The Moderating Role of ESG Administration on the Relationship between Tourism Activities and Carbon Emissions: A Case Study of Basic Local Governments in South Korea
Abstract
:1. Introduction
2. Literature Review
2.1. Tourism Activities and Carbon Emissions
2.2. The Moderating Role of ESG Administration
2.3. Control Variables
3. Methodology
3.1. Research Questions
3.2. Data Collection
3.3. Data Transformation
3.4. Analytical Modeling
3.5. Analysis Procedure
4. Results
4.1. Descriptive Statistics and Difference Tests for Input Variables
4.2. Correlations for High- and Low-Level ESG Groups
4.3. Estimating MIMIC Model for Pooled Data
4.4. Testing Measurement Inavariance
4.5. Estimating MIMIC Models across Years
4.6. Estimating MIMIC Models across Years and ESG Groups
5. Conclusions
5.1. Summary and Discussions
5.2. Implications
5.3. Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, M. Global Warming and Climate Change: What Australia Knew and Buried... Then Framed a New Reality for the Public; ANU Press: Canberra, Australia, 2014. [Google Scholar]
- Kweku, D.; Bismark, O.; Maxwell, A.; Desmond, K.; Danso, K.; Oti-Mensah, E.; Adormaa, B. Greenhouse effect: Greenhouse gases and their impact on global warming. J. Sci. Res. Rep. 2018, 17, 1–9. [Google Scholar] [CrossRef]
- Caldeira, K.; Brown, P.T. Reduced emissions through climate damage to the economy. Proc. Natl. Acad. Sci. USA 2019, 116, 714–716. [Google Scholar] [CrossRef]
- Stern, N. The economics of climate change. Am. Econ. Rev. 2008, 98, 1–37. [Google Scholar] [CrossRef]
- Cvetković, V.M.; Grbić, L. Public perception of climate change and its impact on natural disasters. J. Geogr. Inst. Jovan Cvijić SASA 2021, 71, 43–58. [Google Scholar] [CrossRef]
- Wang, Q.J.; Feng, G.F.; Wang, H.J.; Chang, C.P. The influence of political ideology on greenhouse gas emissions. Glob. Environ. Change 2022, 74, 102496. [Google Scholar] [CrossRef]
- Sterner, T.; Barbier, E.B.; Bateman, I.; van den Bijgaart, I.; Crépin, A.S.; Edenhofer, O.; Robinson, A. Policy design for the Anthropocene. Nat. Sustain. 2019, 2, 14–21. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Chu, L.; Oloo, F.; Chen, B.; Xie, M.; Blaschke, T. Assessing the influence of tourism-driven activities on environmental variables on Hainan Island, China. Remote Sens. 2020, 12, 2813. [Google Scholar] [CrossRef]
- Pratt, S. Potential economic contribution of regional tourism development in China: A comparative analysis. Int. J. Tour. Res. 2015, 17, 303–312. [Google Scholar] [CrossRef]
- Gohori, O.; van der Merwe, P. Towards a tourism and community-development framework: An African perspective. Sustainability 2020, 12, 5305. [Google Scholar] [CrossRef]
- Saadi-Sedik, T.; Xu, R. A Vicious Cycle: How Pandemics Lead to Economic Despair and Social Unrest; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Watson, J.E.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Lindenmayer, D. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef]
- Anser, M.K.; Yousaf, Z.; Nassani, A.A.; Abro, M.M.Q.; Zaman, K. International tourism, social distribution, and environmental Kuznets curve: Evidence from a panel of G-7 countries. Environ. Sci. Pollut. Res. Int. 2020, 27, 2707–2720. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Driha, O.M.; Shahbaz, M.; Sinha, A. The effects of tourism and globalization over environmental degradation in developed countries. Environ. Sci. Pollut. Res. Int. 2020, 27, 7130–7144. [Google Scholar] [CrossRef]
- Khanal, A.; Rahman, M.M.; Khanam, R.; Velayutham, E. Does tourism contribute towards zero-carbon in Australia? Evidence from ARDL modelling approach. Energy Strateg. Rev. 2022, 43, 100907. [Google Scholar] [CrossRef]
- Udemba, E.N.; Magazzino, C.; Bekun, F.V. Modeling the nexus between pollutant emission, energy consumption, foreign direct investment, and economic growth: New insights from China. Environ. Sci. Pollut. Res. Int. 2020, 27, 17831–17842. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X. The roles of international tourism and renewable energy in environment: New evidence from Asian countries. Renew. Energy 2019, 139, 385–394. [Google Scholar] [CrossRef]
- Aziz, N.; Mihardjo, L.W.; Sharif, A.; Jermsittiparsert, K. The role of tourism and renewable energy in testing the environmental Kuznets curve in the BRICS countries: Fresh evidence from methods of moments quantile regression. Environ. Sci. Pollut. Res. Int. 2020, 27, 39427–39441. [Google Scholar] [CrossRef]
- Dogan, E.; Aslan, A. Exploring the relationship among CO2 emissions, real GDP, energy consumption and tourism in the EU and candidate countries: Evidence from panel models robust to heterogeneity and cross-sectional dependence. Renewable Sustain. Energy Rev. 2017, 77, 239–245. [Google Scholar] [CrossRef]
- Fethi, S.; Senyucel, E. The role of tourism development on CO2 emission reduction in an extended version of the environmental Kuznets curve: Evidence from top 50 tourist destination countries. Environ. Dev. Sustain. 2021, 23, 1499–1524. [Google Scholar] [CrossRef]
