The Role of ESG Ratings in Shaping Chinese Investors’ Decision-Making Behavior: An Analysis from the Fund Signaling Perspective
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. Theoretical Analysis
2.2. Hypothesis Development
3. Research Design
3.1. Sample Data
3.2. Main Variables and Definitions
- (1)
- Fund financial flows (Flow)
- (2)
- Excess return (Alpha)
- (3)
- Control variables
3.3. Definition of Signal Strength
3.4. Modelling
4. Empirical Testing and Analysis of Results
4.1. Descriptive Statistics
4.2. Benchmark Regression
- (1)
- The impact of strong signals and fund cash flows
- (2)
- Impact of weak signals on fund cash flows
4.3. Heterogeneity Analysis
4.4. Economic Consequences of Different Signals
4.5. Robustness Tests
- (1)
- Propensity score matching PSM test
5. Conclusions and Policy Recommendations
5.1. Conclusions of the Study
- This study introduces ESG ratings to examine their impact on cash flows, yielding results contrary to those of foreign scholars regarding ESG rating research. Due to the lack of platforms showcasing ESG ratings for funds domestically, Chinese fund investors generally lack access to ESG rating signals for investment decision-making references.
- Chinese fund investors rely on simplistic signals, tending to allocate funds to high-rated or high-yield funds. Due to significant differences in the sources, prominence, and calculation complexity of various simplistic signals and excess return rates, there are significant discrepancies in investors’ acceptance levels and frequency of application, with a preference towards selecting straightforward indicators for investment decisions.
- Strong signals fail to predict positive fund performance outcomes, while the often-overlooked ESG ratings can positively impact a fund’s long-term returns. This underscores the importance of incorporating ESG ratings into Chinese investors’ investment references to achieve sustainable and responsible investment outcomes. By integrating ESG factors into the investment decision-making process, Chinese investors can potentially enhance the financial performance of their portfolios while promoting environmental, social, and governance objectives.
5.2. Policy Recommendations
- Increased investment in the development of the ESG evaluation system is warranted, alongside efforts to refine ESG assessment standards and methodologies to enhance the accuracy and credibility of ESG ratings. Simultaneously, establishing robust ESG information disclosure and communication platforms can lower the barriers for ordinary investors to access ESG ratings. By providing Chinese investors with more comprehensive and transparent ESG information, these platforms can facilitate better investment decision-making and risk management practices.
- Strengthening investor awareness of ESG ratings and excess return rates can be achieved through initiatives such as investor education activities and relevant training programs. These efforts aim to foster rational investment concepts and decision-making habits among investors, thereby enhancing their investment decision-making capabilities and mitigating irrational behavioral biases resulting from blindly following strong signals.
