Water Hyacinth Biochar: A Sustainable Approach for Enhancing Soil Resistance to Acidification Stress and Nutrient Dynamics in an Acidic Nitisol of the Northwest Highlands of Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Analyses
2.2. Biochar Preparation and Characterization
2.3. Incubation Experiment
2.4. Statistical Analysis
3. Results
3.1. Basic Physicochemical Properties of the Experimental Soil and Water Hyacinth Biochars
3.2. The effect of WHB on Soil Resistance to Acidification Stress
3.3. The Effect of WHB on Soil Nutrient Dynamics
4. Discussion
4.1. WHB Effects on Soil Resistance to Acidification Stresses
4.2. WHB Effects on Soil Nutrient Dynamics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Sampling Date | Control | 1WHBf | 2WHBf | 1WHBg | 2WHBg | 2WHBfF | LF | F | L |
---|---|---|---|---|---|---|---|---|---|---|
pH | 0 | 4.82 ± 0.00 a | 4.80 ± 0.02 a | 4.78 ± 0.00 a | 4.78 ± 0.02 a | 4.78 ± 0.02 a | 4.82 ± 0.03 a | 4.79 ± 0.01 a | 4.78 ± 0.01 a | 4.78 ± 0.01 a |
3 | 4.79 ± 0.02 e | 5.20 ± 0.03 c | 6.03 ± 0.05 a | 5.18 ± 0.02 c | 5.77 ± 0.05 b | 6.08 ± 0.02 a | 5.24 ± 0.03 c | 5.07 ± 0.01 d | 5.24 ± 0.03 c | |
7 | 4.75 ± 0.01 e | 5.20 ± 0.05 c | 5.97 ± 0.01 a | 5.18 ± 0.08 c | 5.75 ± 0.02 b | 6.02 ± 0.01 a | 5.12 ± 0.01 c | 4.95 ± 0.01 d | 5.20 ± 0.00 c | |
14 | 4.74 ± 0.00 e | 5.16 ± 0.04 c | 5.98 ± 0.09 a | 5.08 ± 0.01 c | 5.66 ± 0.06 b | 5.87 ± 0.01 a | 4.93 ± 0.02 d | 4.60 ± 0.01 f | 5.15 ± 0.01 c | |
28 | 4.63 ± 0.00 f | 5.08 ± 0.02 c | 5.90 ± 0.10 a | 4.96 ± 0.01 d | 5.57 ± 0.04 b | 5.65 ± 0.01 b | 4.76 ± 0.02 e | 4.43 ± 0.03 g | 5.04 ± 0.01 cd | |
42 | 4.61 ± 0.01 d | 4.29 ± 0.03 e | 5.01 ± 0.03 a | 4.24 ± 0.02 e | 4.80 ± 0.02 c | 4.90 ± 0.02 b | 4.08 ± 0.00 f | 3.82 ± 0.00 g | 4.07 ± 0.00 f | |
56 | 4.56 ± 0.00 c | 4.33 ± 0.04 d | 4.98 ± 0.08 a | 4.25 ± 0.02 d | 4.80 ± 0.01 b | 4.78 ± 0.03 b | 4.07 ± 0.01 e | 3.82 ± 0.00 f | 4.06 ± 0.00 e | |
70 | 4.54 ± 0.00 a | 3.84 ± 0.02 d | 4.37 ± 0.05 b | 3.82 ± 0.00 d | 4.27 ± 0.01 c | 4.25 ± 0.02 c | 3.78 ± 0.00 e | 3.61 ± 0.00 f | 3.81 ± 0.01 e | |
91 | 4.60 ± 0.01 a | 4.01 ± 0.03 d | 4.52 ± 0.03 b | 3.96 ± 0.01 d | 4.38 ± 0.01 c | 4.36 ± 0.02 c | 3.65 ± 0.02 e | 3.46 ± 0.00 f | 3.66 ± 0.00 e | |
Exchangeable acidity (cmol (+) kg−1) | 0 | 3.73 ± 0.05 a | 3.71 ± 0.09 a | 3.68 ± 0.08 a | 3.68 ± 0.21 a | 3.65 ± 0.05 a | 3.71 ± 0.05 a | 3.71 ± 0.05 a | 3.65 ± 0.09 a | 3.68 ± 0.00 a |
3 | 4.00 ± 0.00 a | 2.03 ± 0.05 d | 0.93 ± 0.05 f | 2.32 ± 0.14 c | 1.12 ± 0.08 ef | 1.25 ± 0.05 e | 2.72 ± 0.08 b | 4.08 ± 0.21 a | 2.59 ± 0.05 bc | |
7 | 4.45 ± 0.05 a | 2.43 ± 0.05 d | 1.17 ± 0.05 f | 3.04 ± 0.00 c | 1.97 ± 0.05 e | 1.36 ± 0.08 f | 3.55 ± 0.05 b | 4.45 ± 0.05 a | 3.36 ± 0.14 b | |
14 | 5.47 ± 0.09 a | 3.33 ± 0.05 c | 1.84 ± 0.08 d | 3.36 ± 0.21 c | 2.19 ± 0.12 d | 1.87 ± 0.09 d | 4.13 ± 0.26 b | 5.09 ± 0.05 a | 3.95 ± 0.18 b | |
28 | 5.79 ± 0.09 b | 3.73 ± 0.24 d | 1.87 ± 0.05 f | 3.79 ± 0.12 cd | 2.35 ± 0.05 e | 1.92 ± 0.14 f | 4.19 ± 0.05 c | 6.24 ± 0.29 a | 4.00 ± 0.08 cd | |
42 | 5.79 ± 0.05 b | 3.79 ± 0.12 e | 1.92 ± 0.14 h | 4.00 ± 0.08 de | 2.69 ± 0.05 f | 2.35 ± 0.05 g | 4.43 ± 0.05 c | 6.53 ± 0.05 a | 4.24 ± 0.14 cd | |
56 | 5.81 ± 0.05 b | 3.87 ± 0.05 e | 2.00 ± 0.08 g | 4.27 ± 0.05 d | 2.83 ± 0.09 f | 2.88 ± 0.08 f | 4.69 ± 0.05 c | 7.44 ± 0.08 a | 4.59 ± 0.05 c | |
70 | 5.84 ± 0.00 b | 4.21 ± 0.12 e | 2.48 ± 0.08 g | 4.56 ± 0.08 d | 3.04 ± 0.00 f | 3.23 ± 0.12 f | 5.07 ± 0.04 c | 8.48 ± 0.08 a | 4.93 ± 0.04 c | |
91 | 5.81 ± 0.05 c | 4.16 ± 0.14 d | 2.16 ± 0.14 f | 4.29 ± 0.09 d | 2.43 ± 0.04 f | 3.15 ± 0.05 e | 6.27 ± 0.12 b | 8.93 ± 0.24 a | 5.84 ± 0.08 c | |
Exchangeable Al3+ (cmol (+) kg−1) | 0 | 1.36 ± 0.08 a | 1.36 ± 0.08 a | 1.36 ± 0.08 a | 1.36 ± 0.08 a | 1.36 ± 0.00 a | 1.36 ± 0.08 a | 1.33 ± 0.05 a | 1.36 ± 0.08 a | 1.36 ± 0.08 a |
3 | 1.23 ± 0.05 a | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 0.83 ± 0.05 b | 0.19 ± 0.05 c | |