- Dogru, T.; Bulut, U.; Kocak, E.; Isik, C.; Suess, C.; Sirakaya-Turk, E. The nexus between tourism, economic growth, renewable energy consumption, and carbon dioxide emissions: Contemporary evidence from OECD countries. Environ. Sci. Pollut. Res. Int. 2020, 27, 40930–40948. [Google Scholar] [CrossRef]
- Liu, Y.; Kumail, T.; Ali, W.; Sadiq, F. The dynamic relationship between CO2 emission, international tourism and energy consumption in Pakistan: A cointegration approach. Tour. Rev. 2019, 74, 761–779. [Google Scholar] [CrossRef]
- Mishra, S.; Sinha, A.; Sharif, A.; Suki, N.M. Dynamic linkages between tourism, transportation, growth and carbon emission in the USA: Evidence from partial and multiple wavelet coherence. Curr. Issues Tour. 2020, 23, 2733–2755. [Google Scholar] [CrossRef]
- Garidzirai, R.; Moyo, C. Tourism, poverty and carbon emissions in newly industrialized countries. J. Environ. Manag. Tour. 2020, 11, 653–668. [Google Scholar] [CrossRef]
- Chishti, M.Z.; Ullah, S.; Ozturk, I.; Usman, A. Examining the asymmetric effects of globalization and tourism on pollution emissions in South Asia. Environ. Sci. Pollut. Res. 2020, 27, 27721–27737. [Google Scholar] [CrossRef]
- Mishra, P.K.; Rout, H.B.; Kestwal, A.K. Tourism-energy-environment-growth nexus: Evidence from India. J. Environ. Manag. Tour. 2019, 10, 1180–1191. [Google Scholar] [CrossRef]
- Kim, J.R.; Jeon, E.C.; Cho, S.; Kim, H. The promotion of environmental management in the South Korean health sector—Case study. Sustainability 2018, 10, 2081. [Google Scholar] [CrossRef]
- Kazakova, A.; Kim, I. Geopolitical-risk and economic policy—Uncertainty impacts on tourist flows from neighboring countries: A wavelet analysis. Sustainability 2021, 13, 13751. [Google Scholar] [CrossRef]
- Sim, S.; Oh, J.; Jeong, B. Measuring greenhouse gas emissions for the transportation sector in Korea. Ann. Oper. Res. 2015, 230, 129–151. [Google Scholar] [CrossRef]
- Song, M.J.; Seo, Y.J.; Lee, H.Y. The dynamic relationship between industrialization, urbanization, CO2 emissions, and transportation modes in Korea: Empirical evidence from maritime and air transport. Transportation 2023, 50, 2111–2137. [Google Scholar]
- Lee, J.W.; Brahmasrene, T. Investigating the influence of tourism on economic growth and carbon emissions: Evidence from panel analysis of the European Union. Tour. Manag. 2013, 38, 69–76. [Google Scholar] [CrossRef]
- Lee, J.W.; Kwag, M. Green growth and sustainability: The role of tourism, travel and hospitality service industry in Korea. J. Distrib. Sci. 2013, 11, 15–22. [Google Scholar] [CrossRef]
- Bi, C.; Zeng, J. Nonlinear and spatial effects of tourism on carbon emissions in China: A spatial econometric approach. Int. J. Environ. Res. Public Health 2019, 16, 3353. [Google Scholar] [CrossRef]
- Cheng, X.; Jiang, K. Study on tourism carbon emissions and distribution efficiency of tourism economics. East Asian J. Bus. Manag. 2018, 8, 15–22. [Google Scholar] [CrossRef]
- Yang, S.; Hao, Q.; Wang, Y.; Zhang, C. Impact of the Participation of the Tourism Sector on Carbon Emission Reduction in the Tourism Industry. Sustainability 2022, 14, 15570. [Google Scholar] [CrossRef]
- Gu, M.C.; Liu, H. Thoughts on the protection of ecological environment of tourism. Appl. Mech. Mater. 2014, 448, 4441–4444. [Google Scholar] [CrossRef]
- de Souza Barbosa, A.; da Silva, M.C.B.C.; da Silva, L.B.; Morioka, S.N.; de Souza, V.F. Integration of environmental, social, and governance (ESG) criteria: Their impacts on corporate sustainability performance. Humanit. Soc. Sci. Commun. 2023, 10, 1–18. [Google Scholar]
- Kuzey, C.; Al-Shaer, H.; Karaman, A.S.; Uyar, A. Public governance, corporate governance and excessive ESG. Corp. Gov. Int. J. Bus. Soc. 2023, 23, 1748–1777. [Google Scholar] [CrossRef]
- de Jesus, I.R.D.; Nascimento, P.P. ESG strategies to deal with COVID-19 in a Brazilian public research company. Braz. J. Oper. Prod. Manag. 2021, 18, 1–14. [Google Scholar] [CrossRef]
- Guruge, D.D. Environmental sustainability practices in the hotel industry in New Zealand. Manag. Environ. Qual. 2022, 33, 991–1007. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, H.; Jung, D. The effect of ESG activities on financial performance during the COVID-19 pandemic—Evidence from Korea. Sustainability 2021, 13, 11362. [Google Scholar] [CrossRef]
- Yoon, J.; Han, S.; Lee, Y.; Hwang, H. Text mining analysis of ESG management reports in South Korea: Comparison with sustainable development goals. SAGE Open 2023, 13, 21582440231202896. [Google Scholar] [CrossRef]
- Joun, H.J.; Kim, H. Productivity evaluation of tourism and culture for sustainable economic development: Analyzing South Korea’s metropolitan regions. Sustainability 2020, 12, 2912. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, J.; Thapa, B. Influence of environmental knowledge on affect, nature affiliation and pro-environmental behaviors among tourists. Sustainability 2018, 10, 3109. [Google Scholar] [CrossRef]
