Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security
Abstract
:1. Introduction
2. Integrating AI and Plant Genetics to Enhance Food Security in Agriculture
3. AI-Powered Advancements in Sustainable Wheat Breeding
3.1. AI Application and Morphological Traits for Sustainable Wheat Yield
3.2. AI Application and Physiological Traits for Sustainable Wheat Yield
3.3. AI Application and Biochemical Traits for Sustainable Yield
3.4. AI-Application for Identifying Optimal Plant Breeding Hybrids, Parents, and Traits
4. Applications of Artificial Intelligence in Wheat Breeding Program
Wheat Nutrient Management While Breeding Using AI Technology
5. Advanced AI Applications in Modern Wheat Breeding for Enhanced Phenotyping and Genetic Analysis
6. Innovative Techniques for Sustainable Wheat Breeding
AI-Powered Marker Discovery in Wheat Breeding
7. Artificial Intelligence in Multi-Year Evaluation and Enhanced Data Analysis
8. Challenges, Limitations, and Future Prospects
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mbow, C.; Rosenzweig, C.E.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Ruane, A.C.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G. Food Security; IPCC: Geneva, Switzerland, 2020.
- Seaman, J.A.; Sawdon, G.E.; Acidri, J.; Petty, C. The Household Economy Approach. Managing the impact of climate change on poverty and food security in developing countries. Clim. Risk Manag. 2014, 4, 59–68. [Google Scholar] [CrossRef]
- Harfouche, A.L.; Jacobson, D.A.; Kainer, D.; Romero, J.C.; Harfouche, A.H.; Mugnozza, G.S.; Moshelion, M.; Tuskan, G.A.; Keurentjes, J.J.; Altman, A. Accelerating climate resilient plant breeding by applying next-generation artificial intelligence. Trends Biotechnol. 2019, 37, 1217–1235. [Google Scholar] [CrossRef] [PubMed]
- Yoosefzadeh Najafabadi, M.; Hesami, M.; Eskandari, M. Machine learning-assisted approaches in modernized plant breeding programs. Genes 2023, 14, 777. [Google Scholar] [CrossRef]
- Gregory, P.J.; Ingram, J.S.; Brklacich, M. Climate change and food security. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 2139–2148. [Google Scholar] [CrossRef]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Fischer, R.; Byerlee, D.; Edmeades, G. Crop Yields and Global Food Security; ACIAR Canberra ACT: Bruce, Australia, 2014; pp. 8–11.
- Roy, R.N.; Finck, A.; Blair, G.; Tandon, H. Plant Nutrition for Food Security. A Guide for Integrated Nutrient Management; FAO Fertilizer and Plant Nutrition Bulletin: Rome, Italy, 2006; p. 16. [Google Scholar]
- Gesesse, C.A.; Nigir, B.; de Sousa, K.; Gianfranceschi, L.; Gallo, G.R.; Poland, J.; Kidane, Y.G.; Abate Desta, E.; Fadda, C.; Pè, M.E. Genomics-driven breeding for local adaptation of durum wheat is enhanced by farmers’ traditional knowledge. Proc. Natl. Acad. Sci. USA 2023, 120, e2205774119. [Google Scholar] [CrossRef] [PubMed]
- Devate, N.B.; Manjunath, K.K.; Ghajghate, R.; Shashikumara, P.; Reddy, U.G.; Kumar, M.; Krishna, H.; Jain, N.; Singh, P.; Pratap Singh, G. Strategies to Develop Heat and Drought–Tolerant Wheat Varieties Following Physiological Breeding. In Translating Physiological Tools to Augment Crop Breeding; Springer: Berlin/Heidelberg, Germany, 2023; pp. 19–52. [Google Scholar]
- Robles-Zazueta, C.A.; Crespo-Herrera, L.A.; Piñera-Chavez, F.J.; Rivera-Amado, C.; Aradottir, G.I. Climate change impacts on crop breeding: Targeting interacting biotic and abiotic stresses for wheat improvement. Plant Genome 2024, 17, e20365. [Google Scholar] [CrossRef]
- Bhat, J.A.; Feng, X.; Mir, Z.A.; Raina, A.; Siddique, K.H. Recent advances in artificial intelligence, mechanistic models, and speed breeding offer exciting opportunities for precise and accelerated genomics-assisted breeding. Physiol. Plant. 2023, 175, e13969. [Google Scholar] [CrossRef]
- Sharma, R.; Kukreja, V.; Gupta, R. Enhancing Wheat Crop Resilience: An Efficient Deep Learning Framework for the Detection and Classification of Rust Disease. In Proceedings of the 2023 4th International Conference for Emerging Technology (INCET), Belgaum, India, 26–28 May 2023; pp. 1–5. [Google Scholar]
- Togninalli, M.; Wang, X.; Kucera, T.; Shrestha, S.; Juliana, P.; Mondal, S.; Pinto, F.; Govindan, V.; Crespo-Herrera, L.; Huerta-Espino, J. Multi-modal deep learning improves grain yield prediction in wheat breeding by fusing genomics and phenomics. Bioinformatics 2023, 39, btad336. [Google Scholar] [CrossRef]