7 | 1.17 ± 0.09 a | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.72 ± 0.08 b | 0.00 ± 0.00 c | |
14 | 1.15 ± 0.05 a | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 1.04 ± 0.08 b | 0.00 ± 0.00 c | |
28 | 1.17 ± 0.09 a | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.21 ± 0.05 b | 1.25 ± 0.05 a | 0.16 ± 0.00 b | |
42 | 1.65 ± 0.12 b | 0.48 ± 0.00 d | 0.00 ± 0.00 e | 0.67 ± 0.05 c | 0.00 ± 0.00 e | 0.00 ± 0.00 e | 1.65 ± 0.09 b | 2.75 ± 0.05 a | 1.68 ± 0.08 b | |
56 | 1.68 ± 0.00 b | 0.48 ± 0.00 c | 0.00 ± 0.00 d | 0.61 ± 0.05 c | 0.00 ± 0.00 d | 0.00 ± 0.00 d | 1.76 ± 0.08 b | 2.93 ± 0.05 a | 1.87 ± 0.17 b | |
70 | 1.71 ± 0.05 d | 0.67 ± 0.04 f | 0.00 ± 0.00 g | 0.85 ± 0.05 e | 0.00 ± 0.00 g | 0.00 ± 0.00 g | 2.21 ± 0.04 b | 3.33 ± 0.05 a | 1.97 ± 0.05 c | |
91 | 1.81 ± 0.12 c | 1.36 ± 0.08 d | 0.24 ± 0.08 e | 1.39 ± 0.04 d | 0.37 ± 0.05 e | 0.35 ± 0.05 e | 2.24 ± 0.00 b | 3.41 ± 0.05 a | 2.00 ± 0.08 c | |
Exchangeable H+ (cmol (+) kg−1) | 0 | 2.37 ± 0.12 a | 2.35 ± 0.12 a | 2.32 ± 0.16 a | 2.32 ± 0.29 a | 2.29 ± 0.05 a | 2.35 ± 0.09 a | 2.37 ± 0.05 a | 2.29 ± 0.12 a | 2.32 ± 0.08 a |
3 | 2.77 ± 0.05 b | 2.03 ± 0.05 d | 0.93 ± 0.05 f | 2.32 ± 0.14 c | 1.12 ± 0.08 ef | 1.25 ± 0.05 e | 2.72 ± 0.08 b | 3.25 ± 0.20 a | 2.40 ± 0.08 c | |
7 | 3.28 ± 0.14 c | 2.43 ± 0.05 e | 1.17 ± 0.05 g | 3.04 ± 0.00 d | 1.97 ± 0.05 f | 1.36 ± 0.08 g | 3.55 ± 0.05 ab | 3.73 ± 0.05 a | 3.36 ± 0.14 bc | |
14 | 4.32 ± 0.08 a | 3.33 ± 0.05 b | 1.84 ± 0.08 c | 3.36 ± 0.21 b | 2.19 ± 0.12 c | 1.87 ± 0.09 c | 4.13 ± 0.26 a | 4.05 ± 0.09 a | 3.95 ± 0.18 a | |
28 | 4.61 ± 0.09 a | 3.73 ± 0.24 b | 1.87 ± 0.05 d | 3.79 ± 0.12 b | 2.35 ± 0.05 c | 1.92 ± 0.14 cd | 3.97 ± 0.09 b | 4.99 ± 0.32 a | 3.84 ± 0.08 b | |
42 | 4.13 ± 0.09 a | 3.31 ± 0.12 c | 1.92 ± 0.14 f | 3.33 ± 0.09 c | 2.69 ± 0.05 d | 2.35 ± 0.05 e | 2.77 ± 0.05 d | 3.79 ± 0.05 b | 2.56 ± 0.08 de | |
56 | 4.13 ± 0.05 b | 3.39 ± 0.05 c | 2.00 ± 0.08 e | 3.65 ± 0.05 c | 2.83 ± 0.09 d | 2.88 ± 0.08 d | 2.93 ± 0.12 d | 4.51 ± 0.12 a | 2.72 ± 0.20 d | |
70 | 4.48 ± 0.00 b | 3.55 ± 0.09 c | 2.48 ± 0.08 f | 3.71 ± 0.04 c | 3.04 ± 0.00 de | 3.23 ± 0.12 d | 2.85 ± 0.09 e | 5.15 ± 0.12 a | 2.96 ± 0.08 e | |
91 | 4.00 ± 0.16 b | 2.80 ± 0.21 c | 1.92 ± 0.21 d | 2.91 ± 0.05 c | 2.05 ± 0.05 d | 2.80 ± 0.08 c | 4.03 ± 0.12 b | 5.52 ± 0.24 a | 3.84 ± 0.14 b | |
NH4+–N (mg kg−1) | 0 | 6.35 ± 0.21 a | 6.45 ± 0.34 a | 6.31 ± 0.08 a | 6.36 ± 0.05 a | 6.33 ± 0.17 a | 6.74 ± 0.12 a | 6.38 ± 0.24 a | 6.35 ± 0.20 a | 6.65 ± 0.06 a |
3 | 8.17 ± 0.29 c | 8.41 ± 0.12 c | 4.97 ± 0.09 c | 10.3 ± 0.90 c | 14.9 ± 0.95 c | 75.2 ± 0.74 a | 74.2 ± 0.52 a | 56.3 ± 0.50 b | 8.33 ± 0.31 c | |
7 | 5.33 ± 0.13 e | 11.2 ± 0.12 de | 11.0 ± 0.95 de | 10.7 ± 0.09 de | 13.3 ± 0.34 d | 66.7 ± 0.79 a | 39.5 ± 0.29 c | 49.6 ± 0.45 b | 8.33 ± 0.47 de | |
14 | 5.59 ± 0.46 d | 6.83 ± 0.20 d | 5.00 ± 0.24 d | 7.23 ± 0.64 d | 7.62 ± 0.08 d | 49.6 ± 0.21 a | 19.9 ± 0.54 c | 40.8 ± 0.65 b | 5.71 ± 0.72 d | |
28 | 9.03 ± 0.73 c | 10.1 ± 0.83 c | 10.9 ± 0.58 c | 16.0 ± 0.94 b | 14.9 ± 0.66 b | 15.3 ± 0.77 b | 10.1 ± 0.45 c | 18.2 ± 0.43 a | 10.1 ± 0.22 c | |
42 | 5.25 ± 0.50 e | 7.96 ± 0.76 de | 8.24 ± 0.63 de | 14.8 ± 0.71 cde | 16.8 ± 0.23 cd | 84.3 ± 0.85 a | 78.4 ± 0.94 ab | 72.6 ± 0.74 b | 19.5 ± 0.48 c | |
56 | 3.60 ± 0.19 f | 15.3 ± 0.81 d | 8.61 ± 0.31 e | 22.6 ± 0.76 c | 11.8 ± 0.58 de | 82.7 ± 0.96 a | 72.6 ± 0.78 b | 71.8 ± 0.67 b | 14.5 ± 0.47 d | |
70 | 6.71 ± 0.26 d | 16.7 ± 0.68 c | 16.9 ± 0.88 c | 15.6 ± 0.77 c | 18.8 ± 0.63 c | 65.4 ± 0.99 a | 55.0 ± 0.49 b | 59.3 ± 0.53 ab | 14.0 ± 0.50 cd | |
91 | 5.02 ± 0.32 d | 16.6 ± 0.62 c | 18.8 ± 0.56 c | 16.4 ± 0.37 c | 16.7 ± 0.73 c | 54.7 ± 0.83 a | 43.5 ± 0.42 b | 50.0 ± 0.85 ab | 20.1 ± 0.58 c | |
NO3−–N (mg kg−1) | 0 | 24.2 ± 0.37 a | 25.6 ± 0.76 a | 24.5 ± 0.45 a | 23.9 ± 0.93 a | 23.4 ± 0.92 a | 24.1 ± 0.92 a | 23.2 ± 0.86 a | 23.3 ± 0.41 a | 23.4 ± 0.65 a |
3 | 25.3 ± 0.71 cd | 23.9 ± 0.69 cd | 23.4 ± 0.21 d | 23.1 ± 0.53 d | 23.5 ± 0.54 d | 25.8 ± 0.55 c | 37.1 ± 0.51 a | 33.3 ± 0.60 b | 24.1 ± 0.58 cd | |