- Enhanced market supervision efforts are imperative to regulate fund market behaviors, prevent and combat false advertising and fraudulent activities, and safeguard the legitimate rights and interests of investors. Furthermore, promoting and standardizing the disclosures of environmental, social, and governance-related information in financial reports by financial institutions, listed companies, and other entities can contribute to the wider adoption and development of ESG investing practices.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.B.; Liu, X.Y. Fund performance attribution and investor behaviour. Financ. Res. 2019, 2, 192–210. [Google Scholar]
- Berk, J.B.; Green, R.C. Mutual Fund Flows and Performance in Rational Markets. J. Political Econ. 2004, 112, 1269–1295. [Google Scholar] [CrossRef]
- Vozlyublennaia, N.; Wu, Y. Mutual Funds Apart from the Crowd. SSRN Working Paper, 16 May 2018. [Google Scholar]
- Reuter, J.; Zitzewitz, E. How Much does Size Erode Mutual Fund Performance? A Regression Discontinuity Approach. Rev. Financ. 2021, 25, 1395–1432. [Google Scholar] [CrossRef]
- Durán-Santomil, P.; Otero-González, L.; Correia-Domingues, R.H. Does Sustainability Score Impact Mutual Fund Performance? Sustainability 2019, 11, 2972. [Google Scholar] [CrossRef]
- Ben-David, I.; Li, J.; Rossi, A.; Song, Y. What do mutual fund investors really care about? Rev. Financ. Stud. 2022, 35, 1721774. [Google Scholar] [CrossRef]
- Gil-Bazo, J.; Imbet, J.F. Tweeting for Money: Social Media and Mutual Fund Flows. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Hartzmark, S.M.; Sussman, A.B. Do investors value sustainability? A natural experiment examining ranking and fund flows. J. Financ. 2019, 74, 2789–2837. [Google Scholar] [CrossRef]
- Lu, P.; Dong, Z.; Shen, W. Analysis and Prospect of the Development Trend of ESG Investment Funds in China. China Environ. Manag. 2024, 1, 016. [Google Scholar]
- Chevalier, J.; Ellison, G. Risk Taking by Mutual Funds as a Response to Incentives. J. Political Econ. 1997, 105, 1167–1200. [Google Scholar] [CrossRef]
- Barber, B.M.; Huang, X.; Odean, T. Which Factors Matter to Investors? Evidence from Mutual Fund Flows. Rev. Financ. Stud. 2016, 29, 2600–2642. [Google Scholar] [CrossRef]
- Eriksen, K.W.; Kvaløy, O. Myopic investment management. Rev. Financ. 2010, 14, 521–542. [Google Scholar] [CrossRef]
- Alevy, J.E.; Haigh, M.S.; List, J.A. Information cascades: Evidence from a field experiment with financial market professionals. J. Financ. 2007, 62, 151–180. [Google Scholar] [CrossRef]
- Welch, I. The Wisdom of the Robinhood Crowd. J. Financ. 2022, 77, 1489–1527. [Google Scholar] [CrossRef]
- Liu, J.; Xu, H. Institutional investors: Long-term investors or short-term opportunists? Financ. Res. 2012, 55, 141–154. [Google Scholar]
- Li, K. Investors’ limited rationality and fund marketing strategy—Evidence of large fund dividend. Manag. World 2011, 11, 10. [Google Scholar]
- Dayong, Z.; Rong, L. Degree of Rationality and Investment Behaviour—A Study of Behavioural Differences between Institutional and Individual Fund Investors. Financ. and Trade Econ. 2013, 10, 11. [Google Scholar]