- Karn, R.K.; Suresh, A. Prediction of Crops Based on a Machine Learning Algorithm. In Proceedings of the 2023 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 23–25 January 2023; pp. 1–8. [Google Scholar]
- Lee, S.-J.; Demeke, T.; Dusabenyagasani, M.; Saydak, D.; Perry, D.; Walkowiak, S. Evaluation of two high-throughput genotyping systems for rapid identification of Canadian wheat varieties. Can. J. Plant Sci. 2023, 103, 422–425. [Google Scholar] [CrossRef]
- Roth, L.; Fossati, D.; Krähenbühl, P.; Walter, A.; Hund, A. Image-based phenomic prediction can provide valuable decision support in wheat breeding. Theor. Appl. Genet. 2023, 136, 162. [Google Scholar] [CrossRef]
- Finco, A.; Bentivoglio, D.; Belletti, M.; Chiaraluce, G.; Fiorentini, M.; Ledda, L.; Orsini, R. Does Precision Technologies Adoption Contribute to the Economic and Agri-Environmental Sustainability of Mediterranean Wheat Production? An Italian Case Study. Agronomy 2023, 13, 1818. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Sarker, A.; Shearer, S.A. Precision Agriculture for Sustainable Soil and Crop Management. In Soil Science-Emerging Technologies, Global Perspectives and Applications; IntechOpen: London, UK, 2022. [Google Scholar]
- Gardezi, M.; Joshi, B.; Rizzo, D.M.; Ryan, M.; Prutzer, E.; Brugler, S.; Dadkhah, A. Artificial intelligence in farming: Challenges and opportunities for building trust. Agron. J. 2023, 116, 1217–1228. [Google Scholar] [CrossRef]
- Zhao, L.; Walkowiak, S.; Fernando, W.G.D. Artificial Intelligence: A Promising Tool in Exploring the Phytomicrobiome in Managing Disease and Promoting Plant Health. Plants 2023, 12, 1852. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.H.U.; Wang, S.; Wang, J.; Ahmar, S.; Saeed, S.; Khan, S.U.; Xu, X.; Chen, H.; Bhat, J.A.; Feng, X. Applications of artificial intelligence in climate-resilient smart-crop breeding. Int. J. Mol. Sci. 2022, 23, 11156. [Google Scholar] [CrossRef] [PubMed]
- Beans, C. Crop researchers harness artificial intelligence to breed crops for the changing climate. Proc. Natl. Acad. Sci. USA 2020, 117, 27066–27069. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, J.; Li, Q.; Li, H.; Xia, Y.; Jackson, R.; Sun, G.; Zhou, G.; Deakin, G.; Jiang, D.; et al. CropQuant-Air: An AI-powered system to enable phenotypic analysis of yield-and performance-related traits using wheat canopy imagery collected by low-cost drones. Front. Plant Sci. 2023, 14, 1219983. [Google Scholar] [CrossRef] [PubMed]
- Resende, R.T.; Piepho, H.-P.; Rosa, G.J.; Silva-Junior, O.B.; e Silva, F.F.; de Resende, M.D.V.; Grattapaglia, D. Enviromics in breeding: Applications and perspectives on envirotypic-assisted selection. Theor. Appl. Genet. 2021, 134, 95–112. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.; Jiang, D.; Kang, M.; Wu, J.; Xiao, F.; Hou, P.; Fu, X. Evaluation of an intelligent artificial climate chamber for high-throughput crop phenotyping in wheat. Plant Methods 2022, 18, 77. [Google Scholar] [CrossRef] [PubMed]
- El Behairy, R.A.; El Arwash, H.M.; El Baroudy, A.A.; Ibrahim, M.M.; Mohamed, E.S.; Rebouh, N.Y.; Shokr, M.S. Artificial Intelligence Integrated GIS for Land Suitability Assessment of Wheat Crop Growth in Arid Zones to Sustain Food Security. Agronomy 2023, 13, 1281. [Google Scholar] [CrossRef]
- Rattan, P. Cultivating agricultural evolution: Revolutionizing farming through the power of AI and technology. Rev. Artif. Intell. Educ. 2023, 4, e010. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Li, J.; Yan, L.; Wang, N.; Xia, L. Present and future prospects for wheat improvement through genome editing and advanced technologies. Plant Commun. 2021, 2, 100211. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Rose, G.; Osborne, T.; Greatrex, H.; Wheeler, T. Impact of progressive global warming on the global-scale yield of maize and soybean. Clim. Chang. 2016, 134, 417–428. [Google Scholar] [CrossRef]
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Barlow, K.; Christy, B.; O’leary, G.; Riffkin, P.; Nuttall, J. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crop. Res. 2015, 171, 109–119. [Google Scholar] [CrossRef]
- Talukder, A.; McDonald, G.K.; Gill, G.S. Effect of short-term heat stress prior to flowering and early grain set on the grain yield of wheat. Field Crop. Res. 2014, 160, 54–63. [Google Scholar] [CrossRef]