7 | 25.9 ± 0.47 d | 25.9 ± 0.74 d | 25.3 ± 0.56 d | 23.9 ± 0.20 d | 24.3 ± 0.86 d | 32.6 ± 0.37 c | 47.8 ± 0.68 a | 40.3 ± 0.47 b | 25.2 ± 0.41 d | |
14 | 30.8 ± 0.84 d | 31.4 ± 0.71 d | 30.5 ± 0.93 de | 26.6 ± 0.20 e | 28.2 ± 0.98 de | 49.6 ± 0.59 c | 65.7 ± 0.76 a | 53.1 ± 0.65 b | 26.6 ± 0.71 e | |
28 | 35.7 ± 0.56 e | 43.1 ± 0.59 cd | 45.21 ± 0.40 c | 39.4 ± 0.46 de | 45.8 ± 0.97 c | 102.8 ± 0.60 a | 100.3 ± 0.69 a | 90.0 ± 0.56 b | 36.8 ± 0.71 e | |
42 | 38.8 ± 0.43 d | 85.6 ± 0.64 bc | 78.9 ± 0.59 c | 85.6 ± 0.71 bc | 50.0 ± 0.72 d | 97.3 ± 0.82 bc | 121 ± 0.89 a | 104 ± 0.80 b | 29.7 ± 0.72 d | |
56 | 46.6 ± 0.57 f | 75.9 ± 0.67 cde | 77.46 ± 0.97 cd | 66.8 ± 0.62 de | 86.9 ± 0.94 c | 117 ± 0.52 b | 133 ± 0.49 a | 125 ± 0.87 ab | 60.6 ± 0.45 ef | |
70 | 44.8 ± 0.36 d | 80.0 ± 0.79 c | 78.24 ± 0.63 c | 78.4 ± 0.65 c | 81.2 ± 0.81 c | 119 ± 0.91 b | 140 ± 0.90 a | 134 ± 0.78 ab | 57.9 ± 0.54 d | |
91 | 47.2 ± 0.39 c | 81.3 ± 0.90 b | 89.7 ± 0.80 b | 79.7 ± 0.83 b | 83.7 ± 0.84 b | 132 ± 0.79 a | 152 ± 0.95 a | 141 ± 0.82 a | 51.6 ± 0.64 c | |
Available Phosphorus (mg kg−1) | 0 | 2.59 ± 0.00 a | 2.61 ± 0.07 a | 2.50 ± 0.12 a | 2.52 ± 0.05 a | 2.82 ± 0.13 a | 2.89 ± 0.23 a | 2.58 ± 0.19 a | 2.69 ± 0.14 a | 2.75 ± 0.29 a |
3 | 2.85 ± 0.31 e | 7.49 ± 0.56 c | 11.4 ± 0.20 b | 4.53 ± 0.36 de | 7.04 ± 0.83 c | 17.1 ± 0.41 a | 4.07 ± 0.34 de | 5.19 ± 0.24 d | 3.22 ± 0.03 e | |
7 | 2.89 ± 0.24 f | 7.70 ± 0.58 c | 13.0 ± 0.72 b | 4.69 ± 0.41 def | 6.11 ± 0.32 cd | 16.5 ± 0.56 a | 3.90 ± 0.11 ef | 5.53 ± 0.47 de | 2.89 ± 0.17 f | |
14 | 2.95 ± 0.24 d | 7.29 ± 0.15 b | 13.0 ± 0.44 a | 4.81 ± 0.31 c | 6.10 ± 0.57 b | 13.4 ± 0.84 a | 3.96 ± 0.24 cd | 4.34 ± 0.39 c | 2.79 ± 0.12 d | |
28 | 2.89 ± 0.18 e | 6.80 ± 0.65 b | 15.2 ± 0.13 a | 4.47 ± 0.32 cd | 6.23 ± 0.53 b | 16.3 ± 0.60 a | 3.71 ± 0.24 de | 5.07 ± 0.40 c | 2.96 ± 0.20 e | |
42 | 0.76 ± 0.04 f | 3.21 ± 0.16 c | 5.86 ± 0.44 b | 1.53 ± 0.04 ef | 3.03 ± 0.13 cd | 8.35 ± 0.83 a | 1.90 ± 0.04 e | 1.71 ± 0.61 de | 1.09 ± 0.03 ef | |
56 | 0.46 ± 0.03 f | 2.36 ± 0.22 c | 4.98 ± 0.33 b | 1.08 ± 0.08 de | 1.69 ± 0.11 d | 5.75 ± 0.44 a | 1.35 ± 0.09 de | 1.54 ± 0.18 d | 0.77 ± 0.07 ef | |
70 | 1.10 ± 0.05 de | 2.33 ± 0.07 c | 4.08 ± 0.42 b | 0.95 ± 0.04 de | 1.38 ± 0.08 d | 5.34 ± 0.52 a | 1.45 ± 0.11 d | 1.31 ± 0.09 de | 0.65 ± 0.05 e | |
91 | 0.58 ± 0.06 f | 1.71 ± 0.07 c | 3.05 ± 0.10 b | 0.87 ± 0.03 e | 1.29 ± 0.06 d | 3.83 ± 0.11 a | 0.94 ± 0.09 e | 0.93 ± 0.11 e | 0.52 ± 0.04 f |
References
- Kochian, L.V.; Piñeros, M.A.; Liu, J.; Magalhaes, J.V. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu. Rev. Plant Biol. 2015, 66, 571–598. [Google Scholar] [CrossRef] [PubMed]
- Abebe, M. Nature and Management of Acids Soils in Ethiopia; Ethiopia Institute of Agricultural Research: Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Zhang, H. Cause and Effects of Soil Acidity; Oklahoma Cooperative Extension Service: Stillwater, OK, USA, 2013; Volume 2239. [Google Scholar]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; de Vries, W.; Liu, X.; Hao, T.; Zeng, M.; Shen, J.; Zhang, F. Enhanced acidification in Chinese croplands as derived from element budgets in the period 1980–2010. Sci. Total Environ. 2018, 618, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Agegnehu, G.; Yirga, C.; Erkossa, T. Soil Acidity Management. In Ethiopian Institute of Agricultural Research (EIAR); Ethiopia Institute of Agricultural Research: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Dong, Y.; Yang, J.L.; Zhao, X.R.; Yang, S.H.; Mulder, J.; Dörsch, P.; Peng, X.H.; Zhang, G.L. Soil acidification and loss of base cations in a subtropical agricultural watershed. Sci. Total Environ. 2022, 827, 154338. [Google Scholar] [CrossRef]
