Open-Source Design of Infiltration Trenches for Sustainable Soil and Water Conservation in Rural Areas of Central Chile
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Design of Infiltration Trenches
2.2.1. Design Rainfall
2.2.2. Infiltration Rate
2.2.3. Runoff Coefficient
2.3. Python Application
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villanelo, J.F.; Toro, M.E.; Herrera, E.M.; Armijo, G.H.; Vercellino, P.A.; Fuentes, P.T.; Fonseca, I.A. Determinación de la Erosión Actual y Potencial de los Suelos de Chile 2015; Centro de Información de Recursos Naturales (CIREN): Santiago, Chile, 2015; 292p. [Google Scholar]
- Aguirre, V.; Viscardi, S.; Aguayo, M.; Dumont, P. Soil Resource, a Pending Regulatory Debt in Chile. Soil Secur. 2023, 12, 100097. [Google Scholar] [CrossRef]
- Pizarro, R.; Morales, C.; Vega, L.; Valdés, R.; Olivares, C.; Balocchi, F. Evaluación de La Erosión Hídrica Superficial En Zonas Áridas y Semiáridas de Chile Central. Aqua-LAC 2010, 2, 1–11. [Google Scholar] [CrossRef]
- Oficina de Estudios y Políticas Agrarias (ODEPA) Programa de suelos: SIRSD-S. ODEPA|Oficina de Estudios y Políticas Agrarias; Oficina de Estudios y Políticas Agrarias: Santiago, Chile, 2020. [Google Scholar]
- Ministerio de Agricultura-Corporación Nacional Forestal; Ministerio del Medio Ambiente. Plan Nacional de Restauración de Paisajes 2021–2030; Ministerio del Medio Ambiente: Santiago, Chile, 2021. [Google Scholar]
- Pizarro Tapia, R.; Flores Villanelo, J.P.; Sangüesa Pool, C.; Martínez Araya, E.; García Rodríguez, J.L. Diseño de Obras Para La Conservación de Aguas y Suelos; Universidad de Talca: Talca, Chile, 2004; ISBN 956-299-418-X. [Google Scholar]
- LaFevor, M.C.; Ramos-Scharrón, C.E. Effects of Hillslope Trenching on Surface Water Infiltration in Subalpine Forested Catchments. Hydrology 2021, 8, 147. [Google Scholar] [CrossRef]
- Piazza, P.; Ursino, N. Modelling Infiltration Systems’ Performance for Efficient, Sustainable or Circular Urban Water Drainage. Water 2022, 14, 2620. [Google Scholar] [CrossRef]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- García-Colin, J.C.; Díaz-Delgado, C.; Salinas Tapia, H.; Fonseca Ortiz, C.R.; Esteller Alberich, M.V.; Bâ, K.M.; García Pulido, D. Design of a Bioretention System with Water Reuse for Urban Agriculture through a Daily Water Balance. Water 2023, 15, 3477. [Google Scholar] [CrossRef]
- Pizarro, R.; Flores, J.P.; Sangüesa, C.; Martínez, E.; León, L. Diseño Hidrológico de Zanjas de Infiltración En El Secano Costero e Interior de Las Regiones Semiáridas de Chile. Bosque 2008, 29, 136–145. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y. Proper Sizing of Infiltration Trenches Using Closed-Form Analytical Equations. Water Resour Manag. 2020, 34, 3809–3821. [Google Scholar] [CrossRef]
- Ministerio de Agricultura. Decreto 16 Exento; Ministerio de Agricultura: Santiago, Chile, 2024. [Google Scholar]
- Matyushenko, A.I.; Yakovleva, M.G. Increase of Theoperational Intensity of Infiltration Structures with Regard to Complex Thermophysical Conditions of Siberian Re-Gions. iPolytech J. 2010, 6, 116–120. [Google Scholar]
- Marinao, M. Estudio Hidrológico e Hidráulico Para El Diseño de Un Puente Sobre Arroyo Nahuel Niyeu. Bachelor’s Thesis, Universidad Nacional del Comahue, Neuquén, Argentina, 2022. [Google Scholar]
- Pizarro, R.; Valdés, R.; Abarza, A.; Garcia-Chevesich, P. A Simplified Storm Index Method to Extrapolate Intensity-Duration-Frequency (IDF) Curves for Ungauged Stations in Central Chile. Hydrol. Process. 2015, 29, 641–652. [Google Scholar] [CrossRef]