- Nuttall, J.; Brady, S.; Brand, J.; O’Leary, G.; Fitzgerald, G. Heat waves and wheat growth under a future climate. In Proceedings of the 16th Australian Agronomy Conference: Climate Change, Armidale, Australia, 14–18 October 2012. [Google Scholar]
- Wang, B.; Li Liu, D.; Asseng, S.; Macadam, I.; Yu, Q. Modelling wheat yield change under CO2 increase, heat and water stress in relation to plant available water capacity in eastern Australia. Eur. J. Agron. 2017, 90, 152–161. [Google Scholar] [CrossRef]
- Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D. Multimodel ensembles of wheat growth: Many models are better than one. Glob. Chang. Biol. 2015, 21, 911–925. [Google Scholar] [CrossRef]
- Liu, B.; Asseng, S.; Müller, C.; Ewert, F.; Elliott, J.; Lobell, D.B.; Martre, P.; Ruane, A.C.; Wallach, D.; Jones, J.W. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Chang. 2016, 6, 1130–1136. [Google Scholar] [CrossRef]
- Maqbool, S.; Ahmad, S.; Kainat, Z.; Khan, M.I.; Maqbool, A.; Hassan, M.A.; Rasheed, A.; He, Z. Root system architecture of historical spring wheat cultivars is associated with alleles and transcripts of major functional genes. BMC Plant Biol. 2022, 22, 590. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Roumet, P.; Salon, C.; Jeudy, C.; Lamboeuf, M.; Lafarge, S.; Dumas, A.-V.; Dubreuil, P.; Ngo, W.; Derepas, B. Genetic analysis of platform-phenotyped root system architecture of bread and durum wheat in relation to agronomic traits. Front. Plant Sci. 2022, 13, 853601. [Google Scholar] [CrossRef]
- Chen, H.; Wei, J.; Tian, R.; Zeng, Z.; Tang, H.; Liu, Y.; Xu, Q.; Deng, M.; Jiang, Q.; Chen, G. A major quantitative trait locus for wheat total root length associated with precipitation distribution. Front. Plant Sci. 2022, 13, 995183. [Google Scholar] [CrossRef] [PubMed]
- Leitner, D.; Schnepf, A.; Vanderborght, J. A new root water uptake sink term including root-rhizosphere hydraulic architecture. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 3–8 April 2022; p. EGU22-7304. [Google Scholar]
- Yan, M.; Lian, H.; Zhang, C.; Chen, Y.; Cai, H.; Zhang, S. The Role of Root Size and Root Efficiency in Grain Production, Water-and Nitrogen-Use Efficiency in Wheat. J. Sci. Food Agric. 2023, 103, 7083–7094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, C.; Zhang, W.; Zhang, X.; Mo, Y.; Tranquilli, G.E.; Vanzetti, L.S.; Dubcovsky, J. Wheat plant height locus RHT25 encodes a PLATZ transcription factor that interacts with DELLA (RHT1). Proc. Natl. Acad. Sci. USA 2023, 120, e2300203120. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Fang, Y.; Jiang, H.; Wu, X.-T.; Zuo, J.-H.; Xia, X.-C.; Li, J.-Q.; Stich, B.; Cao, H.; Liu, Y.-X. Combining QTL mapping and gene co-expression network analysis for prediction of candidate genes and molecular network related to yield in wheat. BMC Plant Biol. 2022, 22, 288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Z.; Neng, F.; Xiong, S.; Wei, Y.; Cao, R.; Wei, Q.; Ma, X.; Wang, X. Canopy light distribution effects on light use efficiency in wheat and its mechanism. Front. Ecol. Evol. 2022, 10, 1023117. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, S.; Wei, Q.; Yang, Y.; Pan, H.; Fu, X.; Fan, Z.; Qin, B.; Wang, X.; Ma, X. Variation in Leaf Type, Canopy Architecture, and Light and Nitrogen Distribution Characteristics of Two Winter Wheat (Triticum aestivum L.) Varieties with High Nitrogen-Use Efficiency. Agronomy 2022, 12, 2411. [Google Scholar] [CrossRef]
- Gu, S.; Wen, W.; Xu, T.; Lu, X.; Yu, Z.; Guo, X.; Zhao, C. Use of 3D modeling to refine predictions of canopy light utilization: A comparative study on canopy photosynthesis models with different dimensions. Front. Plant Sci. 2022, 13, 735981. [Google Scholar] [CrossRef]
- Zanella, C.M.; Rotondo, M.; McCormick-Barnes, C.; Mellers, G.; Corsi, B.; Berry, S.; Ciccone, G.; Day, R.; Faralli, M.; Galle, A. Longer epidermal cells underlie a quantitative source of variation in wheat flag leaf size. New Phytol. 2023, 237, 1558–1573. [Google Scholar] [CrossRef]