- Nigussie, T.; Mama, A.; Science, C.; Walabu, M.; Science, C.; Science, C.; Walabu, M. Impact of Glyphosate on Agricultural Soil Quality in Sinana. Chem. Mater. Res. 2019, 11, 10–18. [Google Scholar]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; Blamey, F.P.C. Kinetics and nature of aluminium rhizotoxic effects: A review. Annu. Rev. Plant Biol. 2016, 66, 571–598. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Tripathi, D.K.; Singh, S.; Sharma, S.; Dubey, N.K.; Chauhan, D.K.; Vaculík, M. Toxicity of aluminium on various levels of plant cells and organism: A review. Environ. Exp. Bot. 2017, 137, 177–193. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, Z.; Zhan, Y.; Zheng, X.; Zhou, M.; Yan, G.; Wang, L.; Werner, C.; Butterbach-Bahl, K. Potential benefits of liming to acid soils on climate change mitigation and food security. Glob. Chang. Biol. 2021, 27, 2807–2821. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Ren, B.; Chen, Y.; Yang, Q.; Zhang, M. Chemical and Biological Response of Four Soil Types to Lime Application: An Incubation Study. Agronomy 2023, 13, 504. [Google Scholar] [CrossRef]
- Mosissa, F.; Taye, G. Effect of Blended Fertilizer and Lime Application on Yield of Finger Millet, and Soil Properties of Acidic Soils in Western Ethiopia. Curr. Res. Agric. Sci. 2019, 6, 29–36. [Google Scholar] [CrossRef]
- Kizito, S.; Luo, H.; Lu, J.; Bah, H.; Dong, R.; Wu, S. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 2019, 11, 3211. [Google Scholar] [CrossRef]
- Foong, S.Y.; Liew, R.K.; Yang, Y.; Cheng, Y.W.; Yek, P.N.Y.; Wan Mahari, W.A.; Lee, X.Y.; Han, C.S.; Vo, D.V.N.; Van Le, Q.; et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions. Chem. Eng. J. 2020, 389, 124401. [Google Scholar] [CrossRef]
- Khadem, A.; Raiesi, F.; Besharati, H.; Khalaj, M.A. The effects of biochar on soil nutrients status, microbial activity and carbon sequestration potential in two calcareous soils. Biochar 2021, 3, 105–116. [Google Scholar] [CrossRef]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochar and its use and function in soil. Adv. Agron 2010, 105, 47–82. [Google Scholar]
- Van Zwieten, L.; Singh, B.; Joseph, S.; Kimber, S.; Cowie, A.; Chan, K.Y. Biochar and emissions of non-CO2 greenhouse gases from soil. In Biochar for Environmental Management; Routledge: London, UK, 2012; pp. 85–98. [Google Scholar]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 1–18. [Google Scholar] [CrossRef]
- Qian, L.; Chen, B.; Hu, D. Effective alleviation of aluminum phytotoxicity by manure-derived biochar. Environ. Sci. Technol. 2013, 47, 2737–2745. [Google Scholar] [CrossRef] [PubMed]
- Lian, W.; Yang, L.; Joseph, S.; Shi, W.; Bian, R.; Zheng, J.; Li, L.; Shan, S.; Pan, G. Utilization of biochar produced from invasive plant species to efficiently adsorb Cd (II) and Pb (II). Bioresour. Technol. 2020, 317, 124011. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Wang, B.; Chen, M.; Wu, P.; Lee, X.; Xing, Y. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review. Resour. Conserv. Recycl. 2021, 164, 105204. [Google Scholar] [CrossRef]
- Malik, A. Environmental challenge vis a vis opportunity: The case of water hyacinth. Environ. Int. 2007, 33, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Wondie, A.; Seid, A.; Molla, E.; Goshu, G.; Gkidan, W.; Shibabaw, A.; Genanew, M. Preliminary assessment of water hyacinth (Eichornia crassipes) in Lake Tana. In Proceedings of the National Workshop (Biological Society of Ethiopia), Addis Ababa, Ethiopia, 27 March 2012. [Google Scholar]
- Sakhiya, A.K.; Anand, A.; Kaushal, P. Production, activation, and applications of biochar in recent times. Biochar 2020, 2, 253–285. [Google Scholar] [CrossRef]
- Jatav, H.S.; Rajput, V.D.; Minkina, T.; Singh, S.K.; Chejara, S.; Gorovtsov, A.; Barakhov, A.; Bauer, T.; Sushkova, S.; Mandzieva, S.; et al. Sustainable approach and safe use of biochar and its possible consequences. Sustainability 2021, 13, 10362. [Google Scholar] [CrossRef]