- Tian, Y. Study on the impact of carbon emission pollution on urban tourism environment. Eng. Rep. 2023, 5, e12641. [Google Scholar] [CrossRef]
- Russo, M.A.; Relvas, H.; Gama, C.; Lopes, M.; Borrego, C.; Rodrigues, V.; Monteiro, A. Estimating emissions from tourism activities. Atmos. Environ. 2020, 220, 117048. [Google Scholar] [CrossRef]
- Yavorska, V.; Hevko, I.; Sych, V.; Kolomiyets, K. The main components of the formation of recreational and tourism activity. J. Geol. Geogr. Geoecol. 2018, 27, 148–155. [Google Scholar] [CrossRef]
- Kadiyala, A.; Kommalapati, R.; Huque, Z. Evaluation of the life cycle greenhouse gas emissions from different biomass feedstock electricity generation systems. Sustainability 2016, 8, 1181. [Google Scholar] [CrossRef]
- Nagasawa, K.; Rhodes, J.; Webber, M. Assessment of primary energy consumption, carbon dioxide emissions, and peak electric load for a residential fuel cell using empirical natural gas and electricity use profiles. Energy Build. 2018, 178, 242–253. [Google Scholar] [CrossRef]
- Kitamura, Y.; Ichisugi, Y.; Karkour, S.; Itsubo, N. Carbon footprint evaluation based on tourist consumption toward sustainable tourism in Japan. Sustainability 2020, 12, 2219. [Google Scholar] [CrossRef]
- Zhong, Y.; Shi, S.; Li, S.; Luo, F.; Luo, W.; Xiao, Q. Empirical research on construction of a measurement framework for tourism carbon emission in China. Chin. J. Popul. Resour. Environ. 2015, 13, 240–249. [Google Scholar] [CrossRef]
- Liu, J.; Feng, T.; Yang, X. The energy requirements and carbon dioxide emissions of tourism industry of Western China: A case of Chengdu city. Renewable Sustain. Energy Rev. 2011, 15, 2887–2894. [Google Scholar] [CrossRef]
- Tang, M.; Ge, S. Accounting for carbon emissions associated with tourism-related consumption. Tour. Econ. 2018, 24, 510–525. [Google Scholar] [CrossRef]
- Filimonau, V.; Dickinson, J.; Robbins, D.; Reddy, M.V. The role of ‘indirect’ greenhouse gas emissions in tourism: Assessing the hidden carbon impacts from a holiday package tour. Transp. Res. Part A Policy Pract. 2013, 54, 78–91. [Google Scholar] [CrossRef]
- Chen, S.; Tan, Z.; Chen, Y.; Han, J. Research hotspots, future trends and influencing factors of tourism carbon footprint: A bibliometric analysis. J. Travel Tour. Mark. 2023, 40, 131–150. [Google Scholar] [CrossRef]
- Xiong, C.; Khan, A.; Bibi, S.; Hayat, H.; Jiang, S. Tourism subindustry level environmental impacts in the US. Curr. Issues Tour. 2023, 26, 903–921. [Google Scholar] [CrossRef]
- Sun, Y.Y. A framework to account for the tourism carbon footprint at island destinations. Tour. Manag. 2014, 45, 16–27. [Google Scholar] [CrossRef]
- Lenzen, M.; Sun, Y.Y.; Faturay, F.; Ting, Y.P.; Geschke, A.; Malik, A. The carbon footprint of global tourism. Nat. Clim. Chang. 2018, 8, 522–528. [Google Scholar] [CrossRef]
- Moutinho, V.; Costa, C.; Bento, J.P.C. The impact of energy efficiency and economic productivity on CO2 emission intensity in Portuguese tourism industries. Tour. Manag. Perspect. 2015, 16, 217–227. [Google Scholar] [CrossRef]
- Tang, C.; Zhong, L.; Ng, P. Factors that influence the tourism industry’s carbon emissions: A tourism area life cycle model perspective. Energy Policy 2017, 109, 704–718. [Google Scholar] [CrossRef]
- Cao, R.; Mo, Y.; Ma, J. Carbon footprint analysis of tourism life cycle: The case of Guilin from 2011 to 2022. Sustainability 2023, 15, 7124. [Google Scholar] [CrossRef]
- Radouche, T. Moderating role of ethics between sustainability and environmental social governance. Migr. Lett. 2024, 21, 788–795. [Google Scholar] [CrossRef]
- Bhattacharya, C.B.; Zaman, M. The what, why and how of ESG dashboards. NIM Mark. Intell. Rev. 2023, 15, 32–39. [Google Scholar] [CrossRef]
- Leal Filho, W.; Viera Trevisan, L.; Paulino Pires Eustachio, J.H.; Simon Rampasso, I.; Anholon, R.; Platje, J.; Bonato Marcolin, C. Assessing ethics and sustainability standards in corporate practices. Soc. Responsib. J. 2024, 20, 880–897. [Google Scholar] [CrossRef]
- Gillan, S.L.; Koch, A.; Starks, L.T. Firms and social responsibility: A review of ESG and CSR research in corporate finance. J. Corp. Financ. 2021, 66, 101889. [Google Scholar] [CrossRef]
- Li, T.T.; Wang, K.; Sueyoshi, T.; Wang, D.D. ESG: Research progress and future prospects. Sustainability 2021, 13, 11663. [Google Scholar] [CrossRef]
- Baratta, A.; Cimino, A.; Longo, F.; Solina, V.; Verteramo, S. The impact of ESG practices in industry with a focus on carbon emissions: Insights and future perspectives. Sustainability 2023, 15, 6685. [Google Scholar] [CrossRef]
- Cong, Y.; Zhu, C.; Hou, Y.; Tian, S.; Cai, X. Does ESG investment reduce carbon emissions in China? Front. Environ. Sci. 2022, 10, 977049. [Google Scholar] [CrossRef]