- Greenwood, R.; Shleifer, A. Expectations of Returns and Expected Returns. Rev. Financ. Stud. 2014, 27, 714–746. [Google Scholar] [CrossRef]
Variable Name | Notation | Define |
---|---|---|
Fund cash flows | Flow | Measuring quarterly fund investor inflows |
Original rate of return of the Fund | EAR | The fund’s raw rate of return, which is proportional to the growth rate of the net value of the different shares of the fund |
Fund excess return | Alpha | The quarterly excess return of the fund after risk adjustment for different methodologies |
Fund size | TNA | The logarithm of the fund’s net asset value at the end of the period |
Volatility of the Fund’s raw returns | VOL | The volatility of the fund’s returns over the past 12 months |
Age of the Fund | AGE | Total quarters since the inception of the fund from the time of the fund’s first NAV data |
Institutional investor cash flows | Ins_Flow | Measures the fund’s institutional investor inflows for the quarter |
Individual investor cash flows | Ind_Flow | Measures the fund’s individual investor inflows for the quarter |
trait skewness | Skew | The skewness of the fund’s returns over the past 12 months |
Total fund company size | FAM | The logarithm of the fund company’s net asset value at the end of the period |
Fund ESG Ratings | ESG | Average ESG of funds one year forward in the current period |
Fund composite rating | Star | Average of fund ratings for the current period forward one year |
Panel A: Strong Signals and Excess Returns | ||||||
Variable Name | Sample Size | Maximum Values | Minimum Value | Average Value | (Statistics) Standard Deviation | Median |
Flow | 15,461 | 1.745 | −0.521 | −0.001 | 0.281 | −0.034 |
15,461 | 13.865 | 0.016 | 1.684 | 2.338 | 0.833 | |
Age (month) | 15,461 | 204.370 | 42.000 | 97.664 | 40.629 | 90.000 |
Vol | 15,461 | 0.329 | 0.018 | 0.121 | 0.068 | 0.110 |
FTNA | 15,461 | 12,126.053 | 32.555 | 2642.534 | 2835.405 | 1335.441 |
IO | 15,461 | 0.916 | 0.000 | 0.192 | 0.231 | 0.094 |
EAR1 | 15,461 | 1.170 | −0.933 | 0.185 | 0.449 | 0.227 |
EAR2 | 15,461 | 0.639 | −0.250 | 0.072 | 0.184 | 0.053 |
EAR3 | 15,461 | 0.310 | −0.360 | −0.064 | 0.137 | −0.071 |
15,461 | 11.240 | −22.020 | −4.659 | 3.965 | −4.284 | |
15,461 | 11.178 | −32.265 | −5.629 | 4.358 | −4.983 | |
15,461 | 11.372 | −32.311 | −5.437 | 4.131 | −4.913 | |
15,461 | 9.062 | −28.320 | −5.013 | 4.080 | −4.372 | |
Star1 | 15,461 | 5.000 | 1.000 | 2.989 | 1.090 | 3.000 |
Star2 | 15,461 | 5.000 | 1.000 | 2.916 | 1.208 | 3.000 |
Star3 | 15,461 | 5.000 | 1.000 | 2.710 | 1.067 | 3.000 |
Star4 | 15,461 | 5.000 | 1.000 | 2.999 | 1.055 | 3.000 |
Star5 | 15,461 | 5.000 | 1.000 | 3.156 | 1.099 | 3.000 |
Panel B: ESG Ratings | ||||||
Variable Name | Sample Size | Maximum Values | Minimum Value | Average Value | (Statistics) Standard Deviation | Median |
Flow | 15,502 | 2.788 | −0.540 | 0.041 | 0.414 | −0.026 |
TNA () | 15,502 | 13.963 | 0.035 | 1.288 | 2.161 | 0.505 |
Age (month) | 15,502 | 15,502.000 | 202.960 | 12.000 | 71.495 | 51.045 |
Vol | 15,502 | 0.254 | 0.027 | 0.123 | 0.050 | 0.121 |