- Shi, R.Y.; Hong, Z.N.; Li, J.Y.; Jiang, J.; Baquy, M.A.; Al Xu, R.K.; Qian, W. Mechanisms for Increasing the pH Buffering Capacity of an Acidic Ultisol by Crop Residue-Derived Biochars. J. Agric. Food Chem. 2017, 65, 8111–8119. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.Y.; Hong, Z.N.; Li, J.Y.; Jiang, J.; Kamran, M.A.; Xu, R.K.; Qian, W. Peanut straw biochar increases the resistance of two Ultisols derived from different parent materials to acidification: A mechanism study. J. Environ. Manag. 2018, 210, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.Y.; Ni, N.; Nkoh, J.N.; Li, J.Y.; Xu, R.K.; Qian, W. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Chemosphere 2019, 234, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.Y.; Ni, N.; Nkoh, J.N.; Dong, Y.; Zhao, W.R.; Pan, X.Y.; Li, J.Y.; Xu, R.K.; Qian, W. Biochar retards Al toxicity to maize (Zea mays L.) during soil acidification: The effects and mechanisms. Sci. Total. Environ. 2020, 719, 137448. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Ni, N.; Wang, R.H.; Nkoh, J.N.; Pan, X.Y.; Dong, G.; Xu, R.K.; Cui, X.M.; Li, J.Y. Dissolved biochar fractions and solid biochar particles inhibit soil acidification induced by nitrification through different mechanisms. Sci. Total Environ. 2023, 874, 162464. [Google Scholar] [CrossRef]
- Becerra-Agudelo, E.; López, J.E.; Betancur-García, H.; Carbal-Guerra, J.; Torres-Hernández, M.; Saldarriaga, J.F. Assessment of the application of two amendments (lime and biochar) on the acidification and bioavailability of Ni in a Ni-contaminated agricultural soils of northern Colombia. Heliyon 2022, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xia, F.; Liu, X.; He, Y.; Xu, J.; Brookes, P.C. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. J. Soils Sediments 2014, 14, 415–422. [Google Scholar] [CrossRef]
- Li, Y.; Abdo, A.I.; Shi, Z.; Merwad, A.R.M.A.; Zhang, J. Biochar derived from invasive plants improved the pH, macronutrient availability and biological properties better than liming for acid rain-affected soil. Biochar 2023, 5, 59. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle Size Analysis by Hydrometer: A Simplified Method for Routine Textural Analysis and a Sensitivity Test of Measurement Parameters. Soil Sci. Soc. Am. J. 1979, 43, 1004–1007. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods; American Society of Agronomy, Inc. and Soil Science Society of America, Inc.: Madison, WI, USA, 1986; pp. 363–382. [Google Scholar]
- Robinson, J.B.D. Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed.; Anderson, J.M., Ingram, J.S.I., Eds.; CAB International: Wallingford, UK, 1994. [Google Scholar]
- Farina, M.P.W.; Channon, P. A field comparison of lime requirement indices for maize. Plant Soil 1991, 134, 127–135. [Google Scholar] [CrossRef]
- Singh, B.; Camps-Arbestain, M.; Lehmann, J. Biochar: A Guide to Analytical Methods, 1st ed.; CSIRO Publishing: Collingwood, VIC, Australia, 2017; Volume 320. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Method. In Australian Soil and Land Survey Handbooks; Inkata Press Pty Ltd.: Melbourne, VIC, Australia, 1992; Volume 3. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. Carbon and nitrogen analysis of soils by automated combustion techniques. Commun. Soil Sci. Plant Anal. 1991, 22, 843–850. [Google Scholar] [CrossRef]
- ASTM D 1762-84; American Society for Testing and Materials. Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM Int.: Philadelphia, PA, USA, 2011; pp. 292–293.
- Singh, B.; Dolk, M.M.; Shen, Q.; Camps-Arbestain, M. Biochar pH, electrical conductivity and liming potential. Biochar A Guide Anal. Methods 2017, 23, 23–38. [Google Scholar]
- Mimmo, T.; Panzacchi, P.; Baratieri, M.; Davies, C.A.; Tonon, G. Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 2014, 62, 149–157. [Google Scholar] [CrossRef]
- Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plan Soil 2012, 357, 173–187. [Google Scholar] [CrossRef]