- Alandejani, M.; Al-Shaer, H. Macro uncertainty impacts on ESG performance and carbon emission reduction targets. Sustainability 2023, 15, 4249. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, J.H. Firm-value effects of carbon emissions and carbon disclosures—Evidence from Korea. Int. J. Environ. Res. Public Health 2021, 18, 12166. [Google Scholar] [CrossRef]
- Ionescu, G.H.; Firoiu, D.; Pirvu, R.; Vilag, R.D. The impact of ESG factors on market value of companies from travel and tourism industry. Technol. Econ. Dev. Econ. 2019, 25, 820–849. [Google Scholar] [CrossRef]
- Kumar, D. Economic and political uncertainties and sustainability disclosures in the tourism sector firms. Tour. Econ. 2023, 29, 1694–1699. [Google Scholar] [CrossRef]
- Bae, G.K.; Lee, S.M.; Luan, B.K. The impact of ESG on brand trust and word of mouth in food and beverage companies: Focusing on Jeju Island tourists. Sustainability 2023, 15, 2348. [Google Scholar] [CrossRef]
- Buallay, A.; Al-Ajmi, J.; Barone, E. Sustainability engagement’s impact on tourism sector performance: Linear and nonlinear models. J. Organ. Chang. Manag. 2022, 35, 361–384. [Google Scholar] [CrossRef]
- Yoon, B.; Lee, J.H.; Byun, R. Does ESG performance enhance firm value? Evidence from Korea. Sustainability 2018, 10, 3635. [Google Scholar] [CrossRef]
- Wainwright, K. Fundamental Methods of Mathematical Economics; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Im, J.; Kim, J.; Choeh, J.Y. COVID-19, social distancing, and risk-averse actions of hospitality and tourism consumers: A case of South Korea. J. Destin. Mark. Manag. 2021, 20, 100566. [Google Scholar] [CrossRef]
- Jaipuria, S.; Parida, R.; Ray, P. The impact of COVID-19 on tourism sector in India. Tour. Recreat. Res. 2021, 46, 245–260. [Google Scholar] [CrossRef]
- Ulak, N. COVID-19 pandemic and its impact on tourism industry in Nepal. J. Tour. Adventure 2020, 3, 50–75. [Google Scholar] [CrossRef]
- Kwon, H.J. A new trend of tourism in the post-COVID-19 era: Big data analysis of online tours in Korea. Soc. Sci. 2022, 11, 574. [Google Scholar] [CrossRef]
- Mannucci, P.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef]
- Nguyen, T.G. Impacts of climate change and air pollution on the tourism industry: Evidence from Southeast Asia. J. Environ. Manag. Tour. 2019, 10, 1711–1722. [Google Scholar] [CrossRef]
- Zhu, H. Accounting of air pollution on tourism economic loss in Fuzhou based on big data analysis. Math. Probl. Eng. 2022, 2022, 2715872. [Google Scholar] [CrossRef]
- Scott, D.; Gossling, S.; de Freitas, C.R. Preferred climates for tourism: Case studies from Canada, New Zealand and Sweden. Clim. Res. 2008, 38, 61–73. [Google Scholar] [CrossRef]
- Steiger, R.; Abegg, B.; Janicke, L. Rain, rain, go away, come again another day. Weather preferences of summer tourists in mountain environments. Atmosphere 2016, 7, 63. [Google Scholar] [CrossRef]
- Miloradov, K.; Romanishina, T.; Kovalenko, A.; Bondarenko, N.; Andrianova, J. An efficient strategy for the development of tourism at regional level. Eur. Res. Stud. J. 2018, 21, 208–221. [Google Scholar] [CrossRef]
- Thang, N.D.; Thanh, N.N. The factors influence the intention to invest in green tourism in Vietnam evidence from business survey. Int. J. Prof. Bus. Rev. 2023, 8, 121. [Google Scholar] [CrossRef]
- Naser, S.S.; Saeideh, H. Impact of empowering local stakeholders in tourism development and sustainability of marginal rural settlements in Iran. WIT Trans. Ecol. Environ. 2017, 226, 493–504. [Google Scholar]
- Adeola, O.; Evans, O. ICT, infrastructure, and tourism development in Africa. Tour. Econ. 2020, 26, 97–114. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Liu, Z.; Chen, H.; Zhao, Y. Spatial patterns of tourist attractions in the Yangtze River Delta region. Land 2022, 11, 1523. [Google Scholar] [CrossRef]
- He, T.T.; Li, W.X. Revisiting tourism’s additional impact on income. Tour. Econ. 2021, 27, 149–167. [Google Scholar] [CrossRef]
- Kuznets, S. International differences in capital formation and financing. In Capital Formation and Economic Growth; Princeton University Press: Princeton, NJ, USA, 1955; pp. 19–111. [Google Scholar]
- Lacheheb, M.; Rahim, A.S.A.; Sirag, A. Economic growth and CO2 emissions: Investigating the environmental Kuznets curve hypothesis in Algeria. Int. J. Energy Econ. Policy 2015, 5, 1125–1132. [Google Scholar]
- Ganda, F. Carbon emissions, energy consumption and economic growth in Zimbabwe: Investigating the existence of the environmental Kuznets curve within a developing economy context. Int. J. Sustain. Econ. 2018, 10, 226–248. [Google Scholar]
- Tachega, M.A.; Yao, X.; Liu, Y.; Ahmed, D.; Ackaah, W.; Gabir, M.; Gyimah, J. Income heterogeneity and the environmental Kuznets curve turning points: Evidence from Africa. Sustainability 2021, 13, 5634. [Google Scholar] [CrossRef]
- Wang, L.; Fang, B.; Law, R. Effect of air quality in the place of origin on outbound tourism demand: Disposable income as a moderator. Tour. Manag. 2018, 68, 152–161. [Google Scholar] [CrossRef]
