Comparative Analysis of Riverine Plastic Pollution Combining Citizen Science, Remote Sensing and Water Quality Monitoring Techniques
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Riverine Waste and Macroplastic Data Collected by Citizens
3.2. Former Data on Riverine Litter and Microplastic Fragments in Sediments
4. Results
4.1. Citizen Science Survey
4.2. Comparison of Results of the Citizen Survey and Remote Sensing Methods
4.3. Comparison of Results of the Citizen Survey and Microplastic Fragments in Sediments
5. Discussion
5.1. Strengths and Weaknesses of Citizen Surveys
5.2. Factors Influencing Macroplastic Pollution
5.3. Consequences of Macroplastic Pollution: Potential Microplastic Pollution
5.4. Macroplastic Pollution and Cleanup Actions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryan, P.G. A brief history of marine litter research. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Lebreton, L.; van der Zwet, J.; Damsteeg, J.W.; Slat, B.; Andrady, A.; Reisser, J. River plastic emissions to the world’s oceans. Nat. Commun. 2017, 8, 15611. [Google Scholar] [CrossRef] [PubMed]
- Meijer, L.J.; Van Emmerik, T.; Van der Ent, R.; Schmidt, C.; Lebreton, L. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean. Sci. Adv. 2021, 7, eaaz5803. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruz, V.; Thiel, M. The contribution of citizen scientists to the monitoring of marine litter. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 429–447. [Google Scholar] [CrossRef]
- Lechner, A. “Down by the river”: (Micro-) Plastic pollution of running freshwaters with special emphasis on the Austrian Danube. In Mare Plasticum—The Plastic Sea; Streit-Bianchi, M., Cimadevila, M., Trettnak, W., Eds.; Springer: Cham, Switzerland, 2020; pp. 141–185. [Google Scholar] [CrossRef]
- Gyalai-Korpos, M. Plastic Pollution of Rivers in the Danube Region—Best Practices towards Reduction of Plastic Pollution; EUSDR Priority Area 4 and Financed by the Project DTP-PAC1-PA4 (Acronym: PA 04 Water Quality); Ministry of Foreign Affairs and Trade Hungary: Budapest, Hungary, 2019; Available online: https://dunaregiostrategia.kormany.hu/download/3/7f/72000/EUSDR_20191.pdf (accessed on 30 April 2024).
- Mihai, F.C.; Apostol, L.; Ursu, A.; Ichim, P. Vulnerability of mountain rivers to waste dumping from Neamt County, Romania. Geogr. Napoc. 2012, 6, 51–59. [Google Scholar] [CrossRef]
- Lahens, L.; Strady, E.; Kieu-Le, T.; Dris, R.; Boukerma, K.; Rinnert, E.; Gasperi, J.; Tassin, B. Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environ. Pollut. 2018, 236, 661–671. [Google Scholar] [CrossRef]
- Eo, S.; Hong, S.H.; Song, Y.K.; Han, G.M.; Shim, W.J. Spatiotemporal distribution and annual load of microplastics in the Nakdong River, South Korea. Water Res. 2019, 160, 228–237. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Wijesiri, B.; Ayoko, G.A.; Egodawatta, P.; Rintoul, L.; Goonetilleke, A. Influential factors on microplastics occurrence in river sediments. Sci. Total Environ. 2020, 738, 139901. [Google Scholar] [CrossRef] [PubMed]
- Mihai, F.C.; Gündoğdu, S.; Khan, F.R.; Olivelli, A.; Markley, L.A.; van Emmerik, T. Plastic pollution in marine and freshwater environments: Abundance, sources, and mitigation. Emerg. Contam. Environ. 2022, 11, 241–274. [Google Scholar] [CrossRef]
- Barrows, A.P.; Christiansen, K.S.; Bode, E.T.; Hoellein, T.J. A watershed-scale, citizen science approach to quantifying microplastic concentration in a mixed land-use river. Water Res. 2018, 147, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Hanke, G.; Galgani, F.; Werner, S.; Oosterbaan, L.; Nilsson, P.; Fleet, D.; Kinsey, S.; Thompson, R.; Palatinus, A.; Van Franeker, J.; et al. Guidance on Monitoring of Marine Litter in European Seas; EUR 26113; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar] [CrossRef]
- Liro, M.; Zielonka, A.; Hajdukiewicz, H.; Mikuś, P.; Haska, W.; Kieniewicz, M.; Gorczyca, E.; Krzemień, K. Litter Selfie: A citizen science guide for photorecording macroplastic deposition along mountain rivers using a smartphone. Water 2023, 15, 3116. [Google Scholar] [CrossRef]
- Liro, M.; Zielonka, A.; van Emmerik, T.H.M.; Grodzińska-Jurczak, M.; Liro, J.; Kiss, T.; Mihai, F.C. Mountains of plastic: Mismanaged plastic waste along the Carpathian watercourses. Sci. Total Environ. 2023, 888, 164058. [Google Scholar] [CrossRef]
- Li, C.; Busquets, R.; Campos, L.C. Assessment of microplastics in freshwater systems: A review. Sci. Total Environ. 2020, 707, 135578. [Google Scholar] [CrossRef]