- Ahmed, M.; Nigussie, A.; Addisu, S.; Belay, B.; Sato, S. Valorization of animal bone into phosphorus biofertilizer: Effects of animal species, thermal processing method, and production temperature on phosphorus availability. Soil Sci. Plant Nutr. 2021, 67, 471–481. [Google Scholar] [CrossRef]
- Pereira, R.C.; Arbestain, M.C.; Sueiro, M.V.; MacIá-Agulló, J.A. Assessment of the surface chemistry of wood-derived biochars using wet chemistry, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Soil Res. 2015, 53, 753–762. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Birhanu, A.; Anteneh, A.; Dereje, A.; Kenzemed, K.; Genet, T.; Gebreyes, G. Effect of lime and phosphorus on wheat (Triticum aestivum) wheat, Tef (Eragrostis teff), and Barley (Hordium vulgars L.) yields in the Amhara highlands. In Proceedings of the 7th and 8th Annual Regional Conference on Completed Research Activities of Soil and Water Management Research, Bahir Dar, Ethiopia, 25–31 January 2013 and 13–20 February 2014; pp. 29–42. [Google Scholar]
- Alemu, E.; Selassie, Y.G.; Yitaferu, B. Effect of lime on selected soil chemical properties, maize (Zea mays L.) yield and determination of rate and method of its application in Northwestern Ethiopia. Heliyon 2022, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.R. Chemistry of Variable Charge Soils; Oxford University Press: New York, NY, USA, 1997; Volume 505. [Google Scholar]
- Tukey, J.W. The Collected Works of John W. Tukey, Volume VIII: Multiple Comparisons, 1948–1983. J. Am. Stat. Assoc. 1994, 89, 1569. [Google Scholar]
- IUSS Working Group WRB. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports; FAO: Rome, Italy, 2014; No. 106. [Google Scholar]
- Stella Mary, G.; Sugumaran, P.; Niveditha, S.; Ramalakshmi, B.; Ravichandran, P.; Seshadri, S. Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int. J. Recycl. Org. Waste Agric. 2016, 5, 43–53. [Google Scholar] [CrossRef]
- Potes, M.d.L.; Dick, D.P.; Dalmolin, R.S.D.; Knicker, H.; da Rosa, A.S. Soil organic matter in highland leptosols: Influence of pasture management on composition and content. Rev. Bras. Cienc. Solo 2010, 34, 23–32. [Google Scholar] [CrossRef]
- Van Hien, N.; Valsami-Jones, E.; Vinh, N.C.; Phu, T.T.; Tam, N.T.T.; Lynch, I. Effectiveness of different biochar in aqueous zinc removal: Correlation with physicochemical characteristics. Bioresour. Technol. Rep. 2020, 11, 100466. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Masud, M.M.; Li, J.Y.; Xu, R.K. Use of Alkaline Slag and Crop Residue Biochars to Promote Base Saturation and Reduce Acidity of an Acidic Ultisol. Pedosphere 2014, 24, 791–798. [Google Scholar] [CrossRef]
- Buss, W.; Graham, M.C.; MacKinnon, G.; Mašek, O. Strategies for producing biochars with minimum PAH contamination. J. Anal. Appl. Pyrolysis 2016, 119, 24–30. [Google Scholar] [CrossRef]
- José, M.; Sánchez-Martín, Á.M.; Campos, P.; Miller, A.Z. Effect of pyrolysis conditions on the total contents of polycyclic aromatic hydrocarbons in biochars produced from organic residues: Assessment of their hazard potential. Sci. Total Environ. 2019, 667, 578–585. [Google Scholar]
- Krzyszczak, A.; Dybowski, M.P.; Kończak, M.; Czech, B. Low bioavailability of derivatives of polycyclic aromatic hydrocarbons in biochar obtained from different feedstock. Environ. Res. 2022, 214, 113787. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Sarmah, A.K.; Bordoloi, S.; Bolan, S.; Padhye, L.P.; Van Zwieten, L.; Sooriyakumar, P.; Khan, B.A.; Ahmad, M.; Solaiman, Z.M.; et al. Soil acidification and the liming potential of biochar. Environ. Pollut. 2023, 317, 120632. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, Q.; Qian, X.; Chen, H.; Wang, F.; Yi, Z. Effects of the combined application of biochar-based fertilizer and urea on N2O emissions, nitrifier, and denitrifier communities in the acidic soil of pomelo orchards. J. Soils Sediments 2022, 22, 3119–3136. [Google Scholar] [CrossRef]
