, Marić J, Mitrović B. A Systematic Review of Outdoor Thermal Comfort Studies for the Urban (Re)Design of City Squares. Sustainability. 2024; 16(12):4920. https://doi.org/10.3390/su16124920
Chicago/Turabian StyleMandić, Lazar, Aleksandra Đjukić, Jelena Marić, and Biserka Mitrović. 2024. "A Systematic Review of Outdoor Thermal Comfort Studies for the Urban (Re)Design of City Squares" Sustainability 16, no. 12: 4920. https://doi.org/10.3390/su16124920
APA StyleMandić, L., Đjukić, A., Marić, J., & Mitrović, B. (2024). A Systematic Review of Outdoor Thermal Comfort Studies for the Urban (Re)Design of City Squares. Sustainability, 16(12), 4920. https://doi.org/10.3390/su16124920