- Chang, T.-G.; Shi, Z.; Zhao, H.; Song, Q.; He, Z.; Van Rie, J.; Den Boer, B.; Galle, A.; Zhu, X.-G. 3dCAP-wheat: An open-source comprehensive computational framework precisely quantifies wheat foliar, nonfoliar, and canopy photosynthesis. Plant Phenomics 2022, 2022, 9758148. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Bie, X.M.; Chu, X.L.; Wang, N.; Zhang, X.S.; Gao, X.-Q. Genome-edited TaTFL1-5 mutation decreases tiller and spikelet numbers in common wheat. Front. Plant Sci. 2023, 14, 1142779. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Zhang, L.; Zhang, Q.; Yang, Y.; Li, D.; Xie, Z.; Cui, G.; Chen, Y.; Wu, L.; Li, Z. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat. Commun. 2023, 14, 836. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zheng, Y.; Wang, Y.; Wang, S.; Wang, T.; Wang, C.; Chen, Y.; Zhang, K.; Zhang, N.; Dong, Z. A HST1-like gene controls tiller angle through regulating endogenous auxin in common wheat. Plant Biotechnol. J. 2023, 21, 122–135. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Lu, Q.; Tian, S.; Niu, J.; Cui, M.; Liu, X.; Gao, Q.; Shi, X.; Ling, H.-Q.; Zheng, S. Fine mapping of the tiller inhibition gene TIN5 in Triticum urartu. Theor. Appl. Genet. 2022, 135, 2665–2673. [Google Scholar] [CrossRef]
- Volkman, M.M.; Martin, J.M.; Hogg, A.C.; Wright, L.; Hale, C.; Carr, P.M.; Giroux, M.J. Durum wheat Teosinte Branched1 null mutations increase tillering. Crop Sci. 2022, 62, 1522–1530. [Google Scholar] [CrossRef]
- Fradgley, N.; Gardner, K.A.; Bentley, A.R.; Howell, P.; Mackay, I.J.; Scott, M.F.; Mott, R.; Cockram, J. Multi-trait ensemble genomic prediction and simulations of recurrent selection highlight importance of complex trait genetic architecture for long-term genetic gains in wheat. Silico Plants 2023, 5, diad002. [Google Scholar] [CrossRef]
- Luo, K.; He, D.; Guo, J.; Li, G.; Li, B.; Chen, X. Molecular Advances in Breeding for Durable Resistance against Pests and Diseases in Wheat: Opportunities and Challenges. Agronomy 2023, 13, 628. [Google Scholar] [CrossRef]
- Sicilia, A.; Anastasi, U.; Bizzini, M.; Montemagno, S.; Nicotra, C.; Blangiforti, S.; Spina, A.; Cosentino, S.L.; Lo Piero, A.R. Genetic and morpho-agronomic characterization of sicilian tetraploid wheat germplasm. Plants 2022, 11, 130. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, H.; Gupta, V.; Kumar, A.; Singh, C.M.; Kumar, M.; Singh, A.K.; Panwar, G.S.; Kumar, S.; Singh, A.K. Capturing agro-morphological variability for tolerance to terminal heat and combined heat–drought stress in landraces and elite cultivar collection of wheat. Front. Plant Sci. 2023, 14, 1136455. [Google Scholar] [CrossRef]
- Kang, J.; Chu, Y.; Ma, G.; Zhang, Y.; Zhang, X.; Wang, M.; Lu, H.; Wang, L.; Kang, G.; Ma, D. Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. Crop J. 2023, 11, 638–650. [Google Scholar] [CrossRef]
- Rasheed, F.; Mir, I.R.; Sehar, Z.; Fatma, M.; Gautam, H.; Khan, S.; Anjum, N.A.; Masood, A.; Sofo, A.; Khan, N.A. Nitric oxide and salicylic acid regulate glutathione and ethylene production to enhance heat stress acclimation in wheat involving sulfur assimilation. Plants 2022, 11, 3131. [Google Scholar] [CrossRef] [PubMed]
- Hui, J.; Bai, H.; Lyu, X.; Ma, S.; Chen, X.; Li, S. A pleiotropic QTL increased economic water use efficiency in bread wheat (Triticum aestivum L.). Front. Plant Sci. 2023, 13, 1067590. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, D.; Zhao, M.; Sun, S.; Meng, X.; Qiao, W. Application of three methods in water-saving wheat breeding. Agron. J. 2023, 115, 2721–2730. [Google Scholar] [CrossRef]
- Loudari, A.; Mayane, A.; Zeroual, Y.; Colinet, G.; Oukarroum, A. Photosynthetic performance and nutrient uptake under salt stress: Differential responses of wheat plants to contrasting phosphorus forms and rates. Front. Plant Sci. 2022, 13, 1038672. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.; Li, X.; Kong, W.; Chen, R.; Liu, J.; Guo, H.; Zhou, J. Phosphorylation regulation of nitrogen, phosphorus, and potassium uptake systems in plants. Crop J. 2023, 11, 1034–1047. [Google Scholar] [CrossRef]
- Run, Y.; Cheng, X.; Dou, W.; Dong, Y.; Zhang, Y.; Li, B.; Liu, T.; Xu, H. Wheat potassium transporter TaHAK13 mediates K+ absorption and maintains potassium homeostasis under low potassium stress. Front. Plant Sci. 2022, 13, 1103235. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Fang, C.; Li, Y.; Wu, Y.; Fransson, P.; Rillig, M.C.; Zhai, S.; Xie, J.; Tong, Z.; Zhang, Q. Temporal complementarity between roots and mycorrhizal fungi drives wheat nitrogen use efficiency. New Phytol. 2022, 236, 1168–1181. [Google Scholar] [CrossRef]