FTNA | 15,502 | 13,973.346 | 19.514 | 3435.831 | 3270.497 | 2140.974 |
Wind ESG | 15,502 | 5.000 | 1.000 | 2.532 | 0.909 | 3.000 |
CSI ESG | 15,502 | 5.000 | 1.000 | 3.940 | 1.225 | 4.000 |
Explanatory Variable | Flow | ||
---|---|---|---|
Earnings Yield (Finance) | EAR1 | EAR2 | EAR3 |
EAR | 0.065 *** | 0.632 *** | 0.752 *** |
VOL | 0.385 *** | 0.176 ** | 0.260 *** |
ln TNA | −0.083 *** | −0.088 *** | −0.082 *** |
ln Age | 0.098 *** | 0.104 *** | 0.103 *** |
ln FTNA | 0.013 * | 0.016 ** | 0.014 * |
CONST | 1.093 *** | 1.139 *** | 1.122 *** |
F-test | SS | SS | SS |
Hausman | SS | SS | SS |
N | 15,461 | 15,461 | 15,461 |
R² | 0.030 | 0.017 | 0.020 |
Explanatory Variable | Flow | ||||
---|---|---|---|---|---|
Gradings | Star1 | Star2 | Star3 | Star4 | Star5 |
Star | 0.050 *** | 0.034 *** | 0.045 *** | 0.052 *** | 0.051 *** |
VOL | 0.296 *** | 0.345 *** | 0.349 *** | 0.409 *** | 0.404 *** |
ln TNA | −0.105 *** | −0.095 *** | −0.100 *** | −0.100 *** | −0.102 *** |
ln Age | 0.129 *** | 0.146 *** | 0.131 *** | 0.112 *** | 0.109 *** |
ln FTNA | 0.014 * | 0.012 | 0.015 * | 0.016 ** | 0.009 |
CONST | 1.279 *** | 1.049 *** | 1.186 *** | 1.204 *** | 1.317 *** |
F-test | SS | SS | SS | SS | SS |
Hausman | SS | SS | SS | SS | SS |
N | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 |
R2 | 0.049 | 0.041 | 0.045 | 0.046 | 0.043 |
Explanatory Variable | Flow | |||
---|---|---|---|---|
Excess Return | CAPM | FF F | FFC 4-F | FF 5-F |
Alpha | −146.121 *** | −125.360 *** | −136.990 *** | −148.016 *** |
VOL | 0.251 *** | 0.242 *** | 0.236 *** | 0.215 *** |
ln TNA | −0.103 *** | −0.099 *** | −0.100 *** | −0.103 *** |
ln Age | 0.099 *** | 0.114 *** | 0.121 *** | 0.094 *** |
ln FTNA | 0.017 ** | 0.018 ** | 0.017 ** | 0.018 ** |
CONST | 1.426 *** | 1.285 *** | 1.269 *** | 1.444 *** |
F-test | SS | SS | SS | SS |
Hausman | SS | SS | SS | SS |
N | 15,461 | 15,461 | 15,461 | 15,461 |
R2 | 0.041 | 0.035 | 0.035 | 0.037 |
Explanatory Variable | Flow | |
---|---|---|
ESG Rating | Wind ESG | CSI ESG |
ESG | 0.003 | −0.009 ** |
VOL | 0.422 *** | 0.426 *** |
ln TNA | −0.167 *** | −0.167 *** |
ln Age | 0.063 *** | 0.061 *** |
ln FTNA | 0.022 | 0.022 |
CONST | 2.888 *** | 2.946 *** |
F-test | SS | SS |
Hausman | SS | SS |
N | 15,502 | 15,502 |
R2 | 0.065 | 0.066 |
Explanatory Variable | Flow | ||
---|---|---|---|
ESG Rating | E | S | G |
ESG | −0.004 ** | −0.005 *** | −0.006 *** |
VOL | −0.170 *** | −0.171 *** | −0.171 *** |
ln TNA | 0.024 | 0.025 | 0.024 |
ln Age | 0.894 *** | 0.908 *** | 0.891 *** |
ln FTNA | −0.010 | −0.009 | −0.009 |
CONST | 3.588 *** | 3.709 *** | 3.802 *** |
F-test | SS | SS | SS |
Hausman | SS | SS | SS |
N | 10,888 | 10,888 | 10,888 |
R² | 0.031 | 0.031 | 0.031 |
Explanatory Variable | ||||||
EAR | EAR1 | EAR2 | EAR3 | |||
(1) | (2) | (3) | (4) | (5) | (6) | |
EAR | 0.029 *** | 0.030 *** | 0.268 *** | 0.322 *** | 0.320 *** | 0.374 *** |
VOL | 0.027 | 0.279 *** | −0.049 | 0.184 *** | −0.014 | 0.229 *** |
ln TNA | −0.036 *** | −0.038 *** | −0.038 *** | −0.042 *** | −0.035 *** | −0.038 *** |
ln Age | 0.052 *** | 0.037 ** | 0.055 *** | 0.040 *** | 0.054 *** | 0.039 *** |
ln FTNA | −0.003 | 0.012 *** | −0.002 | 0.014 ** | −0.003 | 0.012 *** |
