Potential of Attapulgite/Humic Acid Composites for Remediation of Cd-Contaminated Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cd-Contaminated Soil and Preparation of Stabilizing Material
2.2. Incubation and Pot Experiments
2.3. Analytic Methods
2.4. Data Analysis
3. Results
3.1. Characterization of Attapulgite/Humic Acid Materials
3.2. Bioavailability of Cd
3.3. Ecological Risk Assessment
3.4. BCR Speciation of Cd
3.5. Environmental Risk Assessment
3.6. Ecotoxicity Assessment
3.7. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Wang, S.L.; Ning, X.; Yang, M.; Liu, M.B.; Zang, F.; Nan, Z.R. A promising amendment for the immobilization of heavy metal(loid)s in agricultural soil, northwest China. J. Soils Sediments 2021, 21, 2273–2286. [Google Scholar] [CrossRef]
- Yang, J.; Gao, X.H.; Lia, J.; Zuo, R.; Wang, J.S.; Song, L.T.; Wang, G.Q. The stabilization process in the remediation of vanadium-contaminated soil by attapulgite, zeolite and hydroxyapatite. Ecol. Eng. 2020, 156, 105975. [Google Scholar] [CrossRef]
- Zhang, S.K.; Gong, X.F.; Shen, Z.Y.; Yuan, S.F.; Jiang, L.; Wang, G.H. Study on remediation of Cd-contaminated soil by thermally modified attapulgite combined with ryegrass. Soil Sediment Contam. 2020, 29, 680–701. [Google Scholar] [CrossRef]
- Jiang, K.; Xiang, A.H.; Liu, K.; Peng, Q. Potential of montmorillonite and humus-like substances modified montmorillonite for remediation of Pb and Zn-contaminated soils. Appl. Clay Sci. 2023, 234, 106853. [Google Scholar] [CrossRef]
- Moon, H.D.; An, J.; Park, H.S.; Agamemnon, K. Remediation of heavy metal (Cu, Pb) contaminated fine soil using stabilization with limestone and livestock bone powder. Sustainability 2023, 15, 11244. [Google Scholar] [CrossRef]
- Wei, Y.; Li, R.S.; Lu, N.; Zhang, B.Q. Stabilization of soil co-contaminated with mercury and arsenic by different types of biochar. Sustainability 2022, 14, 13637. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.F.; Yao, D.G.; Wang, W.; Tian, W.; Cui, J.W.; Chen, Y.H.; Cui, J. Effects of organic and inorganic amendments on cadmium fraction in the submersion process of contaminated paddy soil. Environ. Technol. Innov. 2023, 30, 103105. [Google Scholar] [CrossRef]
- Ma, Y.; Lu, C.; Zhang, D.D.; Zhang, F.; Zhou, S.K.; Ma, Y.; Guo, J.D.; Zhang, Y.R.; Xing, B.S. Stabilization of Pb, Cd, and Zn in soil by modified-zeolite: Mechanisms and evaluation of effectiveness. Sci. Total Environ. 2022, 814, 152746. [Google Scholar] [CrossRef]
- Ge, Q.L.; Tian, Q.; Wang, S.F.; Zhu, F. Synergistic effects of phosphoric acid modified hydrochar and coalgangue-based zeolite on bioavailability and accumulation of cadmium and lead in contaminated soil. Chin. J. Chem. Eng. 2022, 46, 150–160. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, L.; Cao, Y.Z.; Liang, T.; Wang, P.P.; Luo, H.L.; Yu, J.J.; Zhang, D.D.; Xing, B.S.; Yang, B. Stabilization and remediation of heavy metal-contaminated soil China: Insights from a decade-long national survey. Environ. Sci. Pollut. Res. 2022, 29, 39077–39087. [Google Scholar] [CrossRef]