- Li, J.; Xu, R.; Xiao, S.; Ji, G. Effect of low-molecular-weight organic anions on exchangeable aluminum capacity of variable charge soils. J. Colloid Interface Sci. 2005, 284, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.; Li, G.; Lin, Q.; Zhao, X.; He, Y.; Liu, Y.; Luo, Z. Biochar alters inorganic phosphorus fractions in tobacco-growing soil. J. Soil Sci. Plant Nutr. 2021, 21, 1689–1699. [Google Scholar] [CrossRef]
- Cai, Z.; Xu, M.; Wang, B.; Zhang, L.; Wen, S.; Gao, S. Effectiveness of crop straws, and swine manure in ameliorating acidic red soils: A laboratory study. J. Soils Sediments 2018, 18, 2893–2903. [Google Scholar] [CrossRef]
- Qian, L.; Chen, B. Interactions of aluminum with biochars and oxidized biochars: Implications for the biochar aging process. J. Agric. Food Chem. 2014, 2, 373–380. [Google Scholar] [CrossRef]
- Jutakanoke, R.; Intaravicha, N.; Charoensuksai, P.; Mhuantong, W.; Boonnorat, J.; Sichaem, J.; Phongsopitanun, W.; Chakritbudsabong, W.; Rungarunlert, S. Alleviation of soil acidification and modification of soil bacterial community by biochar derived from water hyacinth Eichhornia crassipes. Sci. Rep. 2023, 13, 397. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.S.; Adriano, D.C.; Curtin, D. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Adv. Agron. 2003, 78, 215–272. [Google Scholar]
- Zhang, Q.; Wu, Z.; Zhang, X.; Duan, P.; Shen, H.; Gunina, A.; Yan, X.; Xiong, Z. Biochar amendment mitigated N2O emissions from paddy field during the wheat growing season. Environ. Pollut. 2021, 281, 117026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.; Song, M.; Dong, Y.; Xiong, Z. N2O and NO production and functional microbes responding to biochar aging process in an intensified vegetable soil. Environ. Pollut. 2022, 307, 119491. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, W.; Liang, G.; Song, D.; Zhang, X. Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Sci. Total Environ. 2015, 538, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, H.; Liu, M.; Yang, J.; Han, X. Nine years of low-dose biochar amendment suppresses nitrification rate in low-yield brown soil. Appl. Soil Ecol. 2023, 192, 105096. [Google Scholar] [CrossRef]
- Deenik, J.L.; McClellan, T.; Uehara, G.; Antal, M.J.; Campbell, S. Charcoal Volatile Matter Content Influences Plant Growth and Soil Nitrogen Transformations. Soil Sci. Soc. Am. J. 2010, 74, 1259–1270. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K.M. Nitrogen release from crop residues and organic amendments as affected by biochemical composition. Soil Sci. Plant Anal. 2003, 34, 2441–2460. [Google Scholar] [CrossRef]
- Abera, G.; Wolde-meskel, E.; Bakken, L.R. Carbon and nitrogen mineralization dynamics in different soils of the tropics amended with legume residues and contrasting soil moisture contents. Biol. Fertil. Soils 2012, 48, 51–66. [Google Scholar] [CrossRef]
- Xiao, K.; Xu, J.; Tang, C.; Zhang, J.; Brookes, P.C. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments. Soil Biol. Biochem. 2013, 67, 70–84. [Google Scholar] [CrossRef]
- Agyarko-Mintah, E.; Cowie, A.; Singh, B.P.; Joseph, S.; Van Zwieten, L.; Cowie, A.; Harden, S.; Smillie, R. Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Manag. 2017, 61, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Neupane, A.; Xu, S.; Abdoulmoumine, N.; DeBruyn, J.M.; Walker, F.; Jagadamma, S. Application methods influence biochar–fertilizer interactive effects on soil nitrogen dynamics. Soil Sci. Soc. Am. J. 2020, 84, 1871–1884. [Google Scholar] [CrossRef]
- Lehmann, J.; Pereira, J.; Silva, D.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Ch’ng, H.Y.; Ahmed, O.H.; Nik, N.M. Biochar and compost influence the phosphorus availability, nutrients uptake, and growth of maize (Zea mays L.) in tropical acid soil. Pakistan J. Agric. Sci. 2014, 51, 797–806. [Google Scholar]
- Osorno, L.; Osorio, N.W.; Habte, M. Phosphate desorption by a soil fungus in selected Hawaiian soils differing in their mineralogy. Trop. Agric. 2018, 95, 154–166. [Google Scholar]