- Sadak, M.S.; Hanafy, R.S.; Elkady, F.M.; Mogazy, A.M.; Abdelhamid, M.T. Exogenous calcium reinforces photosynthetic pigment content and osmolyte, enzymatic, and non-enzymatic antioxidants abundance and alleviates salt stress in bread wheat. Plants 2023, 12, 1532. [Google Scholar] [CrossRef]
- Suneha Goswami, S.G.; Kumar, R.; Sharma, S.; Kala, Y.; Khushboo Singh, K.S.; Richa Gupta, R.G.; Gaurav Dhavan, G.D.; Rai, G.; Singh, G.; Himanshu Pathak, H.P. Calcium triggers protein kinases-induced signal transduction for augmenting the thermotolerance of developing wheat (Triticum aestivum) grain under the heat stress. J. Plant Biochem. Biotechnol. 2015, 24, 441–452. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, X.; Li, H.; Shuai, Y.; Chen, W.; Ma, D.; Lü, Z. Uncovering the role of wheat magnesium transporter family genes in abiotic responses. Front. Plant Sci. 2023, 14, 1078299. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.-J.; Yang, Y.; Yan, Y.-W.; Mao, D.-D.; Yuan, H.-M.; Wang, C.; Zhao, F.-G.; Luan, S. Two transporters mobilize magnesium from vacuolar stores to enable plant acclimation to magnesium deficiency. Plant Physiol. 2022, 190, 1307–1320. [Google Scholar] [CrossRef]
- Shao, Y.; Li, S.; Gao, L.; Sun, C.; Hu, J.; Ullah, A.; Gao, J.; Li, X.; Liu, S.; Jiang, D. Magnesium application promotes rubisco activation and contributes to high-temperature stress alleviation in wheat during the grain filling. Front. Plant Sci. 2021, 12, 675582. [Google Scholar] [CrossRef]
- Lama, S.; Leiva, F.; Vallenback, P.; Chawade, A.; Kuktaite, R. Impacts of heat, drought, and combined heat–drought stress on yield, phenotypic traits, and gluten protein traits: Capturing stability of spring wheat in excessive environments. Front. Plant Sci. 2023, 14, 1179701. [Google Scholar] [CrossRef] [PubMed]
- Giovenali, G.; Kuzmanović, L.; Capoccioni, A.; Ceoloni, C. The Response of Chromosomally Engineered Durum Wheat-Thinopyrum ponticum Recombinant Lines to the Application of Heat and Water-Deficit Stresses: Effects on Physiological, Biochemical and Yield-Related Traits. Plants 2023, 12, 704. [Google Scholar] [CrossRef]
- Correia, P.M.; Cairo Westergaard, J.; Bernardes da Silva, A.; Roitsch, T.; Carmo-Silva, E.; Marques da Silva, J. High-throughput phenotyping of physiological traits for wheat resilience to high temperature and drought stress. J. Exp. Bot. 2022, 73, 5235–5251. [Google Scholar] [CrossRef] [PubMed]
- Zhi, J.; Zeng, J.; Wang, Y.; Zhao, H.; Wang, G.; Guo, J.; Wang, Y.; Chen, M.; Yang, G.; He, G. A multi-omic resource of wheat seed tissues for nutrient deposition and improvement for human health. Sci. Data 2023, 10, 269. [Google Scholar] [CrossRef]
- Allario, T.; Fourquez, A.; Magnin-Robert, M.; Siah, A.; Maia-Grondard, A.; Gaucher, M.; Brisset, M.-N.; Hugueney, P.; Reignault, P.; Baltenweck, R. Analysis of defense-related gene expression and leaf metabolome in wheat during the early infection stages of Blumeria graminis f. sp. tritici. Phytopathology 2023, 113, 1537–1547. [Google Scholar] [CrossRef]
- Li, Y.; Roychowdhury, R.; Govta, L.; Jaiwar, S.; Wei, Z.-Z.; Shams, I.; Fahima, T. Intracellular Reactive Oxygen Species-Aided Localized Cell Death Contributing to Immune Responses Against Wheat Powdery Mildew Pathogen. Phytopathology 2023, 113, 884–892. [Google Scholar] [CrossRef]
- Dvojković, K.; Plavšin, I.; Novoselović, D.; Šimić, G.; Lalić, A.; Čupić, T.; Horvat, D.; Viljevac Vuletić, M. Early Antioxidative Response to Desiccant-Stimulated Drought Stress in Field-Grown Traditional Wheat Varieties. Plants 2023, 12, 249. [Google Scholar] [CrossRef]
- Xiao, G.; Zhao, M.; Liu, Q.; Zhou, J.; Cheng, Z.; Wang, Q.; Xia, G.; Wang, M. TaBAS1 encoding a typical 2-Cys peroxiredoxin enhances salt tolerance in wheat. Front. Plant Sci. 2023, 14, 1152375. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Rahim, M.S.; Kumar, P.; Mishra, A.; Sharma, H.; Roy, J. Large-scale identification and characterization of phenolic compounds and their marker–trait association in wheat. Euphytica 2020, 216, 127. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Jadidi, O.; Shooshtari, L.; Poczai, P.; Mehrabi, A.A. Association analysis for some biochemical traits in wild relatives of wheat under drought stress conditions. Genes 2022, 13, 1491. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Sohu, V.; Sharma, A.; Srivastava, P.; Mavi, G.; Kaur, H.; Chhuneja, P.; Bains, N. Biofortification strategies to increase wheat nutrition and sustaining yield simultaneously. Indian J. Genet. Plant Breed. 2019, 79, 15–24. [Google Scholar] [CrossRef]