- Sangüesa, C.; Pizarro, R.; Ingram, B.; Ibáñez, A.; Rivera, D.; García-Chevesich, P.; Pino, J.; Pérez, F.; Balocchi, F.; Peña, F. Comparing Methods for the Regionalization of Intensity−Duration−Frequency (IDF) Curve Parameters in Sparsely-Gauged and Ungauged Areas of Central Chile. Hydrology 2023, 10, 179. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K.; et al. Flood Risk and Climate Change: Global and Regional Perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef]
- Butcher, J.B.; Zi, T.; Pickard, B.R.; Job, S.C.; Johnson, T.E.; Groza, B.A. Efficient Statistical Approach to Develop Intensity-Duration-Frequency Curves for Precipitation and Runoff under Future Climate. Clim. Chang. 2021, 164, 3. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.F.; Simonovic, S.P.; Schardong, A.; Goldenfum, J.A. Assessment of Non-Stationary IDF Curves under a Changing Climate: Case Study of Different Climatic Zones in Canada. J. Hydrol. Reg. Stud. 2021, 36, 100870. [Google Scholar] [CrossRef]
- Lanciotti, S.; Ridolfi, E.; Russo, F.; Napolitano, F. Intensity–Duration–Frequency Curves in a Data-Rich Era: A Review. Water 2022, 14, 3705. [Google Scholar] [CrossRef]
- Feitoza Silva, D.; Simonovic, S.; Schardong, A.; Avruch Goldenfum, J. Introducing Non-Stationarity Into the Development of Intensity-Duration-Frequency Curves under a Changing Climate. Water 2021, 13, 1008. [Google Scholar] [CrossRef]
- Piadeh, F.; Behzadian, K.; Alani, A.M. A Critical Review of Real-Time Modelling of Flood Forecasting in Urban Drainage Systems. J. Hydrol. 2022, 607, 127476. [Google Scholar] [CrossRef]
- Herman, J.D.; Quinn, J.D.; Steinschneider, S.; Giuliani, M.; Fletcher, S. Climate Adaptation as a Control Problem: Review and Perspectives on Dynamic Water Resources Planning under Uncertainty. Water Resour. Res. 2020, 56, e24389. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A Climate Dynamics Perspective. Int. J. Clim. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Taucare, M.; Viguier, B.; Figueroa, R.; Daniele, L. The Alarming State of Central Chile’s Groundwater Resources: A Paradigmatic Case of a Lasting Overexploitation. Sci. Total Environ. 2024, 906, 167723. [Google Scholar] [CrossRef]
- Hunter-Zinck, H.; De Siqueira, A.F.; Vásquez, V.N.; Barnes, R.; Martinez, C.C. Ten Simple Rules on Writing Clean and Reliable Open-Source Scientific Software. PLoS Comput. Biol. 2021, 17, e1009481. [Google Scholar] [CrossRef] [PubMed]
- Sayeth Saabith, A.L.; Vinothraj, T.; Fareez, M. Popular Python Libraries and Their Application Domains. Int. J. Adv. Eng. Res. Dev. 2020, 7, 18–26. [Google Scholar]
- Keertipati, S.; Licorish, S.A.; Savarimuthu, B.T.R. Exploring Decision-Making Processes in Python. In Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering, Limerick, Ireland, 1–3 June 2016; pp. 1–10. [Google Scholar]
- Wang, J.; Diao, Y.; Cao, S.; Wang, J.; Jia, J.; Guo, Y. Towards the Cost-Effective Design of Stormwater Infiltration Trenches: A Hybrid Model Integrating Cost–Benefit Analysis and an Analytical Stochastic Approach. Environ. Sci. Water Res. Technol. 2024, 10, 1108–1121. [Google Scholar] [CrossRef]
- Rowe, E.; Guo, Y.; Li, Z. Seeking More Cost-Efficient Design Criteria for Infiltration Trenches. J. Sustain. Water Built Environ. 2021, 7, 04021009. [Google Scholar] [CrossRef]
- Campisano, A.; Creaco, E.; Modica, C. A Simplified Approach for the Design of Infiltration Trenches. Water Sci. Technol. 2011, 64, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Nieć, J.; Błażejewski, R.; Zawadzki, P.; Kozłowski, M. Comparison of Seepage Models Applied to Design of Trapezoidal Infiltration Trenches and Basins. J. Irrig. Drain Eng. 2021, 147, 05021001. [Google Scholar] [CrossRef]
- Creaco, E.; Franchini, M. A Dimensionless Procedure for the Design of Infiltration Trenches. J. Am. Water Work. Assoc. 2012, 104, E501–E509. [Google Scholar] [CrossRef]
- Biblioteca del Congreso Nacional Región Del Biobío. Available online: https://www.bcn.cl/siit/nuestropais/region8 (accessed on 8 March 2024).