- Gong, Y.; Luo, X. Experimental study on the carbon sequestration benefit in urban residential green space based on urban ecological carrying capacity. Sustainability 2022, 14, 7780. [Google Scholar] [CrossRef]
- Qiao, Y.; Mengjiao, D.; Haochen, L.; Xizi, T.; Xiaoyan, L. Research on the integrated planning of blue-green space towards urban-rural resilience: Conceptual framework and practicable approach. J. Resour. Ecol. 2022, 13, 347–359. [Google Scholar] [CrossRef]
- Ai, K.; Yan, X. Can green infrastructure investment reduce urban carbon emissions: Empirical evidence from China. Land 2024, 13, 226. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L. The effects of population aging, life expectancy, unemployment rate, population density, per capita GDP, urbanization on per capita carbon emissions. Sustain. Prod. Consum. 2021, 28, 760–774. [Google Scholar] [CrossRef]
- Benassi, F.; Mucciardi, M.; Gallo, G. Local population changes as a spatial varying multiscale process: The Italian case. Int. J. Popul. Stud. 2023, 9, 393. [Google Scholar] [CrossRef]
- Vračarević, B. Urban transport in world metropolises: A comparative analysis and key features of energy consumption. Spatium 2021, 46–58. [Google Scholar] [CrossRef]
- Guo, W.; Sun, T.; Dai, H. Effect of population structure change on carbon emission in China. Sustainability 2016, 8, 225. [Google Scholar] [CrossRef]
- Locke, J.; Dsilva, J.; Zarmukhambetova, S. Decarbonization strategies in the UAE built environment: An evidence-based analysis using COP26 and COP27 recommendations. Sustainability 2023, 15, 11603. [Google Scholar] [CrossRef]
- Tse, R.Y. A simultaneous model of tourism flow, spending and receipts. Tour. Econ. 1999, 5, 251–260. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H.; Acici, N. Environmental issues relating to greenhouse carbon dioxide emissions in the world. Energy Explor. Exploit. 2003, 21, 457–473. [Google Scholar] [CrossRef]
- Kargari, A.; Ravanchi, M.T. Carbon dioxide: Capturing and utilization. Greenh. Gases-Capturing Util. Reduct. 2012, 1, 3–30. [Google Scholar]
- Kim, K.; Kim, S.; Lee, D.; Park, C.Y. Impacts of social distancing policy and vaccination during the COVID-19 pandemic in the Republic of Korea. J. Econ. Dyn. Control 2023, 150, 104642. [Google Scholar] [CrossRef]
- Fabio, R.A.; Stracuzzi, A.; Lo Faro, R. Problematic smartphone use leads to behavioral and cognitive self-control deficits. Int. J. Environ. Res. Public Health 2022, 19, 7445. [Google Scholar] [CrossRef]
- Lwin, M.O.; Malik, S.; Lau, J. Association between food availability and young people’s fruits and vegetables consumption: Understanding the mediation role of the theory of planned behaviour. Public Health Nutr. 2020, 23, 2155–2164. [Google Scholar] [CrossRef]
- Choi, S.; Oh, J.; Hwang, Y.; Lee, H. Life cycle climate performance (LCCP) on cooling and heating systems in South Korea. Appl. Therm. Eng. 2017, 120, 88–98. [Google Scholar] [CrossRef]
- Woo, G.; Park, S.; Yoon, Y. Feasibility study of the introduction of hydrogen system and plus DR on campus MG. New Renew. Energy 2022, 18, 35–45. [Google Scholar] [CrossRef]
- Montalbano, L.; Ferrante, G.; Montella, S.; Cilluffo, G.; Di Marco, A.; Bozzetto, S.; Rusconi, F. Relationship between quality of life and behavioural disorders in children with persistent asthma: A Multiple Indicators Multiple Causes (MIMIC) model. Sci. Rep. 2020, 10, 6957. [Google Scholar] [CrossRef]
- Jamali, J.; Ayatollahi, S.; Jafari, P. The effect of cross-loading on measurement equivalence of psychometric multidimensional questionnaires in mimic model: A simulation study. Mater. Socio-Med. 2018, 30, 121–126. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Kim, H.; Millsap, R. Using the Bollen-Stine bootstrapping method for evaluating approximate fit indices. Multivar. Behav. Res. 2014, 49, 581–596. [Google Scholar] [CrossRef]
- Kenny, D.A.; Kaniskan, B.; McCoach, D.B. The performance of RMSEA in models with small degrees of freedom. Sociol. Methods Res. 2015, 44, 486–507. [Google Scholar] [CrossRef]
- Jou, Y.T.; Mariñas, K.A.; Saflor, C.S.; Bernabe, D.A.; Casuncad, J.R.; Geronimo, K.; Verceles, K.A. Assessing the community perception in San Jose, Occidental Mindoro, of proper waste disposal: A structural equation modeling approach. Sustainability 2024, 16, 1087. [Google Scholar] [CrossRef]
- Putnick, D.L.; Bornstein, M.H. Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Dev. Rev. 2016, 41, 71–90. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R.B. Testing factorial invariance across groups: A reconceptualization and proposed new method. J. Manag. 1999, 25, 1–27. [Google Scholar] [CrossRef]
- Steenkamp, J.B.E.; Baumgartner, H. Assessing measurement invariance in cross-national consumer research. J. Consum. Res. 1998, 25, 78–90. [Google Scholar] [CrossRef]