- Tian, J.; Ge, F.; Zhang, D.; Deng, S.; Liu, X. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Zwetsloot, M.J.; Lehmann, J.; Bauerle, T.; Vanek, S.; Hestrin, R.; Nigussie, A. Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions. Plant Soil 2016, 408, 95–105. [Google Scholar] [CrossRef]
Property | Soil | WHBf | WHBg |
---|---|---|---|
Sand (%) | 10.2 | — | — |
Silt (%) | 28.3 | — | — |
Clay (%) | 61.5 | — | — |
Texture | Clay | — | — |
Moisture content (%) | 2.78 ± 0.1 | 4.64 ± 0.2 | 12.4 ± 0.1 |
Ash (%) | — | 17.4 ± 0.0 | 23.2 ± 0.0 |
Volatile matter (%) | — | 38.6 ± 0.0 | 59.7 ± 0.0 |
Fixed carbon (%) | — | 44.0 ± 0.0 | 17.1 ± 0.0 |
Bulk density (g cm−3) | 1.27 | — | — |
pH | 4.85 ± 0.0 | 10.9 ± 0.0 | 10.4 ± 0.0 |
Liming potential (%CaCO3 equivalent) | — | 24.7 ± 0.1 | 20.4 ± 0.4 |
Exchangeable acidity (cmol (+) kg−1) | 2.93 ± 0.2 | — | — |
Exchangeable Al3+ (cmol (+) kg−1) | 1.52 ± 0.1 | — | — |
Exchangeable H+ (cmol (+) kg−1) | 1.41 ± 0.1 | — | — |
Electrical conductivity (µS cm−1) | 42.1 ± 1.08 | 4.13 × 103 ± 0.01 | 2.77 × 104 ± 0.45 |
Cation exchange capacity (cmol (+) kg−1) | 16.9 ± 0.5 | 42.6 ± 1.1 | 34.2 ± 0.2 |
Acid saturation (%) | 17.3 ± 0.3 | — | — |
Total C (%) | 2.00 ± 0.1 | 55.9 ± 1.3 | 34.8 ± 0.6 |
Total H (%) | 2.08 ± 0.2 | 2.01 ± 0.4 | 0.700 ± 0.1 |
Total N (%) | 0.180 ± 0.0 | 1.46 ± 0.0 | 0.720 ± 0.0 |
Total O (%) | — | 23.3 ± 1.6 | 40.6 ± 0.6 |
C/N | 11.1 ± 0.5 | 38.3 ± 0.9 | 48.6 ± 1.9 |
NH4+−N (mg kg−1) | 10.7 ± 0.6 | 2.03 ± 0.2 | 0.760 ± 0.1 |
NO3−–N (mg kg−1) | 10.3 ± 0.4 | 1.94 ± 0.0 | 2.54 ± 0.3 |
Available phosphorus (mg kg−1) | 3.74 ± 0.26 | 4.44 × 103 ± 564 | 2.29 × 103 ± 73 |
Organic C (%) | 1.76 ± 0.0 | 25.9 ± 0.1 | 21.6 ± 0.1 |
Organic matter (%) | 3.02 ± 0.0 | 44.7 ± 0.1 | 37.3 ± 0.1 |
BET surface area (m2 g−1) | — | 61.4 ± 0.0 | 14.7± 0.0 |
Total pore volume (cm3 g−1) | — | 0.0700 ± 0.0 | 0.0400 ± 0.0 |
Average pore width (nm) | — | 3.87 ± 0.0 | 9.77 ± 0.0 |
Phenolic content (mmol g−1) | — | 1.80 ± 0.1 | 1.62 ± 0.0 |
Lactonic (mmol g−1) | — | 0.400 ± 0.1 | 0.630 ± 0.1 |
Carboxylic (mmol g−1) | — | 0.930 ± 0.0 | 0.800 ± 0.1 |
Abbreviation | Treatment Details |
---|---|
Control | No biochar + no lime + no fertilizer (soil only) |
1WHBf | WHBf 1% + no lime + no fertilizer |
2WHBf | WHBf 2% + no lime + no fertilizer |
1WHBg | WHBg 1% + no lime + no fertilizer |
2WHBg | WHBg 2% + no lime + no fertilizer |
2WHBfF | WHBf 2% + no lime + fertilizer |
LF | No biochar + lime + fertilizer |
F | No biochar + no lime + fertilizer |
L | No biochar + lime + no fertilizer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewoyehu, M.; Kohira, Y.; Fentie, D.; Addisu, S.; Sato, S. Water Hyacinth Biochar: A Sustainable Approach for Enhancing Soil Resistance to Acidification Stress and Nutrient Dynamics in an Acidic Nitisol of the Northwest Highlands of Ethiopia. Sustainability 2024, 16, 5537. https://doi.org/10.3390/su16135537
Lewoyehu M, Kohira Y, Fentie D, Addisu S, Sato S. Water Hyacinth Biochar: A Sustainable Approach for Enhancing Soil Resistance to Acidification Stress and Nutrient Dynamics in an Acidic Nitisol of the Northwest Highlands of Ethiopia. Sustainability. 2024; 16(13):5537. https://doi.org/10.3390/su16135537
Chicago/Turabian StyleLewoyehu, Mekuanint, Yudai Kohira, Desalew Fentie, Solomon Addisu, and Shinjiro Sato. 2024. "Water Hyacinth Biochar: A Sustainable Approach for Enhancing Soil Resistance to Acidification Stress and Nutrient Dynamics in an Acidic Nitisol of the Northwest Highlands of Ethiopia" Sustainability 16, no. 13: 5537. https://doi.org/10.3390/su16135537
APA StyleLewoyehu, M., Kohira, Y., Fentie, D., Addisu, S., & Sato, S. (2024). Water Hyacinth Biochar: A Sustainable Approach for Enhancing Soil Resistance to Acidification Stress and Nutrient Dynamics in an Acidic Nitisol of the Northwest Highlands of Ethiopia. Sustainability, 16(13), 5537. https://doi.org/10.3390/su16135537