- Sernageomin Mapa Geológico de Chile. Servicio Nacional de Geología y Minería. 2003. Available online: https://tiendadigital.sernageomin.cl/es/geologia-basica/3271-mapa-geologico-de-chile-version-digital.html (accessed on 15 March 2024).
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate Change Projections of Temperature and Precipitation in Chile Based on Statistical Downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef]
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic Regionalisation of Continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Palazzo, E.; Wang, S. Landscape Design for Flood Adaptation from 20 Years of Constructed Ecologies in China. Sustainability 2022, 14, 4511. [Google Scholar] [CrossRef]
- Unesco. Curvas Intensidad Duración Frecuencia para las Regiones Metropolitana, Maule y Biobío. Intensidades desde 15 Minutos a 24 Horas; Documento Técnico del PHI-LAC; PHI-LAC: Montevideo, Uruguay, 2013; ISBN 978-92-9089-189-5. [Google Scholar]
- Amami, R.; Ibrahimi, K.; Sher, F.; Milham, P.; Ghazouani, H.; Chehaibi, S.; Hussain, Z.; Iqbal, H.M.N. Impacts of Different Tillage Practices on Soil Water Infiltration for Sustainable Agriculture. Sustainability 2021, 13, 3155. [Google Scholar] [CrossRef]
- Cleophas, F.; Isidore, F.; Musta, B.; Mohd Ali, B.N.; Mahali, M.; Zahari, N.Z.; Bidin, K. Effect of Soil Physical Properties on Soil Infiltration Rates. J. Phys. Conf. Ser. 2022, 2314, 012020. [Google Scholar] [CrossRef]
- Cao, Y.Z.; Coote, D.R.; Rees, H.W.; Wang, C.; Chow, T.L. Effects of Intensive Potato Production on Soil Quality and Yield at a Benchmark Site in New Brunswick. Soil Tillage Res. 1994, 29, 23–34. [Google Scholar] [CrossRef]
- Miao, C.; Zheng, H.; Jiao, J.; Feng, X.; Duan, Q.; Mpofu, E. The Changing Relationship Between Rainfall and Surface Runoff on the Loess Plateau, China. JGR Atmos. 2020, 125, e2019JD032053. [Google Scholar] [CrossRef]
- Lapides, D.A.; Sytsma, A.; Thompson, S. Implications of Distinct Methodological Interpretations and Runoff Coefficient Usage for Rational Method Predictions. J. Am. Water Resour. Assoc. 2021, 57, 859–874. [Google Scholar] [CrossRef]
- Ardekani, A.A.; Sabzevari, T.; Haghighi, A.T.; Petroselli, A. Separation of Surface Flow from Subsurface Flow in Catchments Using Runoff Coefficient. Acta Geophys. 2021, 69, 2363–2376. [Google Scholar] [CrossRef]
- Labra Oyanedel, F.; González González, M.V.; Gacitúa Arias, S.E.; Montenegro Rojas, J.; Villalobos Volpi, E.L.; Gómez, A. Manual Para La Implementación de Obras de Conservación de Suelos y Cosecha de Aguas Lluvias En Alhué. Predio de La Comunidad Agrícola Villa Alhué; INFOR, Santiago, Chile, 2018; ISBN 978-956-318-145-6.