- Huang, D.; Li, X.; Ouyang, Z.; Zhao, X.; Wu, R.; Zhang, C.; Lin, C.; Li, Y.; Guo, X. The occurrence and abundance of microplastics in surface water and sediment of the West River downstream, in the south of China. Sci. Total Environ. 2021, 756, 143857. [Google Scholar] [CrossRef]
- Huang, D.; Tao, J.; Cheng, M.; Deng, R.; Chen, S.; Yin, L.; Li, R. Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. J. Hazard. Mater. 2021, 407, 124399. [Google Scholar] [CrossRef]
- Weinstein, J.E.; Crocker, B.; Crocker, A.; Gray, A.D. From macroplastic to microplastic: Degradation of high density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 2016, 35, 1632–1640. [Google Scholar] [CrossRef]
- Ronkay, F.; Molnár, B.; Gere, D.; Czigány, T. Plastic waste from marine environment: Demonstration of possible routes for recycling by different manufacturing technologies. Waste Manag. 2021, 119, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Topouzelis, K.; Papakonstantinou, A.; Garaba, S.P. Detection of floating plastics from satellite and unmanned aerial systems (Plastic Litter Project 2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 175–183. [Google Scholar] [CrossRef]
- Mohsen, A.; Kiss, T.; Kovács, F. Machine learning-based detection and mapping of riverine litter utilizing Sentinel-2 imagery. Environ. Sci. Poll. Res. 2023, 30, 67742–67757. [Google Scholar] [CrossRef]
- Clean Tisza Map: Online River Pollution Map. Available online: https://www.tisztatiszaterkep.hu/#/en/ (accessed on 30 April 2024).
- Mihai, F.C. Waste collection in rural communities: Challenges under EU regulations. A case study of Neamt County, Romania. J. Mater. Cycl. Waste Manag. 2018, 20, 1337–1347. [Google Scholar] [CrossRef]
- Mihai, F.C. Rural plastic emissions into the largest mountain lake of the Eastern Carpathians. R. Soc. Open Sci. 2018, 5, 172396. [Google Scholar] [CrossRef]
- van Emmerik, T.; Strady, E.; Kieu-Le, T.C.; Nguyen, L.; Gratiot, N. Seasonality of riverine macroplastic transport. Sci. Rep. 2019, 9, 13549. [Google Scholar] [CrossRef]
- Magyar, D.; Cserép, M.; Vincellér, Z.; Molnár, A.D. Waste detection and change analysis based on multispectral satellite imagery. In Proceedings of the KEPAF: Képfeldolgozók és Alakfelismerők társaságának 14. Konferenciája, Gyula, Hungary, 24–27 January 2023; p. 18. [Google Scholar] [CrossRef]
- Molnár, A.D.; Hankó, G. Aquatic Plastic I. The Transnational River Cleanup Handguide; PET Cup: Budapest, Hungary, 2022; p. 14. Available online: https://dtp.interreg-danube.eu/uploads/media/approved_project_output/0001/56/4fb08d49141573d5aecbea014f841deaa6cb28c7.pdf (accessed on 30 April 2024).
- Kiss, T.; Fórián, S.; Szatmári, G.; Sipos, G. Spatial distribution of microplastics in the fluvial sediments of a transboundary river—A case study of the Tisza River in Central Europe. Sci. Tot. Environ. 2021, 785, 147306. [Google Scholar] [CrossRef]
- Kiss, T.; Gönczy, S.; Nagy, T.; Mesaroš, M.; Balla, A. Deposition and mobilization of microplastics in a low-energy fluvial environment from a geomorphological perspective. Appl. Sci. 2022, 12, 4367. [Google Scholar] [CrossRef]
- Mohsen, A.; Balla, B.; Kiss, T. High spatiotemporal resolution analysis on suspended sediment and microplastic transport of a lowland river. Sci. Tot. Environ. 2023, 902, 166188. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, A.; Kovács, F.; Kiss, T. Riverine Microplastic Quantification: A novel approach integrating satellite images, neural network, and suspended sediment data as a proxy. Sensors 2023, 23, 9505. [Google Scholar] [CrossRef] [PubMed]
- Balla, A.; Teofilovic, V.; Kiss, T. Microplastic contamination of fine-grained sediments and its environmental driving factors along a lowland river: Three-year monitoring of the Tisza River and Central Europe. Hydrology 2024, 11, 11. [Google Scholar] [CrossRef]
- Schernewski, G.; Escobar Sánchez, G.; Felsing, S.; Gatel Rebours, M.; Haseler, M.; Hauk, R.; Lange, X.; Piehl, S. Emission, transport and retention of floating marine macro-litter (plastics): The role of Baltic harbor and sailing festivals. Sustainability 2024, 16, 1220. [Google Scholar] [CrossRef]
- Popa, C.L.; Dontu, S.I.; Savastru, D.; Carstea, E.M. Role of citizen scientists in environmental plastic litter research—A systematic review. Sustainability 2022, 14, 13265. [Google Scholar] [CrossRef]
- Schneider, F.; Kunz, A.; Hu, C.-S.; Yen, N.; Lin, H.-T. Rapid-survey methodology to assess litter volumes along large river systems—A case study of the Tamsui River in Taiwan. Sustainability 2021, 13, 8765. [Google Scholar] [CrossRef]
- Bitter, Z. Nearly 1200 Tonnes of Waste Collected and Processed Thank to the Call-Action Programme. 2023. Available online: https://petkupa.hu/eng/?cikkId=call-action-reached-1200-tons (accessed on 30 April 2024).