- Sakeef, N.; Scandola, S.; Kennedy, C.; Lummer, C.; Chang, J.; Uhrig, R.G.; Lin, G. Machine learning classification of plant genotypes grown under different light conditions through the integration of multi-scale time-series data. Comput. Struct. Biotechnol. J. 2023, 21, 3183–3195. [Google Scholar] [CrossRef]
- Gupta, S.B.; Yadav, R.K.; Hooda, R.; Dhingra, S.; Gupta, M. Analysis of Some Popular AI & ML Algorithms Used in Agriculture. In Proceedings of the 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO), Bangkok, Thailand, 23–25 December 2022; pp. 28–33. [Google Scholar]
- Adhikari, S.; Joshi, A.; Chandra, A.K.; Bharati, A.; Sarkar, S.; Dinkar, V.; Kumar, A.; Singh, A.K. SMART plant breeding from pre-genomic to post-genomic era for developing climate-resilient cereals. In Smart Plant Breeding for Field Crops in Post-Genomics Era; Springer: Berlin/Heidelberg, Germany, 2023; pp. 41–97. [Google Scholar]
- Montesinos-López, A.; Rivera, C.; Pinto, F.; Piñera, F.; Gonzalez, D.; Reynolds, M.; Pérez-Rodríguez, P.; Li, H.; Montesinos-López, O.A.; Crossa, J. Multimodal deep learning methods enhance genomic prediction of wheat breeding. G3 Genes Genomes Genet. 2023, 13, jkad045. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, K.; Patil, S.S.; Pumphrey, M.; Carter, A. Multitrait machine-and deep-learning models for genomic selection using spectral information in a wheat breeding program. Plant Genome 2021, 14, e20119. [Google Scholar] [CrossRef] [PubMed]
- Galindo, F.S.; Pagliari, P.H.; Fernandes, G.C.; Rodrigues, W.L.; Boleta, E.H.M.; Jalal, A.; Céu, E.G.O.; Lima, B.H.d.; Lavres, J.; Teixeira Filho, M.C.M. Improving sustainable field-grown wheat production with Azospirillum brasilense under tropical conditions: A potential tool for improving nitrogen management. Front. Environ. Sci. 2022, 10, 95. [Google Scholar] [CrossRef]
- Camaréna, S. Engaging with artificial intelligence (AI) with a bottom-up approach for the purpose of sustainability: Victorian farmers market association, Melbourne Australia. Sustainability 2021, 13, 9314. [Google Scholar] [CrossRef]
- Feng, X.; Li, Y.; Zhao, Y.; Chen, J. Spatial Variability Analysis of Wheat Nitrogen Yield Response: A Case Study of Henan Province, China. Agronomy 2023, 13, 1796. [Google Scholar] [CrossRef]
- Fiorentini, M.; Schillaci, C.; Denora, M.; Zenobi, S.; Deligios, P.; Orsini, R.; Santilocchi, R.; Perniola, M.; Montanarella, L.; Ledda, L. A machine learning modeling framework for Triticum turgidum subsp. durum Desf. yield forecasting in Italy. Agron. J. 2022, 116, 1050–1070. [Google Scholar] [CrossRef]
- Sonwani, E.; Bansal, U.; Alroobaea, R.; Baqasah, A.M.; Hedabou, M. An Artificial Intelligence Approach Toward Food Spoilage Detection and Analysis. Front. Public Health 2022, 9, 816226. [Google Scholar] [CrossRef]
- Strack, R. Precision genome editing. Nat. Methods 2019, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, D.; Xia, Y.; Huang, Y.-P.; Lin, X.; Han, X.; Ni, N.; Wang, Z.; Yu, F.; Yang, L. Artificial Intelligence Enhanced Molecular Simulations. J. Chem. Theory Comput. 2023, 19, 4338–4350. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Zhang, J.; Li, X.; Sun, C.; Zhang, Y. Using machine learning to develop an autoverification system in a clinical biochemistry laboratory. Clin. Chem. Lab. Med. (CCLM) 2021, 59, 883–891. [Google Scholar] [CrossRef]
- Ullah, S.; Henke, M.; Narisetti, N.; Panzarová, K.; Trtílek, M.; Hejatko, J.; Gladilin, E. Towards Automated Analysis of Grain Spikes in Greenhouse Images Using Neural Network Approaches: A Comparative Investigation of Six Methods. Sensors 2021, 21, 7441. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Liu, S.; Wang, X.; Zhang, M.; Yan, W.; Wu, J.; Wang, Q.; Li, C.; Zheng, W.; He, Y. Development of breeder chip for gene detection and molecular-assisted selection by target sequencing in wheat. Mol. Breed. 2023, 43, 13. [Google Scholar] [CrossRef] [PubMed]
- Shahin, A.A.; Omara, R.I.; Saad-El-Din, H.I.; Omar, H.A.; Essa, T.A.; Sehsah, M.D.; Zayton, M.A.; Omar, H.S. Investigation, Identification and Introgression of a Novel Stripe Rust Resistant Genes Using Marker-Assisted Selection in Breeding Wheat Genotype. 2023. Available online: https://www.researchsquare.com/article/rs-2978966/v1 (accessed on 13 May 2024).