- Ariely, G.; Davidov, E. Can we rate public support for democracy in a comparable way? Cross-national equivalence of democratic attitudes in the World Value Survey. Soc. Indic. Res. 2011, 104, 271–286. [Google Scholar] [CrossRef]
- Lomazzi, V. Using alignment optimization to test the measurement invariance of gender role attitudes in 59 countries. Methods Data Anal. 2018, 12, 77–103. [Google Scholar]
- Rudnev, M.; Lytkina, E.; Davidov, E.; Schmidt, P.; Zick, A. Testing measurement invariance for a second-order factor: A cross-national test of the alienation scale. Methods Data Anal. 2018, 12, 47–76. [Google Scholar]
- Robitzsch, A.; Lüdtke, O. Why full, partial, or approximate measurement invariance are not a prerequisite for meaningful and valid group comparisons. Struct. Equ. Model. Multidiscip. J. 2023, 30, 859–870. [Google Scholar] [CrossRef]
Variables | Data Contents | Unit | Sources |
---|---|---|---|
Electricity | Carbon emissions induced by electricity usage | toe | Korea Real Estate Board |
Gas | Carbon emissions induced by city gas usage | ||
Shopping | Spending amount on shopping activities | KRW | Korea Tourism Organization |
Accommodation | Spending amount on accommodation facilities | ||
Food and Beverage | Spending amount on food and beverage services | ||
Recreation | Spending amount on recreation activities | ||
ESG Administration | ESG activity evaluation for local governments | Ranking | Korea ESG Evaluation Institute |
Infection Safety | Local infection safety evaluation | 5-point rating | Ministry of Public Admin. and Security |
Atmospheric Pollution | Local air pollution measurements | Max. 500 | Korea Environment Corporation |
Tourism Development | Local tourism activation assessment | % | Korea Tourism Organization |
Income Level | Local income level aggregation | KRW | National Tax Service |
Green Space | Green area ratio to urban area | % | Land and Geospatial Informatix Corp. |
Local Population | Local population estimates | People | National Statistical Office |
Total | 2019(a) | t-Test’s p-Value | 2020(b) | t-Test’s p-Value | 2021(c) | t-Test’s p-Value | F-Test | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
High | Low | High | Low | High | Low | ||||||||||
Mean | Mean | Mean | Mean | Mean | Mean | High | Low | ||||||||
(S.D.) | (S.D.) | (S.D.) | (S.D.) | (S.D.) | (S.D.) | ||||||||||
CE | ELC | 108.921 | 100.710 | 118.493 | 0.084 | 97.645 | 116.139 | 0.063 | 101.222 | 119.315 | 0.080 | 0.067 | n.s. | 0.057 | n.s. |
(80.426) | (84.572) | (77.185) | (80.754) | (75.571) | (84.482) | (77.985) | |||||||||
GAS | 124.861 | 105.765 | 143.368 | 0.014 | 104.110 | 141.926 | 0.011 | 107.567 | 146.429 | 0.011 | 0.027 | n.s. | 0.045 | n.s. | |
(120.114) | (118.438) | (121.835) | (114.675) | (118.844) | (118.335) | (121.602) | |||||||||
TA | SHP | 53.456 | 55.399 | 57.515 | 0.786 | 55.196 | 55.349 | 0.984 | 49.577 | 47.698 | 0.784 | 0.355 | n.s. | 1.082 | n.s. |
(58.711) | (63.726) | (59.103) | (63.614) | (57.330) | (58.498) | (49.353) | |||||||||
ACM | 3.246 | 3.503 | 4.112 | 0.247 | 3.488 | 4.110 | 0.274 | 2.066 | 2.198 | 0.593 | 6.683 | *** | 10.375 | *** | |
(3.784) | (3.931) | (4.357) | (4.281) | (4.682) | (2.116) | (1.783) | c < b = a | c < b = a | |||||||
FNB | 95.637 | 97.020 | 122.798 | 0.027 | 95.437 | 120.459 | 0.027 | 61.535 | 76.572 | 0.035 | 8.131 | *** | 12.509 | *** | |
(83.151) | (89.227) | (94.230) | (86.582) | (90.783) | (55.442) | (56.620) | c < b = a | c < b = a | |||||||
RCN | 3.799 | 4.600 | 4.977 | 0.484 | 3.998 | 4.318 | 0.490 | 2.263 | 2.639 | 0.139 | 14.555 | *** | 16.501 | *** | |
(3.572) | (4.445) | (4.045) | (3.780) | (3.539) | (1.970) | (2.035) | c < b = a | c < b = a | |||||||
CV | SAF | 3.067 | 3.304 | 2.848 | 0.001 | 3.184 | 2.952 | 0.101 | 3.280 | 2.832 | 0.001 | 0.426 | n.s. | 0.414 | n.s. |
(1.124) | (1.109) | (1.129) | (1.081) | (1.149) | (1.075) | (1.120) | |||||||||
POL | 86.982 | 110.574 | 106.409 | 0.087 | 82.594 | 79.292 | 0.044 | 71.651 | 71.374 | 0.758 | 232.760 | *** | 243.174 | *** | |
(21.036) | (19.996) | (18.349) | (13.682) | (12.049) | (7.882) | (6.224) | c < b < a | c < b < a | |||||||
DEV | 46.846 | 43.508 | 49.566 | 0.058 | 43.229 | 50.243 | 0.033 | 43.858 | 50.670 | 0.046 | 0.018 | n.s. | 0.058 | n.s. | |
(26.101) | (25.259) | (25.066) | (25.791) | (25.929) | (27.229) | (26.506) | |||||||||
INC | 649.522 | 683.421 | 542.845 | 0.106 | 699.502 | 549.900 | 0.093 | 794.159 | 627.302 | 0.101 | 0.598 | n.s. | 0.860 | n.s. | |
(733.237) | (814.112) | (525.106) | (829.968) | (541.197) | (944.368) | (623.435) | |||||||||
GRN | 65.002 | 69.293 | 60.930 | 0.001 | 69.152 | 60.892 | 0.001 | 68.969 | 60.775 | 0.002 | 0.011 | n.s. | 0.002 | n.s. | |
(20.573) | (17.497) | (22.620) | (17.471) | (22.633) | (17.425) | (22.673) | |||||||||
POP | 199.915 | 176.797 | 223.387 | 0.016 | 177.891 | 222.264 | 0.022 | 178.045 | 221.109 | 0.027 | 0.003 | n.s. | 0.007 | n.s. | |
(153.576) | (146.102) | (157.497) | (147.893) | (157.049) | (148.918) | (156.774) |