- Liu, F.Y.; Su, Y.R.; Ma, C.; Xie, P.; Zhao, J.H.; Zhang, H.Z. Remediation of Pb-contaminated soil using a novel magnetic nanomaterial immobilization agent. Bull. Environ. Contam. Toxicol. 2022, 108, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.K.; Zou, M.Y.; Zhang, B.W.; Lai, W.B.; Zeng, X.M.; Chen, S.Y.; Wang, M.T.; Yi, X.Y.; Tao, X.Q.; Lu, G.N. Remediation of Cd-, Pb-, Cu-, and Zn-contaminated soil using cow bonemeal and oyster shell meal. Ecotoxicol. Environ. Saf. 2022, 229, 113073. [Google Scholar] [CrossRef] [PubMed]
- Lashen, Z.M.; Shams, M.S.; El-Sheshtawy, H.S.; Slaný, M.; Antoniadis, V.; Yang, X.; Sharma, G.; Rinklebe, J.; Shaheen, S.M.; Elmahdy, S.M. Remediation of Cd and Cu contaminated water and soil using novel nanomaterials derived from sugar beet processing- and clay brick factory-solid wastes. J. Hazard. Mater. 2022, 428, 128205. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.Y.; Huang, W.F.; Wang, Y.; Xu, T.; Zhao, L.W.; Zhang, D.Y.; Luo, Y.M.; Pan, X.L. One stone two birds: Bone char as a cost-effective material for stabilizing multiple heavy metals in soil and promoting crop growth. Sci. Total Environ. 2022, 840, 156163. [Google Scholar] [CrossRef]
- Wang, W.H.; Lu, T.; Liu, L.H.; Yang, X.; Sun, X.C.; Qiu, G.H.; Hua, D.L.; Zhou, D.M. Zeolite-supported manganese oxides decrease the Cd uptake of wheat plants in Cd-contaminated weakly alkaline arable soils. J. Hazard. Mater. 2021, 419, 126464. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, W.W.; Miao, L.J.; Ji, T.W.; Wang, Y.F.; Zhang, H.J.; Ding, Y.; Zhu, W.Q. The effects of vermicompost and shell powder addition on Cd bioavailability, enzyme activity and bacterial community in Cd-contaminated soil: A field study. Ecotoxicol. Environ. Saf. 2021, 215, 112163. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Ren, J.; Tao, L. Stabilization of heavy metals in soil using nanoscale zerovalent iron coated with palygorskite. Chem. Ecol. 2021, 37, 234–251. [Google Scholar] [CrossRef]
- Qiu, K.Y.; Zhao, L.L.; An, Y.S.; Li, X.H.; Zhang, Z.J. Stable and efficient immobilization of lead and cadmium in contaminated soil by mercapto iron functionalized nanosilica. Chem. Eng. J. 2021, 426, 128483. [Google Scholar] [CrossRef]
- Qin, X.; Liu, Y.T.; Wang, L.; Li, B.Y.; Wang, H.Y.; Xu, Y.M. Remediation of heavy metal–polluted alkaline vegetable soil using mercapto-grafted palygorskite: Effects of field-scale application and soil environmental quality. Environ. Sci. Pollut. Res. 2021, 28, 60526–60536. [Google Scholar] [CrossRef]
- Yang, D.Z.; Chu, Z.T.; Zheng, R.J.; Wei, W.F.; Feng, X.Z.; Zhang, J.; Li, C.Y.; Zhang, Z.T.; Chen, H. Remediation of Cu-polluted soil with analcime synthesized from engineering abandoned soils through green chemistry approaches. J. Hazard. Mater. 2021, 406, 124673. [Google Scholar] [CrossRef]
- Zhao, H.H.; Huang, X.Y.; Liu, F.H.; Hu, X.F.; Zhao, X.; Wang, L.; Gao, P.C.; Li, X.Y.; Ji, P.H. Potential of using a new aluminosilicate amendment for the remediation of paddy soil co-contaminated with Cd and Pb. Environ. Pollut. 2021, 269, 116198. [Google Scholar] [CrossRef] [PubMed]