- Song, L.; Wang, R.; Yang, X.; Zhang, A.; Liu, D. Molecular markers and their applications in marker-assisted selection (MAS) in bread wheat (Triticum aestivum L.). Agriculture 2023, 13, 642. [Google Scholar] [CrossRef]
- Ayris, K.; Rose, D.C. Social and Ethical Considerations for Agricultural Robotics; Burleigh Dodds Science Publishing: Cambridge, UK, 2023. [Google Scholar]
- Posadas, B.B.; Ogunyiola, A.; Niewolny, K. Socially responsible AI assurance in precision agriculture for farmers and policymakers. In AI Assurance; Elsevier: Amsterdam, The Netherlands, 2023; pp. 473–499. [Google Scholar]
- Ryymin, E.; Lamberg, L.; Pakarinen, A. How to digitally enhance bioeconomy collaboration: Multidisciplinary research team ideation for technology innovation. Technol. Innov. Manag. Rev. 2020, 10, 31–39. [Google Scholar] [CrossRef]
- Karisma, K. A Pragmatic Regulatory Framework for Artificial Intelligence. In Regulatory Aspects of Artificial Intelligence on Blockchain; IGI Global: Hershey, PA, USA, 2022; pp. 21–39. [Google Scholar]
- Ellul, J.; Pace, G.; McCarthy, S.; Sammut, T.; Brockdorff, J.; Scerri, M. Regulating artificial intelligence: A technology regulator’s perspective. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law, São Paulo, Brazil, 21–25 June 2021; pp. 190–194. [Google Scholar]
- Jastroch, N. Sustainable Artificial Intelligence: In Search of Technological Resilience. In Proceedings of the IFIP International Conference on Product Lifecycle Management, Grenoble, France, 10–13 July 2022; pp. 317–326. [Google Scholar]
- Saleh, M.M.; Alsarhan, F.A. Evaluation of yield traits in some primitive wheat genotypes to ensure sustainability of wheat production. Innov. Agric. 2010, 10, 1–4. [Google Scholar] [CrossRef]
- Mohr, S.; Kühl, R. Acceptance of artificial intelligence in German agriculture: An application of the technology acceptance model and the theory of planned behavior. Precis. Agric. 2021, 22, 1816–1844. [Google Scholar] [CrossRef]
Sr. No. | AI Technology/ Application | Programming Languages Used | Role in Wheat Breeding | Effects On |
---|---|---|---|---|
1 | Machine Learning (ML) | Python, R | Enhances precision in predicting phenotypic traits and speeds up genomic selection processes. | Genomic Selection, Phenotypic Prediction |
2 | Deep Learning (DL) | Python, TensorFlow, PyTorch | Analyzes complex data for better prediction of genetic traits and forecasting yield outcomes. | Genomic Analysis, Yield Forecasting |
3 | Genomic Selection (GS) | Python, R | Accelerates the analysis of genomic data to select wheat varieties with optimal traits faster. | Genomics, Trait Selection |
4 | High-throughput Phenotyping | Python, MATLAB | Facilitates the rapid measurement of plant traits under varying environmental conditions. | Phenotypic Selection |
5 | LiDAR | C++, Python | Generates 3D models for structural analysis of wheat fields, aiding in accurate phenotypic assessments. | Structural Phenotyping |
6 | Hyperspectral Imaging Systems | Python, MATLAB | Assesses plant health and nutrient content, guiding precision interventions in wheat cultivation. | Nutrient Management, Plant Health |
7 | Unmanned Aerial Vehicles (UAVs) | Python, C++ | Captures aerial images for monitoring crop health and growth stages, which is crucial for managing wheat breeding. | Crop Monitoring, Growth Stage Assessment |
8 | Automated Ground Robots | Python, C++ | Collects detailed data on soil properties and plant health, reducing labor and enhancing data accuracy. | Soil Analysis, Plant Health |
9 | Neural Networks | Python, TensorFlow, PyTorch | Identifies patterns and anomalies in growth and stress responses, which is crucial for early intervention. | Pattern Recognition, Stress Response |
10 | Computer Vision Systems | Python, OpenCV | Processes images to detect disease and pests, supporting timely decisions in wheat breeding. | Disease Detection, Pest Management |
11 | Quantitative Trait Loci (QTL) Mapping | Python, R | Maps loci associated with important agronomic traits, aiding in the identification and selection of beneficial traits. | Trait Mapping, Genetic Analysis |
12 | Genotyping by Target Sequencing (GBTS) | Python, R | Enables rapid screening of genetic variants, improving the selection accuracy in breeding programs. | Genetic Screening, Variant Analysis |