Carbon Emissions | Tourism Activities | Control Variables | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[1] | [2] | [3] | [4] | [5] | [6] | [7] | [8] | [9] | [10] | [11] | [12] | |
ELC | GAS | SHP | ACM | FNB | RCN | SAF | POL | DEV | INC | GRN | POP | |
[1] | 0.841 *** | 0.705 *** | 0.293 *** | 0.809 *** | 0.646 *** | 0.242 *** | −0.180 *** | 0.833 *** | 0.726 *** | −0.191 *** | 0.851 *** | |
[2] | 0.821 *** | 0.631 *** | 0.231 *** | 0.781 *** | 0.522 *** | 0.214 *** | −0.192 *** | 0.786 *** | 0.685 *** | −0.330 *** | 0.899 *** | |
[3] | 0.778 *** | 0.721 *** | 0.258 *** | 0.756 *** | 0.566 *** | 0.184 *** | −0.198 *** | 0.675 *** | 0.643 *** | −0.260 *** | 0.690 *** | |
[4] | 0.462 *** | 0.492 *** | 0.490 *** | 0.460 *** | 0.412 *** | 0.013 n.s. | −0.040 n.s. | 0.410 *** | 0.159 *** | −0.115 ** | 0.221 *** | |
[5] | 0.813 *** | 0.798 *** | 0.810 *** | 0.560 *** | 0.698 *** | 0.203 *** | −0.298 *** | 0.811 *** | 0.648 *** | −0.272 *** | 0.773 *** | |
[6] | 0.648 *** | 0.654 *** | 0.617 *** | 0.458 *** | 0.706 *** | 0.160 *** | −0.315 *** | 0.575 *** | 0.488 *** | −0.045 n.s. | 0.581 *** | |
[7] | 0.269 *** | 0.259 *** | 0.320 *** | 0.183 *** | 0.307 *** | 0.198 *** | −0.092 * | 0.148 *** | 0.323 *** | 0.119 ** | 0.293 *** | |
[8] | −0.195 *** | −0.230 *** | −0.238 *** | −0.185 *** | −0.338 *** | −0.315 *** | −0.171 *** | −0.164 *** | −0.153 *** | 0.045 *** | −0.191 *** | |
[9] | 0.845 *** | 0.825 *** | 0.796 *** | 0.521 *** | 0.777 *** | 0.670 *** | 0.321 *** | −0.184 *** | 0.697 *** | −0.324 *** | 0.775 *** | |
[10] | 0.577 *** | 0.611 *** | 0.588 *** | 0.250 *** | 0.594 *** | 0.422 *** | 0.340 *** | −0.145 *** | 0.639 *** | −0.082 n.s. | 0.768 *** | |
[11] | −0.281 *** | −0.376 *** | −0.263 *** | −0.155 *** | −0.277 *** | −0.134 *** | −0.084 n.s. | 0.067 n.s. | −0.281 *** | −0.179 *** | −0.213 *** | |
[12] | 0.875 *** | 0.854 *** | 0.776 *** | 0.450 *** | 0.842 *** | 0.643 *** | 0.298 *** | −0.205 *** | 0.858 *** | 0.658 *** | −0.305 *** |
Var1 | Var2 | Std. Est. | Est. | S.E. | AVE | CR | α | |
---|---|---|---|---|---|---|---|---|
Carbon Emissions (CE) | Electricity | 0.974 | 1.000 | 0.814 | 0.897 | 0.908 | ||
Gas | 0.823 | 0.844 | 0.023 | *** | ||||
Tourism Activities (TA) | Shopping | 0.827 | 1.000 | 0.597 | 0.851 | 0.828 | ||
Accommodation | 0.523 | 0.600 | 0.040 | *** | ||||
Food and Beverage | 0.934 | 1.130 | 0.034 | *** | ||||
Recreation | 0.715 | 0.865 | 0.039 | *** | ||||
TA | CE | 0.404 | 0.476 | 0.039 | *** | |||
Infection Safety | TC | 0.026 | 0.021 | 0.013 | * | |||
Atmospheric Pollution | −0.040 | −0.033 | 0.013 | *** | ||||
Tourism Development | 0.696 | 0.575 | 0.032 | *** | ||||
Income Level | 0.238 | 0.196 | 0.030 | *** | ||||
Income Level | CE | 0.216 | 0.210 | 0.037 | *** | |||
Income Level2 | −0.144 | −0.140 | 0.012 | *** | ||||
Green Space | −0.030 | −0.030 | 0.008 | *** | ||||
Local Population | 0.493 | 0.480 | 0.028 | *** | ||||
Model Fit | χ2 = 253.155 (df = 41, p = 0.000), RMR = 0.025, SRMR = 0.026, | |||||||
GFI = 0.952, AGFI = 0.893, CFI = 0.977, RMSEA = 0.083 |
Between Years | Between Yearly High- and Low-Level ESG Groups | |||||||||||||||||
2019 vs. 2020 | 2020 vs. 2021 | 2019 vs. 2021 | 2019 | 2020 | 2021 | |||||||||||||
Model | χ2 | d.f. | χ2 | d.f. | χ2 | d.f. | χ2 | d.f. | χ2 | d.f. | χ2 | d.f. | ||||||
I | 2.295 | 4 | n.s. | 9.025 | 4 | n.s. | 3.277 | 3 | n.s. | 3.743 | 3 | n.s. | 6.029 | 3 | n.s. | 1.845 | 2 | n.s. |
II | 2.306 | 10 | n.s. | 9.418 | 10 | n.s. | 3.837 | 9 | n.s. | 20.662 | 9 | ** | 23.513 | 9 | *** | 20.339 | 8 | *** |
III | 15.839 | 62 | n.s. | 64.438 | 62 | n.s. | 85.228 | 61 | n.s. | 265.250 | 61 | *** | 256.970 | 61 | *** | 277.313 | 60 | *** |
IV | 22.920 | 68 | n.s. | 69.755 | 68 | n.s. | 108.896 | 67 | n.s. | 320.248 | 67 | *** | 280.633 | 67 | *** | 303.766 | 66 | *** |
Between Years for High-level ESG Groups | Between Years for Low-level ESG Groups | |||||||||||||||||
2019 vs. 2020 | 2020 vs. 2021 | 2019 vs. 2021 | 2019 vs. 2020 | 2020 vs. 2021 | 2019 vs. 2021 | |||||||||||||
Model | χ2 | d.f. | χ2 | d.f. | χ2 | d.f. | χ2 | d.f. | χ2 | d.f. | χ2 | d.f. | ||||||
I | 1.506 | 4 | n.s. | 6.275 | 4 | n.s. | 7.591 | 4 | n.s. | 2.442 | 4 | n.s. | 3.611 | 4 | n.s. | 7.070 | 4 | n.s. |
II | 1.604 | 10 | n.s. | 6.755 | 10 | n.s. | 8.328 | 10 | n.s. | 2.604 | 10 | n.s. | 4.304 | 10 | n.s. | 8.183 | 10 | n.s. |
III | 13.966 | 62 | n.s. | 44.477 | 62 | n.s. | 68.494 | 62 | n.s. | 12.248 | 62 | n.s. | 46.116 | 62 | n.s. | 59.672 | 62 | n.s. |
IV | 22.638 | 68 | n.s. | 47.731 | 68 | n.s. | 87.265 | 68 | * | 17.024 | 68 | n.s. | 49.941 | 68 | n.s. | 73.861 | 68 | n.s. |
2019 | 2020 | 2021 | |||||
---|---|---|---|---|---|---|---|
Var1 | Var2 | Std. Est. | Std. Est. | Std. Est. | |||
Carbon Emissions (CE) | ELC | 0.977 | *** | 0.975 | *** | 0.972 | *** |
GAS | 0.798 | *** | 0.832 | *** | 0.838 | *** | |
Tourism Activities (TA) | SHP | 0.839 | *** | 0.832 | *** | 0.812 | *** |