CONST | 0.517 *** | 0.464 *** | 0.535 *** | 0.489 *** | 0.528 *** | 0.480 *** |
F-test | SS | SS | SS | SS | SS | SS |
Hausman | SS | SS | SS | SS | SS | SS |
N | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 |
R2 | 0.023 | 0.020 | 0.021 | 0.005 | 0.021 | 0.009 |
Explanatory Variable | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Star | Star1 | Star2 | Star3 | Star4 | Star5 | |||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
Star | 0.018 *** | 0.027 *** | 0.011 *** | 0.019 *** | 0.016 *** | 0.025 *** | 0.018 *** | 0.029 *** | 0.016 *** | 0.028 *** |
VOL | 0.008 | 0.242 *** | 0.028 | 0.268 *** | 0.028 | 0.270 *** | 0.049 | 0.303 *** | 0.047 | 0.300 *** |
ln TNA | −0.044 *** | −0.050 *** | −0.039 *** | −0.045 *** | −0.042 *** | −0.048 *** | −0.041 *** | −0.048 *** | −0.042 *** | −0.049 *** |
ln Age | 0.064 *** | 0.054 *** | 0.068 *** | 0.064 *** | 0.064 *** | 0.055 *** | 0.057 *** | 0.045 *** | 0.056 *** | 0.043 *** |
ln FTNA | −0.003 | 0.013 *** | −0.004 | 0.011 ** | −0.003 | 0.013 *** | −0.002 | 0.014 *** | −0.005 | 0.010 ** |
CONST | 0.579 *** | 0.569 *** | 0.496 *** | 0.444 *** | 0.545 *** | 0.519 *** | 0.550 *** | 0.530 *** | 0.583 *** | 0.594 *** |
F-test | SS | SS | SS | SS | SS | SS | SS | SS | SS | SS |
Hausman | SS | SS | SS | SS | SS | SS | SS | SS | SS | SS |
N | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 |
R² | 0.029 | 0.042 | 0.024 | 0.035 | 0.026 | 0.039 | 0.028 | 0.039 | 0.026 | 0.035 |
Explanatory Variable | ||||||||
---|---|---|---|---|---|---|---|---|
Alpha | CAPM | FF F | FFC 4-F | FF 5-F | ||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Alpha | −58.420 *** | −71.707 *** | −48.046 *** | −64.932 *** | −52.660 *** | −70.926 *** | −58.894 *** | −74.590 *** |
VOL | −0.014 | 0.225 *** | −0.015 | 0.217 *** | −0.017 | 0.213 *** | −0.028 | 0.205 *** |
ln TNA | −0.044 *** | −0.048 *** | −0.042 *** | −0.047 *** | −0.042 *** | −0.047 *** | −0.044 *** | −0.048 *** |
ln Age | 0.053 *** | 0.038 *** | 0.059 *** | 0.046 ** | 0.061 *** | 0.049 *** | 0.051 *** | 0.035 ** |
ln FTNA | −0.002 | 0.014 *** | −0.002 | 0.014 *** | −0.002 | 0.014 *** | −0.001 | 0.014 *** |
CONST | 0.648 *** | 0.628 *** | 0.587 *** | 0.566 *** | 0.581 *** | 0.558 *** | 0.650 *** | 0.642 *** |
F-test | SS | SS | SS | SS | SS | SS | SS | SS |
Hausman | SS | SS | SS | SS | SS | SS | SS | SS |
N | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 | 15,461 |
R2 | 0.029 | 0.029 | 0.027 | 0.024 | 0.027 | 0.023 | 0.028 | 0.025 |
Explanatory Variable | ||
---|---|---|
ESG | Flow | |
(1) | (2) | |
ESG | −0.009 ** | −0.008 *** |
VOL | −0.122 *** | −0.063 *** |
ln TNA | 0.028 | −0.01 |
ln Age | 0.503 *** | 0.269 *** |
ln FTNA | 0.015 | 0.004 |
CONST | 2.081 *** | 1.294 *** |
F-test | SS | SS |
Hausman | SS | SS |
N | 10,888 | 10,888 |
R2 | 0.029 | 0.021 |
Explanatory Variable | Flow | ||
---|---|---|---|
ESG Rating | E | S | G |
ESG | 0.001 ** | 0.0002 | 0.001 *** |
VOL | −0.011 *** | −0.011 *** | −0.011 *** |
ln TNA | 0.010 *** | 0.011 *** | 0.010 *** |
ln Age | −0.003 | −0.008 | −0.005 |
ln FTNA | −0.007 *** | −0.007 *** | −0.007 *** |
CONST | 0.216 *** | 0.295 *** | 0.203 *** |
F-test | SS | SS | SS |
Hausman | SS | SS | SS |