- Konecsny, K. The effects of environmental changes on the water household of the Great Hungarian Plain. In A víz szerepe és jelentősége az Alföldön; Pálfai, I., Ed.; Nagyalföld Alapítvány: Békéscsaba, Hungary, 2000; pp. 27–46. (In Hungarian) [Google Scholar]
- Lászlóffy, W. The Tisza; Akadémiai Kiadó: Budapest, Hungary, 1982; p. 610. (In Hungarian) [Google Scholar]
- Eurostat: Waste Generated by Households by Year and Waste Category. Available online: https://ec.europa.eu/eurostat (accessed on 30 April 2024).
- IFC. Municipal Solid Waste in Ukraine: Development Potential. Available online: https://documents1.worldbank.org/curated/zh/839801556599035128/pdf/Municipal-Solid-Waste-in-Ukraine-Development-Potential.pdf (accessed on 30 April 2024).
- Kiessling, T.; Knickmeier, K.; Kruse, K.; Gatta-Rosemary, M.; Nauendorf, A.; Brennecke, D.; Thiel, L.; Wichels, A.; Parchmann, I.; Körtzinger, A.; et al. Schoolchildren discover hotspots of floating plastic litter in rivers using a large-scale collaborative approach. Sci. Tot. Environ. 2021, 789, 147849. [Google Scholar] [CrossRef]
- Özbek, S.E.; Lanzavecchia, A.; Ferrarese, F. Participatory geographic information system based citizen science: Highland trails contamination due to mountaineering tourism in the Dolomites. Sustainability 2023, 15, 13908. [Google Scholar] [CrossRef]
- Gallitelli, L.; Scalici, M. Riverine macroplastic gradient along watercourses: A global overview. Front. Environ. Sci. 2022, 10, 937944. [Google Scholar] [CrossRef]
- Katona, G. Waste pollution of the River Tisza. Műszaki Katonai Közlöny 2019, 29, 65–80. (In Hungarian) [Google Scholar] [CrossRef]
- Waldschlager, K.; Schüttrumpf, H. Effects of particle properties on the settling and rise velocities of microplastics in freshwater under laboratory conditions. Environ. Sci. Technol. 2019, 53, 1958–1966. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, J.; Aanesen, M.; Austen, M.C.; Börger, T.; Clark, J.R.; Cole, M.; Hooper, T.; Lindeque, P.K.; Pascoe, C.; Wyles, K.J. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 2019, 142, 189–195. [Google Scholar] [CrossRef]
Municipal Waste Production (kg/capita) | Municipal Waste Production in the Mean of the EU (%) | Recycling Ratio (%) | Unmanaged Municipal Waste (kg/capita) | |
---|---|---|---|---|
Hungary | 406 | 79.1 | 32.8 | 273 |
Romania | 301 | 58.7 | 12.1 | 265 |
Slovakia | 478 | 93.2 | 49.5 | 241 |
Serbia | 472 | 92.0 | 17.6 | 389 |
Ukraine | 300 | 58.5 | 5.0 | 285 |
EU average | 513 | 100.0 | 48.6 | 264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnár, A.D.; Málnás, K.; Bőhm, S.; Gyalai-Korpos, M.; Cserép, M.; Kiss, T. Comparative Analysis of Riverine Plastic Pollution Combining Citizen Science, Remote Sensing and Water Quality Monitoring Techniques. Sustainability 2024, 16, 5040. https://doi.org/10.3390/su16125040
Molnár AD, Málnás K, Bőhm S, Gyalai-Korpos M, Cserép M, Kiss T. Comparative Analysis of Riverine Plastic Pollution Combining Citizen Science, Remote Sensing and Water Quality Monitoring Techniques. Sustainability. 2024; 16(12):5040. https://doi.org/10.3390/su16125040
Chicago/Turabian StyleMolnár, Attila Dávid, Kristóf Málnás, Sára Bőhm, Miklós Gyalai-Korpos, Máté Cserép, and Tímea Kiss. 2024. "Comparative Analysis of Riverine Plastic Pollution Combining Citizen Science, Remote Sensing and Water Quality Monitoring Techniques" Sustainability 16, no. 12: 5040. https://doi.org/10.3390/su16125040
APA StyleMolnár, A. D., Málnás, K., Bőhm, S., Gyalai-Korpos, M., Cserép, M., & Kiss, T. (2024). Comparative Analysis of Riverine Plastic Pollution Combining Citizen Science, Remote Sensing and Water Quality Monitoring Techniques. Sustainability, 16(12), 5040. https://doi.org/10.3390/su16125040