ACM | 0.523 ab | *** | 0.449 b | *** | 0.591 a | *** | |
FNB | 0.938 | *** | 0.932 | *** | 0.931 | *** | |
RCN | 0.808 a | *** | 0.734 a | *** | 0.605 b | *** | |
TA | CE | 0.417 | *** | 0.392 | *** | 0.397 | *** |
SAF | TA | 0.018 | n.s. | 0.046 | * | 0.013 | n.s. |
POL | −0.046 | * | −0.043 | n.s. | −0.032 | n.s. | |
DEV | 0.677 | *** | 0.718 | *** | 0.699 | *** | |
INC | 0.255 | *** | 0.206 | *** | 0.244 | *** | |
INC | CE | 0.230 | *** | 0.241 | *** | 0.224 | *** |
INC2 | −0.163 a | *** | −0.152 ab | *** | −0.136 b | *** | |
GRN | −0.026 | * | −0.030 | ** | −0.036 | ** | |
POP | 0.481 | *** | 0.486 | *** | 0.484 | *** | |
AVE (CR, α) | CE | 0.796 (0.886, 0.914) | 0.821 (0.901, 0.905) | 0.825 (0.904, 0.905) | |||
TA | 0.646 (0.875, 0.852) | 0.594 (0.847, 0.818) | 0.561 (0.831, 0.814) | ||||
Model Fit | χ2 = 90.886 (df = 41, p < 0.01), RMR = 0.027, SRMR = 0.029, GFI = 0.949, AGFI = 0.886, CFI = 0.984, RMSEA = 0.070 | χ2 = 117.309 (df = 41, p < 0.01), RMR = 0.027, SRMR = 0.028, GFI = 0.935, AGFI = 0.856, CFI = 0.976, RMSEA = 0.086 | χ2 = 86.076 (df = 41, p < 0.01), RMR = 0.030, SRMR = 0.029, GFI = 0.950, AGFI = 0.890, CFI = 0.985, RMSEA = 0.066 |
2019 High | 2019 Low | 2020 High | 2020 Low | 2021 High | 2021 Low | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Var1 | Var2 | Std. Est. | Std. Est. | Std. Est. | Std. Est. | Std. Est. | Std. Est. | ||||||
CE | ELC | 0.985 | *** | 0.966 | *** | 0.978 | *** | 0.970 | *** | 0.974 | *** | 0.969 | *** |
GAS | 0.723 | *** | 0.895 | *** | 0.777 ‡ | *** | 0.892 ‡ | *** | 0.787 ‡ | *** | 0.896 ‡ | *** | |
TA | SHP | 0.878 | *** | 0.804 | *** | 0.876 | *** | 0.800 | *** | 0.866 | *** | 0.776 | *** |
ACM | 0.632 | *** | 0.406 ab | *** | 0.516 | *** | 0.371 b | *** | 0.616 | *** | 0.543 a | *** | |
FNB | 0.945 ‡ | *** | 0.949 ‡ | *** | 0.924 † | *** | 0.956 † | *** | 0.904 ‡ | *** | 0.972 ‡ | *** | |
RCN | 0.822 a | *** | 0.787 a | *** | 0.767 a | *** | 0.689 a | *** | 0.620 b | *** | 0.586 b | *** | |
TA | CE | 0.397 † | *** | 0.464 † | *** | 0.365 | *** | 0.439 | *** | 0.355 ‡ | *** | 0.531 ‡ | *** |
SAF | TA | 0.020 | n.s. | 0.038 | n.s. | 0.015 | n.s. | 0.071 | ** | −0.031 | n.s. | 0.064 | ** |
POL | −0.053 | n.s. | −0.020 | n.s. | −0.059 | n.s. | −0.026 | n.s. | −0.036 | n.s. | −0.018 | n.s. | |
DEV | 0.695 † | *** | 0.610 † | *** | 0.747 | *** | 0.662 | *** | 0.813 ‡ | *** | 0.531 ‡ | *** | |
INC | 0.224 | *** | 0.324 | *** | 0.173 | * | 0.258 | *** | 0.152 | * | 0.375 | *** | |
INC | CE | 0.281 | *** | 0.137 | n.s. | 0.300 | *** | 0.168 | n.s. | 0.345 | *** | 0.075 | n.s. |
INC2 | −0.187 | *** | −0.152 | *** | −0.166 | *** | −0.149 | *** | −0.171 | *** | −0.128 | *** | |
GRN | 0.004 | n.s. | −0.051 | ** | −0.010 | n.s. | −0.048 | ** | −0.016 | n.s. | −0.052 | ** | |
POP | 0.479 | *** | 0.517 | *** | 0.471 | *** | 0.511 | *** | 0.430 | *** | 0.511 | *** | |
AVE (CR, α) | CE | 0.713 (0.829, 0.912) | 0.893 (0.944, 0.914) | 0.773 (0.870, 0.895) | 0.879 (0.935, 0.912) | 0.779 (0.874, 0.894) | 0.881 (0.936, 0.914) | ||||||
TA | 0.690 (0.897, 0.888) | 0.617 (0.857, 0.808) | 0.624 (0.865, 0.847) | 0.579 (0.834, 0.783) | 0.568 (0.836, 0.825) | 0.572 (0.835, 0.802) | |||||||
Model Fit | χ2 = 84.793 (df = 41, p < 0.01), RMR = 0.039, SRMR = 0.041, GFI = 0.912, AGFI = 0.806, CFI = 0.974, RMSEA = 0.093 | χ2 = 82.745 (df = 41, p < 0.01), RMR = 0.032, SRMR = 0.041, GFI = 0.913, AGFI = 0.807, CFI = 0.973, RMSEA = 0.091 | χ2 = 83.255 (df = 41, p < 0.01), RMR = 0.034, SRMR = 0.036, GFI = 0.913, AGFI = 0.806, CFI = 0.975, RMSEA = 0.091 | χ2 = 83.590 (df = 41, p < 0.01), RMR = 0.032, SRMR = 0.036, GFI = 0.912, AGFI = 0.804, CFI = 0.972, RMSEA = 0.092 | χ2 = 73.909 (df = 41, p < 0.01), RMR = 0.034, SRMR = 0.035, GFI = 0.922, AGFI = 0.828, CFI = 0.980, RMSEA = 0.080 | χ2 = 75.185 (df = 41, p < 0.01), RMR = 0.041, SRMR = 0.035, GFI = 0.917, AGFI = 0.816, CFI = 0.978, RMSEA = 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, H. The Moderating Role of ESG Administration on the Relationship between Tourism Activities and Carbon Emissions: A Case Study of Basic Local Governments in South Korea. Sustainability 2024, 16, 5215. https://doi.org/10.3390/su16125215
Oh H. The Moderating Role of ESG Administration on the Relationship between Tourism Activities and Carbon Emissions: A Case Study of Basic Local Governments in South Korea. Sustainability. 2024; 16(12):5215. https://doi.org/10.3390/su16125215
Chicago/Turabian StyleOh, Heekyun. 2024. "The Moderating Role of ESG Administration on the Relationship between Tourism Activities and Carbon Emissions: A Case Study of Basic Local Governments in South Korea" Sustainability 16, no. 12: 5215. https://doi.org/10.3390/su16125215
APA StyleOh, H. (2024). The Moderating Role of ESG Administration on the Relationship between Tourism Activities and Carbon Emissions: A Case Study of Basic Local Governments in South Korea. Sustainability, 16(12), 5215. https://doi.org/10.3390/su16125215