N | 10,888 | 10,888 | 10,888 |
R2 | 0.026 | 0.026 | 0.025 |
LEAR | HEAR | Discrepancy | Cohen’s d-Value | t-Test | Welch’s t-Test | |
---|---|---|---|---|---|---|
Ri | 7.344 | 5.624 | −1.72 *** | 0.090 | T = −2.278 | T = −2.330 |
CAPM | −2.740 | −6.099 | −3.359 *** | 0.857 | T = −21.707 | T = −21.002 |
FF F | −3.732 | −6.861 | −3.129 *** | 0.745 | T = −18.855 | T = −18.383 |
FFC 4-F | −3.674 | −6.703 | −3.029 *** | 0.744 | T = −18.842 | T = 1−18.411 |
FF 5-F | −3.233 | −6.143 | −2.910 *** | 0.746 | T = −18.886 | T = −18.284 |
LStar | HStar | Discrepancy | Cohen’s d-Value | t-Test | Welch’s t-Test | |
---|---|---|---|---|---|---|
Ri | 6.028 | 6.373 | 0.345 | 0.018 | T = 0.465 | T = 0.465 |
CAPM | −0.147 | −9.790 | −9.643 *** | 2.626 | T = −68.335 | T = −68.191 |
FF F | −1.180 | −11.052 | −9.872 *** | 2.328 | T = −60.592 | T = −60.291 |
FFC 4-F | −1.126 | −10.486 | −9.360 *** | 2.402 | T = −62.524 | T = −62.288 |
FF 5-F | −1.077 | −9.936 | −8.859 *** | 2.119 | T = −55.139 | T = −54.789 |
CAPM | ||||||
LAlpha | HAlpha | Discrepancy | Cohen’s d-Value | t-Test | Welch’s t-Test | |
Ri | 2.910 | 5.149 | 2.239 *** | 0.126 | T = 3.289 | T = 3.293 |
CAPM | −12.046 | 1.694 | 13.74 *** | 5.918 | T = 154.253 | T = 154.383 |
FF F | −13.381 | 0.175 | 13.556 *** | 4.309 | T = 114.153 | T = 114.44 |
FFC 4-F | −12.542 | 0.148 | 12.69 *** | 4.440 | T = 115.744 | T = 115.921 |
FF 5-F | −12.292 | 0.294 | 12.586 *** | 3.861 | T = 100.655 | T = 101.018 |
FF F | ||||||
LAlpha | HAlpha | Discrepancy | Cohen’s d-Value | t-Test | Welch’s t-Test | |
Ri | 2.828 | 5.436 | 2.608 *** | 0.131 | T = 3.406 | T = 3.376 |
CAPM | −10.773 | 0.951 | 11.724 *** | 3.825 | T = 99.313 | T = 98.746 |
FF F | −14.167 | 0.777 | 14.944 *** | 4.309 | T = 145.28 | T = 143.962 |
FFC 4-F | −13.173 | 0.806 | 13.979 *** | 5.485 | T = 142.436 | T = 141.358 |
FF 5-F | −12.533 | 0.504 | 13.037 *** | 4.128 | T = 107.181 | T = 106.027 |
FFC 4-F | ||||||
LAlpha | HAlpha | Discrepancy | Cohen’s d-Value | t-Test | Welch’s t-Test | |
Ri | 4.626 | 4.873 | 0.247 *** | 0.012 | T = 0.322 | T = 0.322 |
CAPM | −10.775 | 0.966 | 11.741 *** | 3.796 | T = 99.299 | T = 99.33 |
FF F | −13.974 | 0.776 | 14.75 *** | 4.309 | T = 140.897 | T = 140.972 |
FFC 4-F | −13.241 | 0.839 | 14.08 *** | 5.705 | T = 149.244 | T = 149.302 |
FF 5-F | −12.158 | 0.488 | 12.646 *** | 3.885 | T = 101.634 | T = 101.697 |
FF 5-F | ||||||
LAlpha | HAlpha | Discrepancy | Cohen’s d-Value | t-Test | Welch’s t-Test | |
Ri | 0.177 | 6.182 | 6.005 *** | 0.330 | T = 8.517 | T = 8.37 |
CAPM | −10.768 | 1.000 | 11.768 *** | 3.983 | T = 102.9 | T = 101.82 |
FF F | −13.647 | 0.495 | 14.142 *** | 4.309 | T = 122.989 | T = 120.756 |
FFC 4-F | −12.364 | 0.508 | 12.872 *** | 4.425 | T = 114.321 | T = 112.469 |
FF 5-F | −13.334 | 0.833 | 14.167 *** | 5.046 | T = 130.359 | T = 127.446 |
Panel A: Average Treatment Effects of EAR1 | ||||||
Matching Method | Implicit Variable | Brochure | Experimental Group | Control Group | Difference | T-Stat |
NNM1 | Flow | Unmatched | 0.23928 | 0.21548 | 0.02429 | 12.204 *** |
ATT | 0.23928 | 0.21548 | 0.02380 | 10.180 *** | ||
NNM1R | Flow | Unmatched | 0.23977 | 0.21548 | 0.02429 | 12.204 *** |