- Pizarro, R.; Sangüesa, C.; Fernández, P.; Rubilar, R.; Balocchi, F.; Ibáñez, A. Evaluación de La Erosión Hídrica Bajo Diferentes Coberturas Boscosas a Través de La Captura de Sedimentos En La Zona Centro Sur de Chile. Aqua-LAC 2023, 15, 1–12. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F. The Python Language Reference; Python Software Foundation: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Vidal-Silva, C.; Barriga, N.A.; Ortega-Cordero, F.; Gonzalez-Lopez, J.; Jimenez-Quintana, C.; Pezoa-Fuentes, C.; Veas-Gonzalez, I. Developing Computing Competencies Without Restrictions. IEEE Access 2022, 10, 106568–106580. [Google Scholar] [CrossRef]
- Qt Group. Qt Designer Manual. Available online: https://doc.qt.io/qt-5/qtdesigner-manual.html (accessed on 8 March 2024).
- Gazoni, E.; Clark, C. Openpyxl—A Python Library to Read/Write Excel 2010 Xlsx/Xlsm Files. 2023. Available online: https://openpyxl.readthedocs.io/en/stable/ (accessed on 15 March 2024).
- JetBrains PyCharm. The Python IDE for Data Science and Web Development. Available online: https://www.jetbrains.com/pycharm/ (accessed on 15 March 2024).
- Flores-Villanelo, J.P. Diseño de zanjas de infiltración en zonas no aforadas usando SIG. Tecnol. Cienc. Agua 2012, III, 27–39. [Google Scholar]
- Carrasco, J.; Squella, F.; Riquelme, J.; Hirzel, J.; Uribe, H. Técnicas de Conservación de Suelos, Agua, y Vegetación En Territorios Degradados; Actas INIA; Instituto de Investigaciones Agropecuarias: Rengo, Chile, 2012. [Google Scholar]
- Mays, L.W. A Brief History of Water Technology During Antiquity: Before the Romans. In Ancient Water Technologies; Mays, L., Ed.; Springe: Dordrecht, The Netherlands, 2010; pp. 1–28. ISBN 978-90-481-8631-0. [Google Scholar]
- Pruski, F.F.; Ferreira, P.A.; Ramos, M.M.; Cecon, P.R. Model to Design Level Terraces. J. Irrig. Drain Eng. 1997, 123, 8–12. [Google Scholar] [CrossRef]
- Chinchilla-Ureña, M.; Guzmán-Arias, I.; Watson-Hernández, F.; Vargas-Meneses, C. Diseño de Dos Propuestas de Obras de Conservación de Suelos Para Mitigar Daños En Un Terreno Con Problemas de Erosión Tipo Cárcava, Zona de Los Santos, Costa Rica. Rev. Tecnol. Marcha 2023, 36, 124–136. [Google Scholar] [CrossRef]
- Flores Villanelo, J.P. Diseño de Zanjas de Infiltración para Eventos Extremos de Precipitación. Ph.D. Thesis, Universidad de Córdoba, Córdoba, España, 2016. [Google Scholar]
- UNESCO. Antecedentes de La Relación Masa Forestal y Disponibilidad Hídrica En Chile; Documentos Técnicos PHI-VIII; UNESCO: Montevideo, Uruguay, 2019. [Google Scholar]
- Heilweil, V.M.; Watt, D.E. Trench Infiltration for Managed Aquifer Recharge to Permeable Bedrock. Hydrol. Process. 2011, 25, 141–151. [Google Scholar] [CrossRef]
- Castro, J.O.C.; Aguilar, R.L. Las zanjas de infiltración en el aprovechamiento de agua en el sector rural de Manabí. Dominio Cienc. 2021, 7, 2281–2303. [Google Scholar]