- Mi, X.; Ren, H.R.; Tong, Y.L.; Ren, J.; Tao, L. Palygorskite loaded with nanoscale zero-valent iron as an effective stabilizer for remediation of soil contaminated by Cd and Pb. Environ. Stud. 2021, 30, 5629–5641. [Google Scholar] [CrossRef] [PubMed]
- Pei, P.G.; Sun, Y.B.; Wang, L.; Liang, X.F.; Xu, Y.M. In-situ stabilization of Cd by sepiolite co–applied with organic amendments in contaminated soils. Ecotoxicol. Environ. Saf. 2021, 208, 111600. [Google Scholar] [CrossRef] [PubMed]
- Li, J.R.; Xu, Y.M. Influence of clay application and water management on ability of rice to resist cadmium stress. Environ. Eng. Sci. 2021, 38, 695–702. [Google Scholar] [CrossRef]
- Rizwan, M.S.; Imtiaz, M.; Zhu, J.; Yousaf, B.; Hussain, M.; Ali, L.; Ditta, A.; Ihsan, M.Z.; Huang, G.Y.; Ashraf, M.; et al. Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil. Geoderma 2021, 385, 114803. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, J.J.; Liu, W.; Yan, Y.B.; Wang, Y.H. Hydroxyapatite as a passivator for safe wheat production and its impacts on soil microbial communities in a Cd-contaminated alkaline soil. J. Hazard. Mater. 2021, 404, 124005. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Xu, Y.M.; Liang, X.F.; Sun, Y.B.; Huang, Q.Q.; Qin, X.; Zhao, L.J. Effects of mercapto-palygorskite on Cd distribution in soil aggregates and Cd accumulation by wheat in Cd contaminated alkaline soil. Chemosphere 2021, 271, 129590. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.B.; Lin, H.; Zhao, Y.M.; Menzembere, E.R.G.Y. Remediation of vanadium-contaminated soils by the combination of natural clay mineral and humic acid. J. Clean. Prod. 2021, 279, 123874. [Google Scholar] [CrossRef]
- Wang, H.F.; Hu, W.Y.; Wu, Q.M.; Huang, B.; Zong, L.; Wang, A.Q.; Siebecker, M.G. Effectiveness evaluation of environmentally friendly stabilizers on remediation of Cd and Pb in agricultural soils by multi-scale experiments. J. Clean. Prod. 2021, 311, 127673. [Google Scholar] [CrossRef]
- Ren, J.; Mi, X.; Tao, L. Stabilization of cadmium in polluted soil using palygorskite-coated nanoscale zero-valent iron. Soils Sediments 2021, 21, 1001–1009. [Google Scholar] [CrossRef]
- Wen, J.; Yi, Y.J.; Zeng, G.G. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. J. Environ. Manag. 2016, 178, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Lia, Y.; Wang, X.J.; Lia, J.; Wang, Y.; Song, J.K.; Xia, S.Q.; Jing, H.P.; Zhao, J.F. Effects of struvite-humic acid loaded biochar/bentonite composite amendment on Zn (II) and antibiotic resistance genes in manure-soil. Chem. Eng. J. 2019, 375, 122013. [Google Scholar] [CrossRef]
- Xu, M.M.; Zhao, Z.J.; Shi, M.; Yao, L.W.; Fan, T.F.; Wang, Z.M. Effect of humic acid on the stabilization of cadmium in soil by coprecipitating with ferrihydrite. Environ. Sci. Pollut. Res. 2019, 26, 27330–27337. [Google Scholar] [CrossRef]
- He, L.Z.; Meng, J.; Wang, Y.; Tang, X.J.; Liu, X.M.; Tang, C.X.; Ma, L.Q.; Xu, J.M. Attapulgite and processed oyster shell powder effectively reduce cadmium accumulation in grains of rice growing in a contaminated acidic paddy field. Ecotoxicol. Environ. Saf. 2021, 209, 111840. [Google Scholar] [CrossRef]