ATT | 0.23977 | 0.21160 | 0.02817 | 5.470 *** | ||
RM | Flow | Unmatched | 0.23950 | 0.21548 | 0.02429 | 12.204 *** |
ATT | 0.23950 | 0.20847 | 0.03068 | 7.559 *** | ||
Panel B1: Average treatment effect of Star1 | ||||||
NNM1 | Flow | Unmatched | 0.23924 | 0.21553 | 0.02416 | 12.138 *** |
ATT | 0.23924 | 0.21553 | 0.02371 | 10.252 *** | ||
NNM1R | Flow | Unmatched | 0.23969 | 0.21553 | 0.02416 | 12.138 *** |
ATT | 0.23969 | 0.20942 | 0.03028 | 9.589 *** | ||
RM | Flow | Unmatched | 0.23958 | 0.21553 | 0.02416 | 12.138 *** |
ATT | 0.23958 | 0.21052 | 0.02906 | 12.407 *** | ||
Panel B2: Average treatment effect of Star2 | ||||||
NNM1 | Flow | Unmatched | 0.23843 | 0.21649 | 0.02228 | 11.184 *** |
ATT | 0.23843 | 0.21649 | 0.02194 | 9.482 *** | ||
NNM1R | Flow | Unmatched | 0.23876 | 0.21649 | 0.02228 | 11.184 *** |
ATT | 0.23876 | 0.21600 | 0.02277 | 7.699 *** | ||
RM | Flow | Unmatched | 0.23877 | 0.21649 | 0.02228 | 11.184 *** |
ATT | 0.23877 | 0.21578 | 0.02300 | 10.689 *** | ||
Panel B3: Average treatment effect of Star3 | ||||||
NNM1 | Flow | Unmatched | 0.23817 | 0.21694 | 0.02137 | 10.724 *** |
ATT | 0.23817 | 0.21694 | 0.02123 | 9.087 *** | ||
NNM1R | Flow | Unmatched | 0.23831 | 0.21694 | 0.02137 | 10.724 *** |
ATT | 0.23831 | 0.21350 | 0.02481 | 8.449 *** | ||
RM | Flow | Unmatched | 0.23824 | 0.21694 | 0.02137 | 10.724 *** |
ATT | 0.23824 | 0.21484 | 0.02340 | 11.110 *** | ||
Panel B4: Average treatment effect of Star4 | ||||||
NNM1 | Flow | Unmatched | 0.23709 | 0.21815 | 0.01896 | 9.506 *** |
ATT | 0.23709 | 0.21815 | 0.01894 | 8.116 *** | ||
NNM1R | Flow | Unmatched | 0.23711 | 0.21815 | 0.01896 | 9.506 *** |
ATT | 0.23711 | 0.21458 | 0.02253 | 7.806 *** | ||
RM | Flow | Unmatched | 0.23711 | 0.21815 | 0.01896 | 9.506 *** |
ATT | 0.23711 | 0.21666 | 0.02025 | 9.714 *** | ||
Average treatment effect of Panel B5:Star5 | ||||||
NNM1 | Flow | Unmatched | 0.23632 | 0.21900 | 0.01726 | 8.652 *** |
ATT | 0.23632 | 0.21900 | 0.01732 | 7.369 *** | ||
NNM1R | Flow | Unmatched | 0.23626 | 0.21900 | 0.01726 | 8.652 *** |
ATT | 0.23626 | 0.21568 | 0.02058 | 6.934 *** | ||
RM | Flow | Unmatched | 0.23628 | 0.21900 | 0.01726 | 8.652 *** |
ATT | 0.23628 | 0.21639 | 0.01989 | 9.365 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, W.; Su, Z. The Role of ESG Ratings in Shaping Chinese Investors’ Decision-Making Behavior: An Analysis from the Fund Signaling Perspective. Sustainability 2024, 16, 4934. https://doi.org/10.3390/su16124934
Qu W, Su Z. The Role of ESG Ratings in Shaping Chinese Investors’ Decision-Making Behavior: An Analysis from the Fund Signaling Perspective. Sustainability. 2024; 16(12):4934. https://doi.org/10.3390/su16124934
Chicago/Turabian StyleQu, Wenzhou, and Zekai Su. 2024. "The Role of ESG Ratings in Shaping Chinese Investors’ Decision-Making Behavior: An Analysis from the Fund Signaling Perspective" Sustainability 16, no. 12: 4934. https://doi.org/10.3390/su16124934
APA StyleQu, W., & Su, Z. (2024). The Role of ESG Ratings in Shaping Chinese Investors’ Decision-Making Behavior: An Analysis from the Fund Signaling Perspective. Sustainability, 16(12), 4934. https://doi.org/10.3390/su16124934