- Amorim, L.F.; Magalhães, A.A.B.; Scarati Martins, J.R.; Duarte, B.P.D.S.; Nogueira, F.F. Hydrological Modeling Using Distributed Rainfall Data to Represent the Flow in Urban Watersheds. RBRH 2022, 27, e30. [Google Scholar] [CrossRef]
- Rodríguez Miranda, J.P.; Bolaños Castro, S.J.; García Ubaque, C.A. Software Engineering as a Vehicle for Water Resources Environmental Planning. Tecnura 2014, 18, 150–159. [Google Scholar] [CrossRef]
- Ochoa-Tocachi, B.F.; Adriazola, J.E.C.; Bonnesoeur, V.; Román-Dañobeytia, F.; Gammie, G. CUBHIC 2.0: Presentación de Metodología; Negrapata S.A.C.: Lima, Peru, 2022. [Google Scholar] [CrossRef]
Floor | Little Vegetation (cm h−1) | Dense Vegetation (cm h−1) |
---|---|---|
Dry sandy | 12.7 | 25.4 |
Silty dry | 7.6 | 15.2 |
Clayey dry | 2.5 | 5.0 |
Sandy wet | 4.2 | 8.5 |
Silty wet | 2.5 | 5.0 |
Clayey humid | 0.8 | 3.6 |
Input Variables | Trapezoidal Trench | Rectangular Trench | Square Trench |
---|---|---|---|
Common variables | |||
Intensity (m h−1) | x | x | x |
Runoff coefficient | x | x | x |
Infiltration speed (m h−1) | x | x | x |
Trench base (m) | x | x | x |
Specific variables | |||
Height (m) | x | x | |
Slope angle (°) | x |
Criterion/Type of Trench | Execution Time (%) * | Precision |
---|---|---|
Trapezoidal | 150 | 1 |
Rectangular | 107 | 1 |
Square | 200 | 1 |
Variable | Carriel Sur | Quilaco | Los Ángeles |
---|---|---|---|
I (mm h−1) | 28.9 | 19.1 | 19.8 |
Infiltration velocity (mm h−1) | 44.1 | 44.1 | 44.1 |
Base (cm) | 35 | 35 | 35 |
Height (cm) | 40 | 40 | 40 |
Distance dh (m) | 7.1 | 10.8 | 10.4 |
Volume (m3 ha−1) | 238.5 | 157.5 | 163.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizarro, R.; Vidal-Silva, C.; Jaque, D.; Ibáñez Córdova, A.; Sangüesa, C.; Toledo, C.; Garcia-Chevesich, P.A. Open-Source Design of Infiltration Trenches for Sustainable Soil and Water Conservation in Rural Areas of Central Chile. Sustainability 2024, 16, 5645. https://doi.org/10.3390/su16135645
Pizarro R, Vidal-Silva C, Jaque D, Ibáñez Córdova A, Sangüesa C, Toledo C, Garcia-Chevesich PA. Open-Source Design of Infiltration Trenches for Sustainable Soil and Water Conservation in Rural Areas of Central Chile. Sustainability. 2024; 16(13):5645. https://doi.org/10.3390/su16135645
Chicago/Turabian StylePizarro, Roberto, Cristian Vidal-Silva, Dayana Jaque, Alfredo Ibáñez Córdova, Claudia Sangüesa, Cristóbal Toledo, and Pablo A. Garcia-Chevesich. 2024. "Open-Source Design of Infiltration Trenches for Sustainable Soil and Water Conservation in Rural Areas of Central Chile" Sustainability 16, no. 13: 5645. https://doi.org/10.3390/su16135645
APA StylePizarro, R., Vidal-Silva, C., Jaque, D., Ibáñez Córdova, A., Sangüesa, C., Toledo, C., & Garcia-Chevesich, P. A. (2024). Open-Source Design of Infiltration Trenches for Sustainable Soil and Water Conservation in Rural Areas of Central Chile. Sustainability, 16(13), 5645. https://doi.org/10.3390/su16135645