13 | Image Processing Algorithms | Python, MATLAB, OpenCV | Analyzes imagery from various sources to assess crop traits and health, aiding in phenotypic selection. | Image Analysis, Phenotypic Assessment |
14 | Genomics-assisted Breeding (GAB) | Python, R | Utilizes genomic information to enhance the efficiency and accuracy of breeding decisions. | Genomic Information Utilization |
15 | CRISPR Technology | Python, R | Allows for precise genetic editing to develop wheat varieties with desired agronomic traits. | Genetic Editing, Trait Development |
16 | Particle Swarm Optimization (PSO) | Python, Java | Optimizes parameters in breeding simulations to achieve optimal outcomes in trait selection. | Simulation Optimization, Trait Selection |
17 | Back-propagation Neural Networks (BPNN) | Python, TensorFlow, PyTorch | Enhances prediction and classification accuracy in phenotypic and genomic data analysis. | Data Analysis, Phenotypic Classification |
18 | Random Forests | Python, R | Used for decision-making processes in selection based on complex datasets from wheat fields. | Decision-Making, Data Analysis |
19 | Gradient Boosting Machine (GBM) | Python, R | Improves prediction models for traits and yield based on historical data and simulations. | Trait Prediction, Yield Simulation |
20 | Support Vector Regression (SVR) | Python, R | Applies advanced regression techniques to predict wheat yields under varying conditions. | Yield Prediction, Regression Analysis |
21 | Fuzzy Inference Systems (FIS) | MATLAB, Python | Used for analyzing environmental data and making decisions in precision agriculture. | Environmental Analysis, Decision-Making |
22 | Geographical Information Systems (GIS) | Python, JavaScript | Manages and analyzes geographical data for land suitability and crop management in wheat breeding. | Land Suitability, Crop Management |
23 | Artificial Neural Networks (ANNs) | Python, TensorFlow, PyTorch | Simulates complex brain-like processing to enhance pattern recognition and decision-making in breeding. | Pattern Recognition, Decision Support |
24 | Molecular Simulations | Python, C++, Fortran | Simulates molecular interactions to understand and manipulate genetic factors in wheat. | Molecular Interaction Analysis |
25 | Genomic Prediction (GP) | Python, R | Predicts the performance of genotypes in different environments, enhancing selection accuracy. | Genotypic Performance, Environmental Adaptation |
26 | Genotype–Environment Interactions | Python, R | Studies the interaction effects to select genotypes that perform well across diverse conditions. | Environmental Adaptation, Genotype Selection |
27 | Big Data Analytics | Python, R | Analysis of large-scale genetic and phenotypic data. | Data-driven Decision-Making |
28 | Speed Breeding | Python, R | Accelerates breeding cycles. | Reduces Time to Develop New Cultivars |
29 | AutoML (Automated Machine Learning) | Python, TensorFlow, PyTorch | Automates ML model selection and optimization. | Enhances Model Accuracy and Efficiency |
30 | Next-Generation AI for Multi-Omics Data Integration | Python, R | Integrates diverse biological data for comprehensive analysis. | Improves Understanding of Complex Traits |
31 | High-Throughput Omics Technologies | Python, R | Analyzes omics data at high speed and accuracy. | Enhances Genomic Selection Processes |
32 | Unmanned Aerial Systems for Phenotyping | Python, C++ | Captures aerial images for crop monitoring. | Improves Phenotypic Assessment |
33 | Federated Learning | Python, TensorFlow | Distributed learning across multiple data sources. | Enhances Model Robustness and Privacy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushtaq, M.A.; Ahmed, H.G.M.-D.; Zeng, Y. Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security. Sustainability 2024, 16, 5688. https://doi.org/10.3390/su16135688
Mushtaq MA, Ahmed HGM-D, Zeng Y. Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security. Sustainability. 2024; 16(13):5688. https://doi.org/10.3390/su16135688
Chicago/Turabian StyleMushtaq, Muhammad Ahtasham, Hafiz Ghulam Muhu-Din Ahmed, and Yawen Zeng. 2024. "Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security" Sustainability 16, no. 13: 5688. https://doi.org/10.3390/su16135688
APA StyleMushtaq, M. A., Ahmed, H. G. M. -D., & Zeng, Y. (2024). Applications of Artificial Intelligence in Wheat Breeding for Sustainable Food Security. Sustainability, 16(13), 5688. https://doi.org/10.3390/su16135688