- Tao, L.; Mi, X.; Ren, H.R.; Tong, Y.L.; Wang, Y.R.; Ren, J. Stabilization of heavy metals in mining soil using palygorskite loaded by nanoscale zero-valent iron. Int. J. Environ. Sci. Technol. 2022, 19, 6789–6802. [Google Scholar] [CrossRef]
- He, Y.H.; Fang, T.T.; Wang, J.; Liu, X.Y.; Yan, Z.G.; Lin, H.; Li, F.S.; Guo, G.L. Insight into the stabilization mechanism and long-term effect on As, Cd, and Pb in soil using zeolite-supported nanoscale zero-valent iron. J. Clean. Prod. 2022, 355, 131634. [Google Scholar] [CrossRef]
- Gao, Y.P.; Li, X.J. Effects of bentonite addition on the speciation and mobility of Cu and Ni in soils from old mine tailings. Sustainability 2022, 14, 10878. [Google Scholar] [CrossRef]
Composite | CaCl2 | DTPA | TCLP |
---|---|---|---|
CK | 2.38 ± 0.09 a | 7.55 ± 0.17 a | 6.07 ± 0.14 a |
HAA13 | 1.93 ± 0.04 c | 6.78 ± 0.29 b | 5.22 ± 0.14 b |
HAA14 | 1.58 ± 0.10 d | 6.17 ± 0.12 d | 4.18 ± 0.04 d |
HAA15 | 1.57 ± 0.09 d | 5.54 ± 0.19 e | 3.42 ± 0.15 f |
HAA16 | 1.69 ± 0.06 d | 6.29 ± 0.05 cd | 3.85 ± 0.10 e |
HAA17 | 1.94 ± 0.038 c | 6.49 ± 0.07 c | 4.32 ± 0.05 d |
Attapulgite | 2.16 ± 0.08 b | 6.97 ± 0.01 b | 4.93 ± 0.13 c |
F-value | 52.387 *** | 50.084 *** | 179.583 *** |
Treatment | ERF | PRI |
---|---|---|
CK | 48.26 ± 0.48 a | 3.13 ± 0.16 a |
HAA13 | 43.66 ± 0.33 b | 2.15 ± 0.05 b |
HAA14 | 37.68 ± 0.02 e | 1.73 ± 0.08 cd |
HAA15 | 32.26 ± 0.34 g | 1.49 ± 0.06 e |
HAA16 | 35.62 ± 0.42 f | 1.62 ± 0.03d e |
HAA17 | 38.51 ± 0.32 d | 1.81 ± 0.02 c |
ATP | 41.68 ± 0.57 c | 1.87 ± 0.08 c |
F-value | 557.828 *** | 141.573 *** |
Treatment | BCFroot | BCFstem | TF (%) |
---|---|---|---|
CK | 0.1660 ± 0.0029 a | 0.1137 ± 0.0012 a | 68.51 ± 1.83 a |
HAA13 | 0.1547 ± 0.0046 b | 0.0916 ± 0.0011 b | 59.21 ± 2.18 b |
HAA14 | 0.1427 ± 0.0002 d | 0.0818 ± 0.0021 d | 57.30 ± 1.20 bc |
HAA15 | 0.1247 ± 0.0019 g | 0.0665 ± 0.0001 g | 53.32 ± 0.75 d |
HAA16 | 0.1317 ± 0.0034 f | 0.0734 ± 0.0011 f | 55.76 ± 1.75 cd |
HAA17 | 0.1378 ± 0.0001 e | 0.0795 ± 0.0005 e | 57.74 ± 4.20 bc |
ATP | 0.1496 ± 0.0016 c | 0.0870 ± 0.0004 c | 58.15 ± 0.66 bc |
F-value | 559.653 *** | 87.582 *** | 33.035 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, H.; Ren, J.; Tao, L.; Ren, X.; Li, Y.; Jiang, Y.; Lv, M. Potential of Attapulgite/Humic Acid Composites for Remediation of Cd-Contaminated Soil. Sustainability 2024, 16, 5266. https://doi.org/10.3390/su16125266
Ren H, Ren J, Tao L, Ren X, Li Y, Jiang Y, Lv M. Potential of Attapulgite/Humic Acid Composites for Remediation of Cd-Contaminated Soil. Sustainability. 2024; 16(12):5266. https://doi.org/10.3390/su16125266
Chicago/Turabian StyleRen, Hanru, Jun Ren, Ling Tao, Xuechang Ren, Yunmeng Li, Yuchen Jiang, and Mairong Lv. 2024. "Potential of Attapulgite/Humic Acid Composites for Remediation of Cd-Contaminated Soil" Sustainability 16, no. 12: 5266. https://doi.org/10.3390/su16125266
APA StyleRen, H., Ren, J., Tao, L., Ren, X., Li, Y., Jiang, Y., & Lv, M. (2024). Potential of Attapulgite/Humic Acid Composites for Remediation of Cd-Contaminated Soil. Sustainability, 16(12), 5266. https://doi.org/10.3390/su16125266